
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

32

Resource Allocation to Software Modules in Software
Testing with Imperfect-debugging SRGM

SK.Md.Rafi
Assoc.Professor

Sri Mittapalli Institute of Technology for women
Affiliated to J.N.T.U, Kakinada

Shaheda Akthar
Assoc.Professor

Sri Mittapalli college of Engineering
Affiliated to J.N.T.U, Kakinada

ABSTRACT
Resource control and resource maintenance during the software

testing is one of the finest optimization problems. During the

software testing many of the resources like time, effort and budget

were consumed. The main aim of the manager is allocate the

resources in a constrained manner such that the effort can be

optimally allocated and overall budget is minimized. In this paper we

proposed a imperfect debugging SRGM during testing and resource

allocation is done based on optimizing the effort and reliability. An

experimental result shows the proposed model well fitted for

software testing.

Keywords- Resource allocation, software testing, Imperfect-

debugging SRGM, Lagrange multipliers.

Notation
m(t) :mean value function

w(t) :Current testing expenditure

W(t) :Cumulative testing expenditure

a :initial fault content a > 0

r :Fault detection rate

I :subscript for each module number i=1,2,3…..M

vi :weight for each module, vi > 0

zi number of software errors remains in the softwaremodule

Z number of software errors remains in total software

qi :amount of testing resource for the module i

W total amount of testing resource expenditure during testing

R(s) :software reliability in the interval (0,s | s > 0)

γ :constant parameter ;related to failure rate

R0 :objective reliability

Ai :viairi(1-βi)

1. INTRODUCTION

Reliability is one of the finest areas of software quality. By

improving the reliability it increases the software quality. Software

reliability is defined as the failure free software over a period of time

in given environmental conditions. Software Reliability growth

models represents the mathematical model of software testing.

Several software reliability growth models are proposed in literature

which describes the real time environment of software testing [1] [2].

Software reliability growth models can be classified in terms of time

dependent and data dependent [14]. Generally any software

development process consisting of four phases starting from

requirement, design, coding and testing [4]. Testing can be organized

in terms of unit or module, integration and system testing. During

very testing the resources are consumed based on test criteria.

Testing resources are better described by testing time, testing effort

and number of test cases used during the testing. The manager has to

decide how better he will allocate the resources to the testing so that

testing time, testing effort and budget is optimized and quality is

improved. Software reliability growth models with resources

allocation problem is studied by many authors

[3][4][5][6][7][8][9][10]. Several authors had used perfect SRGM in

resource allocation during module testing. But it is observed that

SRGM were not perfect in nature during error detection and

debugging there is a change of new errors may introduce in to the

testing.

In this paper we had studied the resource allocation during the

module testing with an imperfect debugging software reliability

growth model with testing effort. The rest of the paper is organized

as follows.

Section-2 proposed a testing effort dependent software reliability

growth model section-3 describes the testing resource allocation

problem. Section-4 describes the numerical examples.

II. REVIEW OF SOFTWARERE LIABILITY

GROWTH MODEL WITH LOGISTIC-

EXPONENTIAL TEF WITH IMPERFECT

DEBUGGING ENVIRONMENT.

The following are the assumptions for SRGM with logistic-

exponential testing-effort [12][13]

1) the fault removal process follows the NHPP

2) The software is subject to failure at random time’s causes

by faults remaining in the system.

3) The mean number of faults detected in the time interval (t,

t+Δt) by the current testing-effort is proportional to the

mean number of remaining faults in the system.

4) The fault detection rate is constant

5) The consumption of testing-effort is modeled by a logistic-

exponential TEF

6) Each time a failure occurs it is removed and there is chance

of introducing new errors in the software during testing.

Cumulative testing effort is described by Logistic-exponential

testing-effort has a great flexibility in accommodating all the

forms of the hazard rate function, can be used in a variety of

problems for modeling software failure data.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

33

The logistic-exponential cumulative TEF over time period (0,t]

can be expressed as [15]

)1(

)(

)1(

)1(

e

e
th

th

tW
k

k

 t>0 (1)

is the total expenditure , k positive shape parameter and h is

a positive scale parameter

)]()([)(
)(

1)(
tmtntr

twdt

tdm (2)

Here we assume)()(tmatn (3)

Solving above by considering m(0)=0 and r(t)=r we obtain the

mean value function

)])(*)1(exp[1(
)1(

)(tWr
a

tm (4)

In this case, we have

z(t)=n(t)-m(t)=)](*)1(exp[tWra (5)

Now we have the following reliability after the testing

])](*)1(exp[exp[))(exp()(stWrastzsR

 (6)

III TESTING RESOURCE ALLOCATION

PROBLEM
In this paper we used two testing resource allocation schemes

one by minimizing the number of remaining faults and

allocating the resources to attain the maximum reliability.

3.1 resource allocation by minimizing the number of

remaining faults[4][5]

1) The software system is composed of M independent

modules. The number of faults remain in the software

module is estimated through the software reliability growth

model.

2) The total amount of testing resource for module testing is

specified

3) The manager has to allocate the testing resource to all

modules in such way the total number of errors present in

the software after testing can be minimized.

From (5) the estimated number of remaining faults is formulated

by

])1(exp[qraz iiiii
).,........2,1(Mi (7)

Test resource allocation is formulated as

Minimize
M

i
iiiii qrav

1

])1(exp[(8)

Suchthat

M

i
i

Wq
1

, 0q
i

).........3,2,1(Mi (9)

The parameters of ai , ri and βi are already estimated by the

model introduced in section II

To solve the above problem, we consider the following

Lagrangian equation:
M

i

M

i
iiiiii

WL qqrav
1 1

)(])1(exp[(10)

Now differentiate above equation with respect to q
i

 (11)

0
q

i

L)..........2,1(Mi (12)

The following condition is satisfied for tested modules:

AAAAAA Mkk
...................

1321
 (13)

Above sequence is arranged according to the fault detect ability

for the tested modules. Now if Ak > λ ≥ Ak+1 now we have

qrA iiii
)1()]ln()[ln((14)

)1.(

)ln(ln

ii

i

i r
Aq (15)

Now next differentiate with respect to λ then
M

i
i

W
L

q
1

0 Then
M

i
i

Wq
1

 (16)

M

i
ii

i W

r
A

1)1.(

)ln(ln (17)

Solving above equation

M

i
ii

M

i
i

ii

r

A
r

W

1

1

)1(

1

)ln
)1(

1
(

ln

 (18)

Optimal Lagrange multiplier λ* exist in the set

},..........,{
21 M

.Optimal λ* can be calculated by

setting k=1 and then compute λk by eq (18) for which Ak > λk

>Ak+1 then λ*= λk.

3.2. Minimizing the remaining faults by considering the

reliability

Following are the test resource allocation problem [5]

1) The software system is composed of M independent

modules. The number of faults remain in the software

module is estimated through the software reliability

growth model.

2) The total amount of testing resource for module

testing is specified

3) The manager has to allocate the testing resource to all

modules by setting the reliability objective in such

way the total number of errors present in the software

after testing can be minimized.

From eq.(6)we obtain

Rqra ssR
iiiii 0

]])1(exp[exp[)((19)

From (19) we obtain the qi as

]
ln

ln[
)1(

1 0

sa
R

r
q

iiii

i

 (20)

The right hand side of the equation denotes Di. We have the

following equation we show the relation between allocated

resource and maximum allocated resource.

cq ii
).........3,2,1};,0max{(MiDc ii

By setting the xi=qi-ci ,, we obtain the transform eq.(8) and (9)

0))1(exp()1(qrrav
q iiiiiii

i

L

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

34

Minimize
M

i
iiiiii cxrav

1

)]()1(exp[(21)

Suchthat

0,
1 1

xcx i

M

i

M

i
ii

W)...,..........3,2,1(Mi

 (22)

By suitable transformation above problem can be deduced to eq

(8) and (9)

IV. NUMERICAL EXAMPLES

Parameters of the testing effort function can be obtained by

MLE and LSE. Here we assume that all parameters like ai, ri and

βi (i=1,2………,M) are already been calculated by using the

software fault detection data and the testing resource data

observed in module testing. Present scenario we considered a

software data consists of 10 modules we estimated the

parameters ai, rI and βi given in the Table.1

Optimal qi
* can be obtained from (15) are shown in the Table.1.

The estimated optimal λ* =0.000911.

Then total numbers of remaining faults are estimated from (6)

10

1

])1(exp[
i

iiii qraZ =104.52 (23)

The total number of faults are decreased from 251 to 104.52 by

use of test resource expenditure 97,000 man hours; about ((251-

104.52)/251*100) =58.35% reduction in the remaining faults.

Table .1 the values of vi , ai , ri , and βi and allocated testing

resource expenditure q* for minimizing the remaining faults

W=97,000.

Module vi
 ai

)(10
4

ri

i
 q

i
 z i

1 1 63 0.5332 0.0010 24478.7 17.1

2 1 13 2.5230 0.0023 5079.9 3.61

3 1 6 5.2620 0.0014 2362.6 1.73

4 1 51 0.5169 0.0045 20561.4 17.7

5 1 15 1.7070 0.0012 6054.21 5.34

6 1 39 0.5723 0.0040 15650.38 15.9

7 1 21 0.9938 0.0010 8339.2 0.17

8 1 9 1.7430 0.0038 3107.9 5.24

9 1 23 0.5057 0.0087 4699.2 18.1

10 1 11 0.8782 0.0065 597.3 10.4

Next by using the values of vi , ai , ri , βi and γi given in the Table.2

we have the optimal solution q* shown in the Table.2. Now reliability

R0 =0.9 is objective value for the software and s=1. Then total

numbers of faults are decreases from 251 to 104.45 by using the total

resource expenditure 97,000 man hours; about 58.38% of reduction

in the remaining faults.

Then total numbers of remaining faults are estimated from (6)

10

1

])1(exp[
i

iiii qraZ =104.45 (24)

Table 2: values of vi , ai , ri , βi and γi given and allocated

testing resource expenditure q* for minimizing the

remaining faults W=97,000.

Modul

e
ai

i

)(10
4

ri

)(10
2

i

D i
 q

i
 z i

 vi

1 63
0.001

0

0.533

2
0.1800

1377.

7
24498 18.3 1

2 13
0.002

3

2.523

0
1.124

1293.

2
5081 5.11 1

3 6
0.001

4

5.262

0
3.167 119.1 2362.8 3.57 1

4 51
0.004

5

0.516

9
0.2180

1035.

4

20576.

5

18.9

8
1

5 15
0.001

2

1.707

0
0.856

1157.

1
6059 6.75 1

6 39
0.004

0

0.572

3
0.2900

1233.

6

15664.

1

17.2

7
1

7 21
0.001

0

0.993

8
0.5470

868.6

5
8348.9

10.5

1
1

8 9
0.003

8

1.743

0
1.4060

1046.

8
3108.9 6.66 1

9 23
0.008

7

0.505

7
0.4830

1038.

0
4769

19.4

6
1

10 11
0.006

5

0.878

2
1.0850

1410.

4
600.73 11.8 1

V. CONCLUSION AND REMARKS
In this paper we have studied two resource allocation policies

during software testing. We used a imperfect-debugging software

reliability growth model during the resource allocation

phenomenon. For above models were proved through the values

given in the tables. In future some more validations are required to

prove the efficiency of the model.

VI. REFERENCES

[1] M. R. Lyu, Handbook of Software Reliability Engineering,

McGraw Hill, 1996.

[2] J. D. Musa, Software Reliability Engineering: More Reliable

Software, Faster Development and Testing, McGraw-Hill, 1999.

[3] Y. W. Leung, “Dynamic Resource Allocation for Software

Module Testing,” The Journal of Systems and Software, Vol. 37,

No. 2, pp. 129-139, May 1997.

[4] H. Ohtera, and S. Yamada, “Optimal Allocation and Control

Problems for Software-Testing Resources,” IEEE Trans. on

Reliability, Vol. 39, No. 2, pp. 171-176, 1990.

[5] S. Yamada, T. Ichimori, and M. Nishiwaki, “Optimal Allocation

Policies for Testing Resource Based on a Software Reliability

Growth Model,” International Journal of Mathematical and

Computer Modelling, Vol. 22, pp. 295-301, 1995.

[6] M. Nishiwaki, S. Yamada, and T. Ichimori, “Testing-resource

Allocation Policies based on an Optimal Software Release

Problem,” Mathematica Japonica, Vol. 43, No. 1, pp.91-97,

1996.

[7] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, “Optimal

Allocation of Test Resources for Software Reliability Growth

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

35

Modeling in Software Development,” IEEE Trans. on

Reliability, Vol. 51, No. 2, pp. 183-192, June 2002.

[8] O. Berman, and N. Ashrafi, “Optimization Models for

Reliability of Modular Software Systems,” IEEE Trans. on

Software Engineering, vol. 19, No. 11, pp. 1119-1123,

Nov.1993.

[9] C. Y. Huang, J. H. Lo, J. W. Lin, C. C. Sue, and C. T. Lin,

“Optimal Resource Allocation and Sensitivity Analysis for

Software Modular Testing,” Proceedings of the IEEE 5th

International Symposium on Multimedia Software Engineering

(ISMSE 2003), pp. 231-238, Dec. 2003, Taichung, Taiwan.

[10] C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu, “Optimal

Allocation of Testing Resources for Modular Software

Systems,” Proceedings of the IEEE 13th International

Symposium on Software Reliability Engineering (ISSRE 2002),

pp.129-138, Nov. 2002, Annapolis, Maryland.

[11] C. Y. Huang, J. H. Lo, S. Y. Kuo and M. R, “Optimal

Allocation of Testing-Resource considering Cost, Reliability,

and Testing-Effort,” Dependable Computing, 2004.

Proceedings. 10th IEEE Pacific Rim International Symposium

on 3-5 March 2004, pp. 103-112.

[12] Sk.Md.Rafi ,K.Nageshwara Rao, shaheda akthar “software

reliability growth model with logistic-exponential TEF and

Analysis of software release policy” International Journal on

Computer Science and Engineering Vol. 02, No. 02, 2010, 387-

399.

[13] Sk.Md.Rafi ,K.Nageshwara Rao, “SRGM with logistic-

exponential Testing-effort function with change-point and

Analysis of Optimal release policies based on increasing the test

efficiency” International Journal on Computer Science and

Engineering Vol. 02, No. 03, 2010, 504-516.

[14] A.L. Goel and K. Okumoto, A time dependent error detection

rate model for a large scale software system, Proc. 3rd

USAJapan Computer Conference, pp. 3540, San Francisco, CA

(1978).

[15] Y. Lan, and L. Leemis, (Aug. 2007) “The Logistic-Exponential

Survival Distribution,” Naval Research Logistics (NRL) volume

55, number 3, pp. 252-264.

AUTHORS PROFILE

Sk.MD.Rafi received B.Tech (comp) from Jawaharlal Nehru

Technological University, M.Tech (comp) from Acharya Nagarjuna

University. Pursuing PhD from Jawaharlal Nehru Technological

University. Presently working as Associate. Professor in Sri

Mittapalli Institute of Technology for women, affiliated to J.N.T.U,

Kakinada. Published so many international papers on software

reliability and quality control and software architecture recovery. My

area of interest is Software Reliability, Software Architecture

Recovery, Network Security, and Software Engineering.

Shaheda Akthar received Bachelor of computer science & master of

computer science from Acharya Nagarjuna University, M.S

(Software Systems) from BITS, Pilani, pursuing Ph.D from Acharya

Nagarjuna University. Presently working as Asscociate .Professor in

Sri Mittapalli College of engineering, affiliated to J.N.T.U,

Kakinada. Published so many international papers on software

reliability and quality control and software architecture recovery My

area of interest is Software Reliability, Software Architecture

Recovery, Network Security, and Software Engineering .

