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Time Domain based Software Process Control using 

Weibull Mean Value Function 

 

ABSTRACT 
Control charts are widely used for process monitoring. Software 

reliability process can be monitored efficiently by using Statistical 

Process Control (SPC). It assists the software development team 

to identify failures and actions to be taken during software failure 

process and hence, assures better software reliability. In this paper 

we propose a control mechanism based on the cumulative quantity 

between observations of time domain failure data using mean 

value function of Weibull distribution, which is based on Non 

Homogenous Poisson Process (NHPP). The Maximum Likelihood 

Estimation (MLE) method is used to derive the point estimators of 

a two-parameter Weibull distribution. 

General Terms 
Software Engineering, Statistical Reliability. 

Keywords 
Statistical Process Control, Software reliability, Weibull 

Distribution, Mean Value function, Probability limits, Control 

Charts. 

1. INTRODUCTION 
Software reliability assessment is important to evaluate and 

predict the reliability and performance of software system, since it 

is the main attribute of software. To identify and eliminate human 

errors in software development process and also to improve 

software reliability, the Statistical Process Control concepts and 

methods are the best choice. SPC concepts and methods are used 

to monitor the performance of a software process over time in 

order to verify that the process remains in the state of statistical 

control. It helps in finding assignable causes, long term 

improvements in the software process. Software quality and 

reliability can be achieved by eliminating the causes or improving 

the software process or its operating procedures [1]. 

The most popular technique for maintaining process control is 

control charting. The control chart is one of the seven tools for 

quality control. Software process control is used to secure the 

quality of the final product which will conform to predefined 

standards. In any process, regardless of how carefully it is 

maintained, a certain amount of natural variability will always 

exist. A process is said to be statistically “in-control” when it 

operates with only chance causes of variation. On the other hand, 

when assignable causes are present, then we say that the process is 

statistically “out-of-control.” 

The control charts can be classified into several categories, as per 

several distinct criteria. Depending on the number of quality 

characteristics under investigation, charts can be divided into 

univariate control charts and multivariate control charts. 

Furthermore, the quality characteristic of interest may be a 

continuous random variable or alternatively a discrete attribute. 

Control charts should be capable to create an alarm when a shift in 

the level of one or more parameters of the underlying distribution 

or a non-random behavior occurs. Normally, such a situation will 

be reflected in the control chart by points plotted outside the 

control limits or by the presence of specific patterns. The most 

common non-random patterns are cycles, trends, mixtures and 

stratification [2]. For a process to be in control the control chart 

should not have any trend or nonrandom pattern. 

SPC is a powerful tool to optimize the amount of information 

needed for use in making management decisions.  Statistical 

techniques provide an understanding of the business baselines, 

insights for process improvements, communication of value and 

results of processes, and active and visible involvement.  SPC 

provides real time analysis to establish controllable process 

baselines; learn, set, and dynamically improves process 

capabilities; and focus business areas which need improvement. 

The early detection of software failures will improve the software 

reliability. The selection of proper SPC charts is essential to 

effective statistical process control implementation and use. The 

SPC chart selection is based on data, situation and need [3]. Many 

factors influence the process, resulting in variability. The causes 

of process variability can be broadly classified into two 

categories, viz., assignable causes and chance causes. 

 The control limits can then be utilized to monitor the 

failure times of components. After each failure, the time can be 

plotted on the chart. If the plotted point falls between the 

calculated control limits, it indicates that the process is in the state 

of statistical control and no action is warranted. If the point falls 

above the UCL, it indicates that the process average, or the failure 

occurrence rate, may have decreased which results in an increase 

in the time between failures. This is an important indication of 

possible process improvement. If this happens, the management 

should look for possible causes for this improvement and if the 

causes are discovered then action should be taken to maintain 

them. If the plotted point falls below the LCL, It indicates that the 

process average, or the failure occurrence rate, may have 

increased which results in a decrease in the failure time. This 

means that process may have deteriorated and thus actions should 
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be taken to identify and the causes may be removed. It can be 

noted here that the parameter a, b should normally be estimated 

with the data from the failure process. Since a, b are the 

parameters in the Weibull distribution with beta = 2 (Rayleigh 

distribution) any traditional estimator can be used. 

 The control limits for the chart are defined in such a 

manner that the process is considered to be out of control when 

the time to observe exactly one failure is less than LCL or greater 

than UCL. Our aim is to monitor the failure process and detect 

any change of the intensity parameter. When the process is 

normal, there is a chance for this to happen and it is commonly 

known as false alarm. The traditional false alarm probability is to 

set to be 0.27% although any other false alarm probability can be 

used. The actual acceptable false alarm probability should in fact 

depend on the actual product or process [9].  

2. LITERATURE SURVEY 
This section presents the theory that underlies Weibull distribution 

and maximum likelihood estimation for complete data. If „t‟ is a 

continuous random variable with pdf: ),,,;( 21 ktf   . 

Where
k ,,, 21  are k unknown constant parameters which 

need to be estimated, and cdf:  tF . Where, The mathematical 

relationship between the pdf and cdf is given 

by:   
dt

tFd
tf )(

. Let „a‟ denote the expected number of 

faults that would be detected given infinite testing time in case of 

finite failure NHPP models. Then, the mean value function of the 

finite failure NHPP models can be written as: )()( taFtm  . 

where, F(t) is a cumulative distribution function. The failure 

intensity function )(t  in case of the finite failure NHPP models 

is given by: )(')( taFt   [8].  

2.1 NHPP model 
The Non-Homogenous Poisson Process (NHPP) based software 

reliability growth models (SRGMs) are proved to be quite 

successful in practical software reliability engineering [4]. The 

main issue in the NHPP model is to determine an appropriate 

mean value function to denote the expected number of failures 

experienced up to a certain time point. Model parameters can be 

estimated by using Maximum Likelihood Estimate (MLE). 

Various NHPP SRGMs have been built upon various 

assumptions. Many of the SRGMs assume that each time a failure 

occurs, the fault that caused it can be immediately removed and 

no new faults are introduced. Which is usually called perfect 

debugging. Imperfect debugging models have proposed a 

relaxation of the above assumption [5,6]. 

 

Let   0, ttN  be the cumulative number of software 

failures by time „t‟. m(t) is the mean value function, representing 

the expected number of software failures by time „t‟.  t  is the 

failure intensity function, which is proportional to the residual 

fault content. Thus   )1( bteatm   and 

  ))((
)(

tmab
dt

tdm
t  . where „a‟ denotes the initial 

number of faults contained in a program and „b‟ represents the 

fault detection rate. In software reliability, the initial number of 

faults and the fault detection rate are always unknown. The 

maximum likelihood technique can be used to evaluate the 

unknown parameters. In NHPP SRGM  t can be expressed in 

a more general way as         tmtatb
dt

tdm
t 

)(
 . 

where  ta  is the time-dependent fault content function which 

includes the initial and introduced faults in the program and  tb  

is the time-dependent fault detection rate. A constant  ta  

implies the perfect debugging assumption, i.e no new faults are 

introduced during the debugging process. A constant  tb  

implies the imperfect debugging assumption, i.e when the faults 

are removed, then there is a possibility to introduce new faults.  

2.2 Weibull distribution 
The probability density function of a two-parameter Weibull 

distribution has the form:    
 btebtbtf 


1

)( . Where b 

> 0 is a scale parameter and 0  is a shape parameter. The 

corresponding cumulative distribution function is: 

 
)(1 btetF  . The mean value function 

  
nbt

eatm


 1)( . The failure intensity function is given 

as: 
 )(1.)( btetabt  .  

2.3  MLE (Maximum Likelihood) Parameter 

Estimation 
The idea behind maximum likelihood parameter estimation is to 

determine the parameters that maximize the probability 

(likelihood) of the sample data. The method of maximum 

likelihood is considered to be more robust (with some exceptions) 

and yields estimators with good statistical properties. In other 

words, MLE methods are versatile and apply to many models and 

to different types of data. Although the methodology for 

maximum likelihood estimation is simple, the implementation is 

mathematically intense. Using today's computer power, however, 

mathematical complexity is not a big obstacle. If we conduct an 

experiment and obtain N independent observations, 

Nttt ,,, 21  . The likelihood function [7] may be given by the 

following product:  

  



N

i

kikN tftttL
1

212121 ),,,;(,,,|,,,     

Likely hood function by using λ(t) is: L =


n

i

it
1

)(  

The logarithmic likelihood function is given by:  

 Log L = log (


n

i

it
1

)( ) =  



n

i

ni tmt
1

)()(log   

The maximum likelihood estimators (MLE) of 

k ,,, 21  are obtained by maximizing L or  , where is 

ln L . By maximizing , which is much easier to work with than 

L, the maximum likelihood estimators (MLE) of 

k ,,, 21  are the simultaneous solutions of k equations such 

as:  
0





j

,  j=1,2,…,k 

The parameters „a‟ and „b‟ are estimated using iterative Newton 

Raphson Method, which is given as 
)('

)(
1

n

n

nn
xg

xg
xx 
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3. ILLUSTRATING THE MLE METHOD 

USING THE WEIBULL DISTRIBUTION 

3.1 Parameter estimation 
To estimate „a‟ and „b‟ , for a sample of n units (all tested to 

failure), first obtain the likelihood function: assuming 2 . 





N

i

btetabL
1

)(2 2

.2

 
Taking the natural logarithm on both sides, The Log Likelihood 

function is given as:            Log 

L  =


 
n

i
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neaetab

1
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 . 

Taking the Partial derivative with respect to „a‟ and equating to 

„0‟. (i.e 0
log
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Taking the Partial derivative with respect to „b‟ and equating 
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Taking the partial derivative again with respect to „b‟ and 

equating to „0‟. (i.e 0
log

)('
2

2







b

L
bg ).  

 

  
 

   
























 












 2

22
2

1

2

2 2

2

2

2

1

.2

1
22

1
2)('

n

n

n

n

bt

bt

n

bt

bt

n

n

i

i

e

etb

e

e
ntt

b
nbg  

The parameter „b‟ is estimated by iterative Newton Raphson 

Method using 

)('

)(
1

n

n

nn
bg

bg
bb 

, which is substituted in 

finding „a‟. 

3.2 Distribution of Time between failures 
Based on the inter failure data given in Table 1, we compute the 

software failures process through Mean Value Control chart. We 

used cumulative time between failures data for software reliability 

monitoring using Weibull distribution. The use of cumulative 

quality is a different and new approach, which is of particular 

advantage in reliability.  

„


a ‟ and „


b ‟ are Maximum Likely hood Estimates of parameters 

and the values can be computed using iterative method for the 

given cumulative time between failures data [10] shown in table 

1. Using „a‟ and „b‟ values we can compute )(tm . 

Table 1. Time between failures of a software 

Failure 

Number 

Time 

between 

failure(h) 

Failure 

Number 

Time 

between 

failure(h) 

1 30.02 16 15.53 

2 1.44 17 25.72 

3 22.47 18 2.79 

4 1.36 19 1.92 

5 3.43 20 4.13 

6 13.2 21 70.47 

7 5.15 22 17.07 

8 3.83 23 3.99 

9 21 24 176.06 

10 12.97 25 81.07 

11 0.47 26 2.27 

12 6.23 27 15.63 

13 3.39 28 120.78 

14 9.11 29 30.81 

15 2.18 30 34.19 

 

Assuming an acceptable probability of false alarm of 0.27%, the 

control limits can be obtained as [10]: 

 

  99865.01  


bt

U eT
  

 

  5.01  


bt

C eT
 

 
  00135.01  


bt

L eT
   

These limits are converted to )( Utm , )( Ctm and )( Ltm  form. 

They are used to find whether the software process is in control or 

not by placing the points in Mean value chart shown in figure 1. A 

point below the control limit )( Ltm  indicates an alarming 

signal. A point above the control limit )( Utm indicates better 

quality. If the points are falling within the control limits, it 

indicates the software process is in stable condition. The values of 

control limits are as follows. 

30.01117)( Utm
   

15.02587)( Ctm
   

0.04057)( Ltm
   

 

Table 2. Successive differences of mean values 

FN m(t) SD FN m(t) SD FN m(t) SD 

1 0.314371 0.030704 11 4.321054 0.439360 21 16.131610 1.396357 

2 0.345076 0.657725 12 4.760415 0.245447 22 17.527968 0.317624 

3 1.002801 0.050307 13 5.005863 0.680255 23 17.845592 9.491850 

4 1.053108 0.132025 14 5.686118 0.166975 24 27.337443 1.649185 

5 1.185134 0.575065 15 5.853094 1.230688 25 28.986628 0.029822 

6 1.760199 0.252180 16 7.083782 2.161267 26 29.016451 0.186649 

7 2.012380 0.197261 17 9.245050 0.240957 27 29.203101 0.697874 

8 2.209641 1.219663 18 9.486008 0.166350 28 29.900976 0.058849 

9 3.429305 0.859242 19 9.652358 0.359124 29 29.959825 0.040168 

10 4.288547 0.032507 20 10.011482 6.120127 30 29.999994  
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Figure 1 is obtained by placing the time between failures 

cumulative data shown in table 2 on y axis and failure number on 

x axis and the values of control limits are placed on Mean Value 

chart. The Mean Value chart shows that the 1st ,10th and 25th 

failure data has fallen below )( Ltm which indicates the failure 

process. It is significantly early detection of failures using Mean 

Value Chart. The software quality is determined by detecting 

failures at an early stage. The Remaining Failure data shown in 

figure 1 are in stable condition. No failure data fall outside 

the )( Utm . It does not indicate any alarm signal. 
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Figure 1: Mean Value Chart 

4. CONCLUSION 

The given 30 inter failure times are plotted through the estimated 

mean value function against the failure serial order. The parameter 

estimation is carried out by Newton Raphson Iterative method for 

Weibull model. The graphs have shown out of control signals i.e 

below the LCL. Hence we conclude that our method of estimation 

and the control chart are giving a +ve recommendation for their 

use in finding out preferable control process or desirable out of 

control signal. By observing the Mean value Control chart we 

identified that the failure situation is detected at 1st  and 10th  point 

of table-1 for the corresponding )(tm , which is below )( Ltm . 

It indicates that the failure process is detected at an early stage 

compared with Xie et. a1 (2002) control chart [10], which detects 

the failure at 23rd point for the inter failure data above the UCL. 

Hence our proposed Mean Value Chart detects out of control 

situation at an earlier than the situation in the time control chart. 

The early detection of software failure will improve the software 

Reliability. When the time between failures is less than LCL, it is 

likely that there are assignable causes leading to significant 

process deterioration and it should be investigated. On the other 

hand, when the time between failures has exceeded the UCL, 

there are probably reasons that have lead to significant 

improvement. 
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