
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

40

A Survey on Spatio-Temporal Access Methods

 K. Appathurai Dr. S. Karthikeyan
 Asst.Prof. And Head Director, School of computer Science
 Department of Information Technology Karpagam University
 Karpagam University, Coimbatore – 21 Coimbatore – 21

ABSTRACT

Nowadays many new indexing structures are introduced for

spatiotemporal access metods. Spatiotemporal access methods

are classified into four categories: (1) Indexing the past data,

(2) Indexing the current data, (3) Indexing the future data, and

(4) Indexing data at all points of time. In this short survey we

consider the 4th category, in that survey mainly deals with the

comparative analysis of BBx – index, PCFI+ index and RPPF

– TREE

Keywords

Index, query, access methods and insertion method.

1. INTRODUCTION
Moving objects are pact with spatial databases over change

their place over time. Generally, moving objects account their

places obtained via place-aware devices to a spatio-temporal

database server. The server store updates from the moving

objects and it is capable of answering queries about the past.

Some applications need to know current places of moving

objects only. This case, the server may only store the current

status of the moving objects. To predict future positions of

moving objects, the spatio-temporal database server may need

to store additional information, e.g., the objects’ velocities [8].

Numerous query types are maintained by a spatio-temporal

database server, e.g., range queries “Find all objects that

intersect a certain spatial range during a given time interval”,

x-nearest neighbor queries “Find x restaurants that are closest

to a given moving point”, or trajectory queries “Find the

trajectory of a given object for the past hour”. These queries

may execute on past, current, or future time data. A large

number of spatio-temporal index structures has been

proposed to support spatio-temporal queries efficiently

[12,13].

This survey is based on [1], where they cover and classify

spatio-temporal access methods published in the years 2003 to

2010. Since 2003, new spatial-temporal access methods have

been developed that use entirely new approaches or that

address weaknesses in existing approaches. Besides having

separate indexing structures for past data, present data, or

future data, some access methods have been proposed to deal

with data at all points in time.

Also having separate indexing structures for past data, present

data, or future data, some access methods have been proposed

to deal with data at all points in time. Several spatio-temporal

indexing methods are proposed for special environments, e.g.,

road networks or indoor networks

2. THE ACCESS STRUCTURE

2.1 BBx – index

2.1.1 Structure
The BBx-index consists of nodes that in turn consist of

entries, each of which is of the form hx rep; tstart; tend;

pointeri. For leaf nodes, pointer points to the objects with the

corresponding x rep, where x rep is obtained from the space-

filling curve; tstart denotes

the time when the object was inserted into the database

(corresponding to the tu in the description of the Bx-tree), and

tend denotes the time that the position was deleted, updated,

or migrated (migration refers to the update of a position done

by the system). For non-leaf nodes, pointer points to a (child)

node at the next level of the index: tstart and tend are the

minimum and maximum tstart and tend values of all the

entries in the child node, respectively. In addition, each node

contains a pointer to its right sibling to make possible query

processing. Let us illustrate the BBx-index with an example.

A BBx-index with n = 2. Objects inserted between timestamps

0 and 0:5tmu are stored in tree T1 with their positions as of

time 0:5tmu; those inserted between timestamp 0:5tmu and

tmu are stored in tree T2 with their positions as of time tmu;

and so on. Each tree has a maximum lifespan: T1’s lifespan is

from 0 to 1:5tmu because objects are inserted starting at

timestamp 0 and because those inserted at timestamp 0:5tmu

may be alive throughout the maximum update interval tmu,

which is thus until 1:5tmu; the same applies to the other trees.

2.1.2 Insertion Algorithm
Insertion into the BBx-index is similar to insertion into the

Bx-tree [7,11]. i.e in Bx-tree The insertion algorithm is

straightforward. Given a new object, we calculate its index

key according to the below euuation,

Bx Value(O, tu) = [index_partition]2 * [x_rep]2

then insert it into the B-tree as in the Bx-tree. To delete an

object, we assume that the positional information for the

object used at its last insertion and the last insertion time are

known. Then we calculate its index key and employ the same

deletion algorithm as in the Bx-tree. Therefore, the Bx-tree

directly inherits the good properties of the B-tree, and we

expect efficient update performance.

To delete an object, we first find the tree where this object is

stored. Rather than physically removing the object, we modify

the end time of its lifespan, tend, to be the current time.

2.2 PCFI+– index

2.2.1 Structure

The PCFI+-index consists of two parts: one situated in

memory, the other one situated on disk. The in-memory

component is called frontline. It consists of a current data file,

a spatial index (SAM) to index the non overlapped partitions,

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

41

and a set of TPR*-trees to index the records in the current data

file. The current data file is situated in the temporal space

without time strong log, and initialized when it is the first

invocation of the spatio-temporal table’s open method after

system up. A hash index file association method used in the

current data with UID as the hash key. It can provide fast

recovery of records from the data file. Since there is a set of

TPR*-tree, an additional pointer (slot id in SAM leaf page, or

TPR*-tree ID, or pointer to the entry in TRP*-tree) can add to

the tuple together with a latch for concurrency control. When

a new page is allocate for the past data file, an entry is

inserted in the sparse R*-tree with an vacant endtime in the

lifetime.

2.2.2 Insertion Algorithm

The key to the performance of the insert algorithm in PCFI is

the use of the hash index file, which maintains the last

updated place of all moving objects. It is a cache of the last

positions of all objects and is updated with the new place of

the moving object. For simplify, the following method will

use the 3-D sparse R*- tree to index the historical data file’s

page life, and the SAM leaf page’s PID and entry id in the

current data file tuple.

2.3 R PPF- tree

2.3.1 Structure

The data structures and algorithms connected with the RPPF-

tree. we aim to detain and index the actual, real-world

positions of the data objects across all of time. In temporal

database terms, we believe the valid time of the objects’

positions (although we do not allow general updates). We

assume position samples for an object arrive in time order,

and we expect the future transfer of the object by means of a

linear function. When a new position sample arrives, we thus

need to correct the guess that covers the period since when the

last sample was received, and we need to re-predict the future

position. This limited need for corrections enables us to

support valid time by an comprehensive notion of partial

persistence. Partial persistence transforms a linked data

structure, termed an transient structure, into a corresponding

data structure that retains and enables the querying of all past

states (in the transaction-time sense) of the data being

indexed.

2.3.2 Insertion Algorithm

The TPR-tree differs from the R*-tree in how its insertion

algorithms group data points into nodes. The R*-tree aims to

minimize the areas, overlaps, and margins of bounding

rectangles when data objects are inserted into the index. The

Update Algorithm. As input, the update algorithm takes the

old entry eo, to be logically deleted (and corrected), and the

new entry en, to be inserted. Both eo.t ⊣ and en. t ⊣ are

infinite, en. t ⊣ is equal to the current time (CT), and eo. t ⊣

is equal to the time of the last update of this object. The

update algorithm proceeds in the following five phases i.e in

the deletion down phase, In the left phase, In the left-up

phase, In the insertion down phase, and in the insertion up

phase.

3. PERFORMANCE ANALYSES

3.1 Index sizes and space utilization

BBx – index

The BBx-index consists of nodes that in turn consist of

entries, each of which is of the form hx rep; tstart; tend;

pointer i. For leaf nodes, pointer points to the objects with the

corresponding x rep, where x rep is obtained from the space-

filling curve; tstart denotes the time when the object was

inserted into the database. The roots of the trees are stored in

an array, and they can be accessed efficiently according to

their lifespan. This array is relatively small and can usually be

stored in main memory.

PCFI+-Index

We implemented TPR*-tree with the node size equal to

Xeon’s cache size (16KB) as an additional indexing

mechanism in Storm/NT. The current data file (hash index

file) is implemented with the chunk size of 16KB and the

pointers are TPR*-tree’s IDs. In all our experiments, we use a

buffer pool of 128MB. The disk page size used in all the

experiments is 8KB. A value in the time dimension is

represented using 14 bytes, and a value in the spatial

dimension is represented using a 4 byte double.

R PPF- tree

workload of d = 0.2

While decreasing d leads to improved update performance,

time slice query per-formance is naturally decreased. This is

so because smaller values of d imply a smaller average fan out

of the index as “seen” at the time of query. Nevertheless, the

negative effect on query performance is less marked than the

positive effect on update performance. Smaller values of d

result in smaller index sizes.

3.2 Update Cost

BBx – index

Although migration introduces additional updates, the

amortized cost is small in practice and is controllable. Query

and update costs are measured in terms of node accesses.

Observe that the two indices have comparable performance as

time passes, though the query cost of the BBx-index is

slightly lesser than that of the other two. This is because the

BBx-index needs to store less information than the others.

In order to investigate the performance degradation across

time, we measure the update cost (amortized over insertion

and deletion) of the BBx-index after every 20 timestamps

over a 50K dataset. The BBx-index retains almost constant

performance and is not affected by time. This is because given

the key value, each deletion or insertion only needs to traverse

one path from the top to the bottom of the tree.

PCFI+-Index

The SAM is used to index the non-overlapping partitions.

Many spatial access methods can be used to implement the

partition strategy. For example, the R-tree, R*-tree can be

used when we partition the area into irregular shapes; the

Grid-file, rough Grid file and quad tree can be used when we

partition the area into regular rectangles. Partitioning the area

into irregular cells raises another issue: how to send the

partition information to the index manager? We can use a

spatial table to store the partition data, and pass the table ID

and field description when other modules invoke the index’s

open method. If the irregular partition is used, the index file

can be to reduce the disk I/O cost of the partition information.

R PPF- tree

Double TPBRs support tightening, but they also have extra

associated costs when compared with the two other kinds of

indexing structures. Specifically, their update costs may be

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

42

higher. To learn how much the cost of updates can be reduced

by increasing the size of the main memory buffer, we

experimented with varying buffer sizes. As expected update

costs decrease substantially when using a buffer of moderate

size, compared to using no buffer or using a small buffer.

However, very larger buffers are not very effective. This is

because each update operation includes a number of write

I/Os. Next, as expected, the search costs decrease for

increasing buffer sizes, especially for future queries. This is

because most of the live nodes become cached in the buffer.

3.3 Query Processing

The study shows that the BBx – index query performance is

good than other two indexing structures. The figure 1 clearly

shows that the time taken for the query retrieving of past

data. X axis mention the number of objects and the y axis for

execution time(ms). The graph clearly shows the BBx – index

is best than other indexing structures.

Figure 1 Retrieving Past data

The figure 2 shows that the time taken for the query retrieving

of current data. X axis mention the number of objects and the

y axis for execution time (ms). The graph clearly shows the

BBx – index is best than other indexing structures.

Figure 2 Retrieving current data

In BBx – index binary tree is used for node insertion and

deletion. Because of binary tree method the time taken for

node selection is too fast so the performance of BBx – index

in better than other indexing structures.

4. CONCLUSION
A common objective was dealt in all the above three

algorithms i.e indexing the data at all points of time(present,

past and future). All the three algorithms are simple and well-

designed data structure for indexing spatial data. This paper

report a brief overview of BBx – index, PCFI+ index and

RPPF – TREE indexing structure is provided. Moreover these

three algorithms was released in same periods. In all the three

cases the spatiotemporal data are based on abstracting the

object’s place as a function of time and also the methods

taken to indexing in the spatiotemporal domain range are very

miscellaneous. The study shows that the BBx – index is

especially is very good for reducing storage space compared

to an PCFI+ index and RPPF – TREE indexing structure and

also less cost for storage and accesses the data. This

evaluation can serve as a reference point for further

evaluations and for the design of new, improved spatial

temporal access methods.

5. REFERENCES

[1] Long-Van Nguyen-Dinh, Walid G. Aref, Mohamed F.

Mokbel 2010. Spatio-Temporal Access Methods:

Part 2 (2003 - 2010). Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering

[2] M. Pelanis, S. ˇ Saltenis, and C. Jensen. Indexing the

past, present, and anticipated future positions of moving

objects.TODS, 31(1):255–298, 2006.

[3] 3) Z.-H. Liu, X.-L. Liu, J.-W. Ge, and H.-Y. Bae.

Indexing large moving objects from past to future with

PCFI+-index. In COMAD, pages 131–137, 2005.

[4] V. Chakka, A. Everspaugh, and J. Patel. Indexing large

trajectory data sets with SETI. In CIDR, 2003

[5] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An

optimized spatio-temporal access method for predictive

queries. In VLDB, 2003.

[6] D. Lin, C. Jensen, B. Ooi, and S. ˇ Saltenis. Efficient

indexing of the historical, present, and future positions of

moving objects. In MDM, pages 59–66, 2005.

[7] 7) C. Jensen, D. Lin, and B. Ooi. Query and update

efficient B+-tree based indexing of moving objects. In

VLDB, 2004.

[8] M. Mokbel, T. Ghanem, andW. G. Aref. Spatio-temporal

access methods. IEEE Data Eng. Bull., 26(2):40–49,

2003.

[9] J. Ni and C. V. Ravishankar. PA-tree: A parametric

indexing scheme for spatio-temporal trajectories. In

SSTD, 2005.

[10] P. Zhou, D. Zhang, B. Salzberg, G. Cooperman, and G.

Kollios. Close pair queries in moving object databases.

In GIS, pages 2–11, 2005.

[11] S. Chen, B. Ooi, K. Tan, and M. Nascimento. ST2B-tree:

A self-tunable spatio-temporal B+- tree index for

moving objects. In SIGMOD, pages 29–42, 2008.

[12] P. K. Agarwal and C. M. Procopiuc. Advances in

Indexing for Mobile Objects. IEEE Data Eng. Bull.,

25(2): 25–34, 2002.

[13] G. Kollios, D. Gunopulos, V. J. Tsotras. On Indexing

Mobile Objects. In Proc. PODS, pp. 261–272, 1999.

