
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

6

Design Patterns to Implement Safety and Fault

Tolerance

Hemangi Gawand
Homi Bhabha National Institute

Bhabha Atomic Research
Center & Indira Gandhi Center

of Atomic Research - India

R.S.Mundada
Homi Bhabha National Institute

Bhabha Atomic Research
Center - India

P.Swaminathan
Homi Bhabha National Institute
Indira Gandhi Center of Atomic

Research - India

ABSTRACT

This paper discusses an object orient approach based on

design pattern and computational reflection concept to

implement non- functional requirements of complex control

system. Firstly we brief about software architecture design,

followed by control-monitor safety pattern, Tri-Modular

redundancy (TMR) pattern, reflective state pattern and fault

tolerance redundancy patterns that are use for safety and fault

management. Reflection state pattern is a refinement of the

state design pattern based on reflection architectural pattern.

With variation in reflective design pattern we can develop a

well structured fault tolerant system. The main goal of this

paper is to separate control and safety aspect from the

application logic. It details its intent, motivation, participants,

consequences and implementation of safety design pattern.

General Terms

Design pattern, Safety pattern, Fault tolerance.

Keywords

Reflective Design pattern, fault tolerance, safety tactics, tri-

modular redundancy and digital distributed control system.

1. INTRODUCTION
A design pattern is a description of a set of successful

solutions of a recurring problem within a context. A pattern is

therefore made-of three pillars: a problem, a context and a

solution. Design patterns are mostly described using a

combination of text, Unified Modeling Language (UML)

diagrams and sample code fragments. The intention is to make

them easy to read and use [1].

Modern object oriented system generally include various non-

functional requirements that can increase system complexity

especially when dealing with distributed control system of

complex plants. The development of such system requires the

use of appropriate techniques in order to control this

additional complexity and to make software, more structured,

safer, easier to understand, maintain and reuse. Safety and

fault tolerance has been key non- functional requirement that

needs to be handled. This paper provides software methods to

support safety and fault tolerance using design patterns.

 In this paper we present software safety, redundancy and

fault tolerance implementation in form of various design

patterns. It details its intent, motivation, participants,

consequences and implementation.

Sections are categorized as mention below:-

1. Section 2:- Safety Tactics for software architecture

design. This section details various safety tactics

that makes up software architecture and safety

model which implements this tactics.

2. Section 3:- Software safety patterns that details

control monitor pattern 1, 2, 3 and TMR pattern.

3. Section 4:- Reflection and Fault Tolerance

Redundancy pattern section details its framework

and specifying design pattern at different level of

abstraction.

4. Section 5:- Conclusion

2. SAFETY TACTICS FOR SOFTWARE

ARCHITECTURE DESIGN
Software architecture of a system comprises of software

elements, relation among them and properties of both.

Software architecture ideally satisfies below requirement:-

1. Fault tolerance

2. Fault avoidance

3. Modularity

4. Ease of modification and change

5. Technology transparency

Software architecture also considers the inevitability of failure

as part of the design process. Failure can be:-

1. Random: - Failure due to physical causes or

degradation mechanism.

2. Systematic: - Failure due to flaws in system. System

subjected to the same conditions fail consistently.[2]

Security Tactics goes hand in hand with safety and are

followed to resist, detect or recover from attacks. It also

provides confidentiality, integrity as well as assurance. Figure

1 detail about safety tactics.

2.1 Overview of Safety Model
Safety Model helps us to provide a process for integrating

safety tactics in designing of software architecture and hence

lay foundation for „safe‟ software architecture. Key features

that need to be handled by safety model are as below:-

1. Failure classification.

2. Failure causes

3. Failure behavior

4. Failure recovery

Currently there are various methods for failure analysis. Few

methods are listed below.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

7

1. Manual method

2. Cause Effect Sheet

3. Failure mode effect analysis (FMEA)

4. Software Method

For designing and developing safety tactics in software

following task needs to be carried out.

1. Analysis of existing system and safety design

technique used in it

2. Organizing safety tactics based on methods to

handle failure

i) Failure avoidance

ii) Failure detection

iii) Failure containment

3. Documenting safety tactics base on type of failure.

Failure can be

i) Minor: - subsystem failure that does not causes

whole main sub system to stop.

ii) Major: - subsystem failure that causes whole

main sub system to stop.

Safety pattern describe in section 3 is one of the method based

on failure avoidance technique while fault tolerance follows

detection and containment

Attack

Failure Avoided or Handled

Figure 1:- Safety Tactics hierarchy

1. Send Message (receiver, message)

 2. Process Message base on data priority

 (Receiver, message)

 4. Reply Message 3. Reply Message

Figure 2:- Safety Design Pattern

Safety Block

Failure Avoidance Failure

Detection
Failure Containment

Redundancy

 Replication

 Functional redundancy

 Triple modular redundancy

Recovery

 Error Fix

 Rollback

 Degradation

 Reconfiguration

Masking

Barrier

 Firewall

Substitution

Timeout

Timestamp

Condition

check

Comparison

Sender Messenger Receiver

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

8

3. SAFETY DESIGN PATTERN

(SDP)

3.1 Intent
The Safety Design Pattern allows the interchange of

information between components and applications. Figure 2

details message flow as described in section 3.3

3.2 Motivation
In normal design we classify the classes based on its

utilization or actor for e.g. sender, receiver or interface etc and

with class instance all the parameters and related functions are

created. When it comes to safety critical application where all

data cannot be handled in one class with equal priorities, data

needs to be split or categorized. In this pattern data is widely

classified majorly into 2 types: - Control and monitor. As a

consequence, software engineering processes are significantly

improved as well as data handling become easier.

3.3 Participants
1. Message Sender: Component that sends the message.

2. Message Recipient (Receiver): Component that receives

the input message and may produce a reply (output

message) after processing it. The component may be

instructed to perform computations based on the input

message.

3. Messenger: Intermediary that transfers the message from

the sender to the recipient. The sender and the recipient

don‟t need to be concerned about how the message is

transferred (communication protocol, message format,

encryption/security mechanism, etc.) and the

transformations performed on the message along the

way. Messenger is optional element. Based on data

priority, request is forwarded.

4. Message: any piece of information (i.e. data) that needs

to be interchanged between sender and recipient. Two

messages are usually involved:- input message and

output message (or reply message). The reply message is

not optional.

3.4 Consequences
Encapsulation: - The messaging design pattern maximizes

encapsulation. Each component is a self-

contained/independent unit. The only mechanism of

communication with other components and applications is via

messaging.

Decoupling: - SDP minimizes coupling. Again each

component is a self-contained unit that can perform

independently from the rest of the system.

Reusability: - SDP improves reusability. Applications are

also able to reuse components from other applications at the

component level i.e. a single component can be extracted

from another application.

QA/Testing process: - SDP facilitates testing and debugging

efforts. Components are tested as independent units by

sending messages to the component and verifying the

expected reply messages (black-box testing).

 Design process: - SDP improves and simplifies the design

process.

Development process: - Since each component that relies on

messaging is self-contained, a large team of people can

cooperate in the development effort without stepping on each

other's code/work. In the ideal situation, responsibility for one

component/package can be given to an individual. The rest of

the team only needs to know the input/output messages that

someone else‟s component are designed to handle. No need to

change someone else‟s code. The need for creating,

maintaining and merging several versions of the code is also

minimized or eliminated.

Speed of development and cost: - SDP is able to

substantially improve the speed of development and reduce

cost.

SDP behaves like a state machine. It can be extended to

provide fault-tolerant capabilities in a very natural and

intuitive fashion by replicating components and coordinating

their interaction.

4. A FRAMEWORK FOR THE

FORMAL SPECIFICATION OF

DESIGN PATTERNS
In this section we introduce our frame work that allows the

specification of patterns at different levels of abstraction.

4.1 Pattern Specification
The structural aspect of patterns is represented by subclasses

participating in the pattern and associations between them.

Classes are represented as set of instances, each of which is

represented by an identity taken from an infinite sent of object

identities. As such we use the term object and object identity

interchangeably. The generalized UML pattern framework is

an object-oriented framework that provides support for the

base classes that the standard pattern implementation model

extends. The specialized patterns framework provides

additional functionality such as role-marking and traceability

features for pattern participants.

4.1.1 Generalization Relationships

A generalization relationship, which is also called an

inheritance or is-a relationship, implies that a specialized,

child, class is based on a general, parent, class.

Figure 3 illustrates, a generalization relationship connector

appears as a solid line with an unfilled arrowhead pointing

from the specialized, child C/C++ class to the general, parent

class. Sample C++ code shows its implementation.

4.1.2 Association relationships

An association is a structural relationship that indicates that

objects of one classifier, such as a class and interface, are

connected and can navigate to objects of another classifier.

Figure 4 gives example of association relationship with

sample code.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

9

//UML representation

//sample C++ code

Class Parent {

protected:

bool flag;

int count;

public:

Parent();

virtual ~Parent();

};

Class Child : public Parent {

public:
Child();

Virtual ~Child();

};

Figure 3:- Generalization Relation.

//UML representation

//sample C++ code

Class Compound {

protected:

Element a[1..10];// array of

elements

Binder b; // b as object of

Binder class

public:

compound();

virtual ~compound();

};

Figure 4:- Association Relation.

4.1.3 Dependency relationships

In class diagrams, a dependency relationship indicates that a

change to one class, the supplier, might cause a change in the

other class.Figure 5 gives example of dependency relation in

UML digram and its C++ implementation.

//UML representation

//sample C++ code

Class Vehicle{

Public:

Vehicle();

virtual ~Vehicle();

void getlocation(Locator&

loc); // function uses locator

class

};

Figure 5:- Dependency Relation

4.2 Types of Safety Design Pattern (SDP)
Safety Design pattern classifies the Input data as Control data

and Monitor data. Control data is process by control

subsystem or class while monitor data by monitor subsystem

respectively. These two systems can behave independently as

well as with feedback loop. Based on the connection between

them, they are widely classified in to 3 types as detailed

below:-

1. Control –Monitor Pattern 1

2. Control –Monitor Pattern 2

3. Control –Monitor Pattern 3

4.2.1 Control –Monitor Pattern 1
As shown in figure 6 the input data is send to control as well

as monitor sub systems. Control process data output is feed to

monitor sub system. Respective output from control and

monitor subsystems is given to display or other process

system. If any previous data is required for calculation,

feedback is provided to monitoring system from output/ other

process system.

Figure 6:- Control Monitor Safety Pattern 1

4.2.2 Control –Monitor Pattern 2
In this Pattern Input class is separate for control and monitor

subsystem. Figure 7 gives block diagram control monitor

pattern 2. It is similar to control-monitor pattern 1 for its

operation.

Figure 7:- Control Monitor Safety Pattern 2

4.2.3 Control –Monitor Pattern 3
In this Pattern there are 3 differences compare with pattern 1

1. Input class is separate for control and monitor

subsystem

2. Control and monitor subsystem have

association for cross checking the output

before it is feed to other system.

3. No feedback to Monitor subsystem

Figure 8 details about pattern.

Figure 8:- Control Monitor Safety Pattern 3

 Uses

Control

Monitor

Output I

N

P

U

T

Control

Monitor

Output I

N

P

U

T

Compound

Element

Binder

Parent

Child

Vehicle

Locator

Control

Monitor

Output I

N

P

U

T

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

10

Generic Class diagram to represent Control Monitor Safety

Pattern is as shown in figure 9.

//UML representation

//Sample C++ code

Class Output{

Public:

Output();

virtual ~Output();

//additional function using Control and Monitor class varies

as per //type 1,2 or 3

};

Class Control : public Input {

public:
Control();

Virtual ~Control();

// additional Control data specific functions varies as per

//type 1,2 or 3

};

Class Monitor : public Input {

public:
Monitor();

Virtual ~Monitor();

// additional Monitor data specific functions varies as per

//type 1,2 or 3

};

Class Input {

public:
Input();

Virtual ~Input();

};

Figure 9:- Control Monitor Pattern

4.3 Triple Modular Redundancy Pattern
Triple Modular Redundancy Pattern (TMR) is a pattern used

to enhance reliability and safety in situations where there is no

fail-safe state. The TMR pattern offers an odd number of

channels i.e. three operating in parallel, each in effect

checking the results of all the others. The computational

results or resulting actuation signals are compared, and if

there is a disagreement, then a two-out-of-three majority wins

policy is invoked [4]. Figure 10 shows TMR pattern.

Figure 11 details about TMR pattern implementation in UML

and sample code in C++.

Figure 10:- TMR Pattern

//UML representation

//Sample C++ code

Class Output{

Public:

Output();

virtual ~Output();

//additional function using Control and Monitor class

};

Class Control1 : public Input {

public:
Control1();

Virtual ~Control1();

};

Class Control2 : public Input {

public:
Control2();

Virtual ~Control2();

};

Class Control3 : public Input {

public:
Control3();

Virtual ~Control3();

};

Class Input {

public:
Input();

Virtual ~Input();};

Figure 11:- TMR class diagram

Decision

Box

I

N

P

U

T

Control 1

Control 2

Control 3

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

11

Figure 12:- Reflective State pattern

4.4 The Reflective State Pattern
Reflective State Pattern is a refinement of the state design

pattern based on the reflection architectural pattern. The State

design pattern presents a solution to implement state

dependant behavior of a context object by means of state

objects. It allows the context object to change its behavior

dynamically using the delegation mechanism. The Reflection

architectural pattern defines a software architecture that

separates an application into two parts: the base level that

implements the functional requirements, i.e., the application‟s

logic and the meta-level which implements the control aspects

[2]. Figure 12 gives class diagram for the reflective state

pattern.

There are 3 main questions that should be considered in the

state machine implementation:-

1. Where should the definition and initialization of the

possible state objects be located?

2. How and where should the input events and guard-

conditions be verified?

3. How and where should the execution of state

transitions be implemented?

The implementation of the control aspect of state machine

should be separated from the functional aspect. Classes should

be loosely coupled to facilitate their reutilization and

extension. Reflection architectural pattern separate the state

pattern in to two levels, the meta-level and the base level. In

the meta-level, the elements of the state diagram are

represented by the Meta-State and the Meta-transition class

hierarchies. The State machine‟s controller is represented by

Meta-Controller class.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

12

Class responsibilities are as below:

Meta-State: - This class is responsible for creating and

initializing the state objects at the base level. Meta-State meta-

object broadcasts the handling of the incoming event to its

Meta-Transition meta-objects so that they can verify if a

transition should be triggered.

Meta-Transition: - This subclass has information about

transition function, has to perform actions associated with the

transition. It has the reference to the next Meta-State that can

be reached by the transition.

Meta-Controller: - This class is responsible for handling the

intercepted service requests targeted to the context object at

base level invoke through application. This class is

responsible for creating and initialization of all Meta objects.

4.5 The Fault Tolerance Redundancy

Pattern
Figure 13 gives the class diagram of fault tolerance

redundancy pattern as described.

Figure 13:- Fault Tolerance Redundancy pattern

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

13

The reflection pattern can be modified to the fault tolerance

domain. This pattern has same structure and semantics like

reflection pattern with below difference.

The base level class represent the fault tolerant component

(FTC) along with main context class invoke by application

and the redundant components. FTC defines fault tolerance

services while redundant class implements the same. Meta-

Transition class implements recovery tests from fault. This

can be implemented for n-versions of the state objects to

enhance the system reliability and availability.

5. CONCLUSION
Design patterns are means of improving design quality,

flexibility and productivity that can be fully exploited by the

UML pattern.

In this paper we defined an object orient approach based on

design pattern and computational reflection concept to

implement non- functional requirements. This has facilitated

the understandability of software architecture design, control-

monitor safety pattern, Tri-Modular redundancy (TMR)

pattern, reflective state pattern and fault tolerance redundancy

patterns that can be use for safety and fault management as

described in this paper.

The main goal of this paper is to separate control and safety

aspect from the application logic is achieved by defining

different pattern. These patterns can be readily used in similar

applications with minor changes.

6. REFERENCES
[1] Toufik Taibi, Angel Herranz, Juan Jose Moreno –

Navarro, “Stepwise Refinement Validation of Design

Patterns formalized in TLA+ using TLC Model checker”

Journal of Object Technology, Volume 8, No-2, March –

April 2009

[2] Weihang Wu, Tim Kelly,” Safety Tactics for Software

Architecture Design” COMPSAC '04 Proceedings of the

28th Annual International Computer Software and

Applications Conference - Volume 01

[3] Tashjian, B.M, “The failure modes and effects analysis

as a design tool for nuclear safety systems,” Power

Apparatus and Systems, IEEE Transactions on

Volume:94,Issue: 1, Part: 1 Publication Year: 1975 ,

Page(s): 97 – 103

[4] Bocking, S, “Object-Oriented Network Protocols,”

INFOCOM '97. Sixteenth Annual Joint Conference of

the IEEE Computer and Communications Societies.

Proceedings IEEE Volume: 3, Digital Object

Identifier:10.1109/INFCOM.1997.631153 Publication

Year: 1997, Page(s): 1245 - 1252 vol.3

[5]http://my.safaribooksonline.com/book/softwareengineering

-and-development/patterns/0201699567/safety- and-

reliability-patterns/ch09lev1sec4

[6] Bidokhti, N,”FMEA Is Not Enough;” Reliability and

Maintainability Symposium, 2009. RAMS 2009. Annual

Digital Object Identifier: 10.1109/RAMS.2009.4914698

Publication Year: 2009, Page(s): 333 – 337

[7] Jim Becker,” A Failure Mode And Effects Analysis

(FMEA) Process For Distributed Computing Systems A

Guidance Paper,” Integrating Error Models with Fault

Injection, 1994. Third Workshop on Publication Year:

1994, Page(s): 39 – 40

[8] Trivedi Kishor, “Probability and Statistics with

Reliability, Queuing, and Computer Science

Applications,”

[9] Magnus Penker and Hans-Erik Eriksson; “Business

Modeling With UML: Business Patterns at Work”.

[10] Hunt, J.E.; Price, C.J.; Lee, M.H” Automating the FMEA

process,” Intelligent Systems Engineering. Volume: 2,

Issue: 2 Publication Year: 1993, Page(s): 119 – 132

[11] Duell, M,” Looking beyond software to understand

software design patterns, Computer Software and

Applications Conference, 1999. COMPSAC '99.

Proceedings. The Twenty-Third Annual International

Digital-Object-dentifier:10.1109/CMPSAC.1999.812724

Publication Year: 1999 , Page(s): 312 - 313

[12] Masuda, G.; Sakamoto, N.; Ushijima, K," Redesigning

of an Existing Software using Design Patterns",

Principles of Software Evolution, 2000. Proceedings.

International Symposium on Digital Object Identifier:

10.1109/ISPSE.2000.913234 Publication Year: 2000 ,

Page(s): 165 - 169

[13] Fuping Zeng; Aizhen Chen; Xin Tao;"Study on Software

Reliability Design Criteria Based on Defect Patterns",

Reliability, Maintainability and Safety, 2009. ICRMS

2009. 8th International Conference on Digital Object

Identifier: 10.1109/ICRMS.2009.5270095

[14] Luciane Lamour Ferreira and Cecília Mary Fischer

Rubira ,“Reflective Design Patterns to implement Fault

Tolerance

http://portal.acm.org/author_page.cfm?id=81100657474&coll=DL&dl=ACM&trk=0&cfid=5907400&cftoken=52513739
http://portal.acm.org/author_page.cfm?id=81407592457&coll=DL&dl=ACM&trk=0&cfid=5907400&cftoken=52513739
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33656
http://dx.doi.org/10.1109/INFCOM.1997.631153
http://dx.doi.org/10.1109/RAMS.2009.4914698
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5260
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5260
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5260
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5886

