
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.3, March 2011

18

Time Domain based Software Process Control using

Weibull Mean Value Function

ABSTRACT
Control charts are widely used for process monitoring. Software

reliability process can be monitored efficiently by using Statistical

Process Control (SPC). It assists the software development team

to identify failures and actions to be taken during software failure

process and hence, assures better software reliability. In this paper

we propose a control mechanism based on the cumulative quantity

between observations of time domain failure data using mean

value function of Weibull distribution, which is based on Non

Homogenous Poisson Process (NHPP). The Maximum Likelihood

Estimation (MLE) method is used to derive the point estimators of

a two-parameter Weibull distribution.

General Terms
Software Engineering, Statistical Reliability.

Keywords
Statistical Process Control, Software reliability, Weibull

Distribution, Mean Value function, Probability limits, Control

Charts.

1. INTRODUCTION
Software reliability assessment is important to evaluate and

predict the reliability and performance of software system, since it

is the main attribute of software. To identify and eliminate human

errors in software development process and also to improve

software reliability, the Statistical Process Control concepts and

methods are the best choice. SPC concepts and methods are used

to monitor the performance of a software process over time in

order to verify that the process remains in the state of statistical

control. It helps in finding assignable causes, long term

improvements in the software process. Software quality and

reliability can be achieved by eliminating the causes or improving

the software process or its operating procedures [1].

The most popular technique for maintaining process control is

control charting. The control chart is one of the seven tools for

quality control. Software process control is used to secure the

quality of the final product which will conform to predefined

standards. In any process, regardless of how carefully it is

maintained, a certain amount of natural variability will always

exist. A process is said to be statistically “in-control” when it

operates with only chance causes of variation. On the other hand,

when assignable causes are present, then we say that the process is

statistically “out-of-control.”

The control charts can be classified into several categories, as per

several distinct criteria. Depending on the number of quality

characteristics under investigation, charts can be divided into

univariate control charts and multivariate control charts.

Furthermore, the quality characteristic of interest may be a

continuous random variable or alternatively a discrete attribute.

Control charts should be capable to create an alarm when a shift in

the level of one or more parameters of the underlying distribution

or a non-random behavior occurs. Normally, such a situation will

be reflected in the control chart by points plotted outside the

control limits or by the presence of specific patterns. The most

common non-random patterns are cycles, trends, mixtures and

stratification [2]. For a process to be in control the control chart

should not have any trend or nonrandom pattern.

SPC is a powerful tool to optimize the amount of information

needed for use in making management decisions. Statistical

techniques provide an understanding of the business baselines,

insights for process improvements, communication of value and

results of processes, and active and visible involvement. SPC

provides real time analysis to establish controllable process

baselines; learn, set, and dynamically improves process

capabilities; and focus business areas which need improvement.

The early detection of software failures will improve the software

reliability. The selection of proper SPC charts is essential to

effective statistical process control implementation and use. The

SPC chart selection is based on data, situation and need [3]. Many

factors influence the process, resulting in variability. The causes

of process variability can be broadly classified into two

categories, viz., assignable causes and chance causes.

 The control limits can then be utilized to monitor the

failure times of components. After each failure, the time can be

plotted on the chart. If the plotted point falls between the

calculated control limits, it indicates that the process is in the state

of statistical control and no action is warranted. If the point falls

above the UCL, it indicates that the process average, or the failure

occurrence rate, may have decreased which results in an increase

in the time between failures. This is an important indication of

possible process improvement. If this happens, the management

should look for possible causes for this improvement and if the

causes are discovered then action should be taken to maintain

them. If the plotted point falls below the LCL, It indicates that the

process average, or the failure occurrence rate, may have

increased which results in a decrease in the failure time. This

means that process may have deteriorated and thus actions should

Dr. R.Satya Prasad
Associate Professor

Dept. of Computer Science &
Engg.

Acharya Nagrjuna University
Nagarjuna Nagar.

G.Krishna Mohan
Reader,

Dept. of Computer Science
P.B.Siddhartha college

Vijayawada.

Prof. R.R.L Kantham
Professor,

Dept. of Statisitcs
Acharya Nagarjuna University,

Nagarjuna Nagar.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.3, March 2011

19

be taken to identify and the causes may be removed. It can be

noted here that the parameter a, b should normally be estimated

with the data from the failure process. Since a, b are the

parameters in the Weibull distribution with beta = 2 (Rayleigh

distribution) any traditional estimator can be used.

 The control limits for the chart are defined in such a

manner that the process is considered to be out of control when

the time to observe exactly one failure is less than LCL or greater

than UCL. Our aim is to monitor the failure process and detect

any change of the intensity parameter. When the process is

normal, there is a chance for this to happen and it is commonly

known as false alarm. The traditional false alarm probability is to

set to be 0.27% although any other false alarm probability can be

used. The actual acceptable false alarm probability should in fact

depend on the actual product or process [9].

2. LITERATURE SURVEY
This section presents the theory that underlies Weibull distribution

and maximum likelihood estimation for complete data. If „t‟ is a

continuous random variable with pdf:),,,;(21 ktf   .

Where
k ,,, 21  are k unknown constant parameters which

need to be estimated, and cdf:  tF . Where, The mathematical

relationship between the pdf and cdf is given

by:   
dt

tFd
tf )(

. Let „a‟ denote the expected number of

faults that would be detected given infinite testing time in case of

finite failure NHPP models. Then, the mean value function of the

finite failure NHPP models can be written as:)()(taFtm  .

where, F(t) is a cumulative distribution function. The failure

intensity function)(t in case of the finite failure NHPP models

is given by:)(')(taFt  [8].

2.1 NHPP model
The Non-Homogenous Poisson Process (NHPP) based software

reliability growth models (SRGMs) are proved to be quite

successful in practical software reliability engineering [4]. The

main issue in the NHPP model is to determine an appropriate

mean value function to denote the expected number of failures

experienced up to a certain time point. Model parameters can be

estimated by using Maximum Likelihood Estimate (MLE).

Various NHPP SRGMs have been built upon various

assumptions. Many of the SRGMs assume that each time a failure

occurs, the fault that caused it can be immediately removed and

no new faults are introduced. Which is usually called perfect

debugging. Imperfect debugging models have proposed a

relaxation of the above assumption [5,6].

Let   0, ttN be the cumulative number of software

failures by time „t‟. m(t) is the mean value function, representing

the expected number of software failures by time „t‟.  t is the

failure intensity function, which is proportional to the residual

fault content. Thus  )1(bteatm  and

 ))((
)(

tmab
dt

tdm
t  . where „a‟ denotes the initial

number of faults contained in a program and „b‟ represents the

fault detection rate. In software reliability, the initial number of

faults and the fault detection rate are always unknown. The

maximum likelihood technique can be used to evaluate the

unknown parameters. In NHPP SRGM  t can be expressed in

a more general way as         tmtatb
dt

tdm
t 

)(
 .

where  ta is the time-dependent fault content function which

includes the initial and introduced faults in the program and  tb

is the time-dependent fault detection rate. A constant  ta

implies the perfect debugging assumption, i.e no new faults are

introduced during the debugging process. A constant  tb

implies the imperfect debugging assumption, i.e when the faults

are removed, then there is a possibility to introduce new faults.

2.2 Weibull distribution
The probability density function of a two-parameter Weibull

distribution has the form:    
 btebtbtf 


1

)(. Where b

> 0 is a scale parameter and 0 is a shape parameter. The

corresponding cumulative distribution function is:

 
)(1 btetF  . The mean value function

  
nbt

eatm


 1)(. The failure intensity function is given

as:
)(1.)(btetabt  .

2.3 MLE (Maximum Likelihood) Parameter

Estimation
The idea behind maximum likelihood parameter estimation is to

determine the parameters that maximize the probability

(likelihood) of the sample data. The method of maximum

likelihood is considered to be more robust (with some exceptions)

and yields estimators with good statistical properties. In other

words, MLE methods are versatile and apply to many models and

to different types of data. Although the methodology for

maximum likelihood estimation is simple, the implementation is

mathematically intense. Using today's computer power, however,

mathematical complexity is not a big obstacle. If we conduct an

experiment and obtain N independent observations,

Nttt ,,, 21  . The likelihood function [7] may be given by the

following product:

  



N

i

kikN tftttL
1

212121),,,;(,,,|,,,  

Likely hood function by using λ(t) is: L =


n

i

it
1

)(

The logarithmic likelihood function is given by:

 Log L = log (


n

i

it
1

)() =  



n

i

ni tmt
1

)()(log 

The maximum likelihood estimators (MLE) of

k ,,, 21  are obtained by maximizing L or  , where is

ln L . By maximizing , which is much easier to work with than

L, the maximum likelihood estimators (MLE) of

k ,,, 21  are the simultaneous solutions of k equations such

as:  
0





j

, j=1,2,…,k

The parameters „a‟ and „b‟ are estimated using iterative Newton

Raphson Method, which is given as
)('

)(
1

n

n

nn
xg

xg
xx 

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.3, March 2011

20

3. ILLUSTRATING THE MLE METHOD

USING THE WEIBULL DISTRIBUTION

3.1 Parameter estimation
To estimate „a‟ and „b‟ , for a sample of n units (all tested to

failure), first obtain the likelihood function: assuming 2 .





N

i

btetabL
1

)(2 2

.2

Taking the natural logarithm on both sides, The Log Likelihood

function is given as: Log

L =


 
n

i

btbt

i
neaetab

1

)()(2]1[)2log(
22

 .

Taking the Partial derivative with respect to „a‟ and equating to

„0‟. (i.e 0
log






a

L
).

  2

1 nbt
e

n
a






Taking the Partial derivative with respect to „b‟ and equating

to„0‟.(i.e 0
log

)(





b

L
bg).

 

  
0

1

....2
2

2
)(

2

2
2

1

2 










n

n

bt

bt

n
n

i

i

e

etbn
tb

b

n
bg

Taking the partial derivative again with respect to „b‟ and

equating to „0‟. (i.e 0
log

)('
2

2







b

L
bg).

 

  
 

   
























 












 2

22
2

1

2

2 2

2

2

2

1

.2

1
22

1
2)('

n

n

n

n

bt

bt

n

bt

bt

n

n

i

i

e

etb

e

e
ntt

b
nbg

The parameter „b‟ is estimated by iterative Newton Raphson

Method using

)('

)(
1

n

n

nn
bg

bg
bb 

, which is substituted in

finding „a‟.

3.2 Distribution of Time between failures
Based on the inter failure data given in Table 1, we compute the

software failures process through Mean Value Control chart. We

used cumulative time between failures data for software reliability

monitoring using Weibull distribution. The use of cumulative

quality is a different and new approach, which is of particular

advantage in reliability.

„


a ‟ and „


b ‟ are Maximum Likely hood Estimates of parameters

and the values can be computed using iterative method for the

given cumulative time between failures data [10] shown in table

1. Using „a‟ and „b‟ values we can compute)(tm .

Table 1. Time between failures of a software

Failure

Number

Time

between

failure(h)

Failure

Number

Time

between

failure(h)

1 30.02 16 15.53

2 1.44 17 25.72

3 22.47 18 2.79

4 1.36 19 1.92

5 3.43 20 4.13

6 13.2 21 70.47

7 5.15 22 17.07

8 3.83 23 3.99

9 21 24 176.06

10 12.97 25 81.07

11 0.47 26 2.27

12 6.23 27 15.63

13 3.39 28 120.78

14 9.11 29 30.81

15 2.18 30 34.19

Assuming an acceptable probability of false alarm of 0.27%, the

control limits can be obtained as [10]:

  99865.01  


bt

U eT

  5.01  


bt

C eT

  00135.01  


bt

L eT

These limits are converted to)(Utm ,)(Ctm and)(Ltm form.

They are used to find whether the software process is in control or

not by placing the points in Mean value chart shown in figure 1. A

point below the control limit)(Ltm indicates an alarming

signal. A point above the control limit)(Utm indicates better

quality. If the points are falling within the control limits, it

indicates the software process is in stable condition. The values of

control limits are as follows.

30.01117)(Utm

15.02587)(Ctm

0.04057)(Ltm

Table 2. Successive differences of mean values

FN m(t) SD FN m(t) SD FN m(t) SD

1 0.314371 0.030704 11 4.321054 0.439360 21 16.131610 1.396357

2 0.345076 0.657725 12 4.760415 0.245447 22 17.527968 0.317624

3 1.002801 0.050307 13 5.005863 0.680255 23 17.845592 9.491850

4 1.053108 0.132025 14 5.686118 0.166975 24 27.337443 1.649185

5 1.185134 0.575065 15 5.853094 1.230688 25 28.986628 0.029822

6 1.760199 0.252180 16 7.083782 2.161267 26 29.016451 0.186649

7 2.012380 0.197261 17 9.245050 0.240957 27 29.203101 0.697874

8 2.209641 1.219663 18 9.486008 0.166350 28 29.900976 0.058849

9 3.429305 0.859242 19 9.652358 0.359124 29 29.959825 0.040168

10 4.288547 0.032507 20 10.011482 6.120127 30 29.999994

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.3, March 2011

21

Figure 1 is obtained by placing the time between failures

cumulative data shown in table 2 on y axis and failure number on

x axis and the values of control limits are placed on Mean Value

chart. The Mean Value chart shows that the 1st ,10th and 25th

failure data has fallen below)(Ltm which indicates the failure

process. It is significantly early detection of failures using Mean

Value Chart. The software quality is determined by detecting

failures at an early stage. The Remaining Failure data shown in

figure 1 are in stable condition. No failure data fall outside

the)(Utm . It does not indicate any alarm signal.

30.011022351UCL

15.025796007CL

0.040569647LCL

0.010000000

0.100000000

1.000000000

10.000000000

100.000000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Failure Number

M
e

an
 V

al
u

e

su
cc

e
ss

iv
e

 d
if

fe
re

n
ce

s

Figure 1: Mean Value Chart

4. CONCLUSION

The given 30 inter failure times are plotted through the estimated

mean value function against the failure serial order. The parameter

estimation is carried out by Newton Raphson Iterative method for

Weibull model. The graphs have shown out of control signals i.e

below the LCL. Hence we conclude that our method of estimation

and the control chart are giving a +ve recommendation for their

use in finding out preferable control process or desirable out of

control signal. By observing the Mean value Control chart we

identified that the failure situation is detected at 1st and 10th point

of table-1 for the corresponding)(tm , which is below)(Ltm .

It indicates that the failure process is detected at an early stage

compared with Xie et. a1 (2002) control chart [10], which detects

the failure at 23rd point for the inter failure data above the UCL.

Hence our proposed Mean Value Chart detects out of control

situation at an earlier than the situation in the time control chart.

The early detection of software failure will improve the software

Reliability. When the time between failures is less than LCL, it is

likely that there are assignable causes leading to significant

process deterioration and it should be investigated. On the other

hand, when the time between failures has exceeded the UCL,

there are probably reasons that have lead to significant

improvement.

5. REFERENCES

[1] Kimura, M., Yamada, S., Osaki, S., 1995. ”Statistical

Software reliability prediction and its applicability based on

mean time between failures”. Mathematical and Computer

Modeling Volume 22, Issues 10-12, Pages 149-155.

[2] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007.

“Statistical process control using shewart control charts with

supplementary Runs rules” Springer Science + Business

media 9:207-224.

[3] MacGregor, J.F., Kourti, T., 1995. “Statistical process

control of multivariate processes”. Control Engineering

Practice Volume 3, Issue 3, March 1995, Pages 403-414 .

[4] Musa, J.D., Iannino, A., Okumoto, k., 1987. “Software

Reliability: Measurement Prediction Application”. McGraw-

Hill, New York.

[5] Ohba, M., 1984. “Software reliability analysis model”. IBM

J. Res. Develop. 28, 428-443.

[6] Pham. H., 1993. “Software reliability assessment: Imperfect

debugging and multiple failure types in software

development”. EG&G-RAAM-10737; Idaho National

Engineering Laboratory.

[7] Pham. H., 2003. “Handbook Of Reliability Engineering”,

Springer.

[8] Pham. H., 2006. “System software reliability”, Springer.

[9] Swapna S. Gokhale and Kishore S.Trivedi, 1998. “Log-

Logistic Software Reliability Growth Model”. The 3rd IEEE

International Symposium on High-Assurance Systems

Engineering. IEEE Computer Society.

[10] Xie, M., Goh. T.N., Ranjan.P., “Some effective control chart

procedures for reliability monitoring” -Reliability

engineering and System Safety 77 143 -150¸ 2002.

