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ABSTRACT 

In this paper, the two-parameter Marshall-Olkin Extended 

Weibull (MOEW) model is considered to analyze the software 

reliability data.  The Markov Chain Monte Carlo (MCMC) 

method is used to compute the Bayes estimates of the model 

parameters. In this paper, it is assumed that the parameters have 

non-informative set of priors and they are independently 

distributed. Under the above priors, we use Gibbs algorithm in 

OpenBUGS to generate MCMC samples from the posterior 

density function. Based on the generated samples, we can 

compute the Bayes estimates of the unknown parameters and also 

can construct highest posterior density credible intervals. We also 

compute the maximum likelihood estimate and associated 

confidence intervals to compare the performances of the Bayes 

estimators with the classical estimators. One data analysis is 

performed for illustrative purposes.  
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1. INTRODUCTION 

The exponentiated Weibull family model has been used to analyze 

the data of which the hazard-rate function can be increasing, 

decreasing, bathtub-shaped, or unimodal [13], [14], [21], [24] and 

[25]. The Exponentiated Weibull model is considered as the 

intensity function of nonhomogeneous Poisson process in 

software reliability analysis in [3]. Detailed reviews on the 

Exponentiated Weibull with various new statistical measures are 

given in [15] and [22]. Jiang and Murthy [7] discussed the 

parameter estimation of the model by graphical approaches.  

This article addresses the extended Weibull distribution in [11]. 

The purpose is to investigate some properties of this model, 

parameter estimation using different approaches, and to study the 

versatility of the model in modeling software reliability data. This 

model is constructed by a general method of introducing a 

parameter to a model such that if F(x) =1-F(x) is a survival 

function with one parameter α, a two-parameter family of survival 

functions is generated as  

F(x)
G x; , ; x , 0, 0

1 (1 )F(x)
.    (1.1)      

 If   λ = 1 then G x F x  

1.1  Model Analysis  
The extended Weibull model is constructed by a general method 

of introducing a parameter to expand the family of Weibull 

models [11] and [12]. From equation (1.1), the survival function 

is 

exp x
S(x; , ) = ; ( , ) 0, x 0

1 (1 ) exp x
        (1.2) 

The R function sext.weibull() given in reliaR package[8] 

computes the reliability/ survival function. 

The cumulative distribution function (cdf) can be written as 

1 exp x
F (x; , ) = ; ( , ) 0, x 0

1 (1 ) exp x
.     (1.3) 

Here α and λ are the shape and tilt parameters, respectively. 

The probability density function (pdf) associated with (1.3) is 

given by 

1

2

x exp x
f x; , ; (x 0, 0, 0)

1 (1 ) exp x

   (1.4)  

We shall write MOEW(  , λ) to denote Marshall-Olkin Extended 

Weibull (MOEW) model with parameters α and λ . The R 

functions dext.weibull() and pext.weibull() given in [8] can be 

used for the computation of pdf and cdf, respectively.  
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Fig 1:     Plots of the probability density function of the MOEW 

Model for =1 and different values of   

Characterization of pdf 

Case 1 :  λ ≤ 1 

(i) α ≤ 1,  f(x) is decreasing in x 

(ii) α > 1,  f(x) is unimodal,  

Case 2: λ  > 1 

(i) α > 1, f(x) is unimodal 

(ii)      α < 1, when α is quite small, f(x) is decreasing in x, 

whereas f(x) is initially decreasing quickly, then 

increasing and eventually decreasing when λ is 

large enough. 

Some of the typical MOEW density functions for different values 

of  and for λ = 1 are depicted in Figure1. It is clear from the 

Figure 1 that the density function of the MOEW model can take 

different shapes. 

1.1.1   The quantile function  

For a continuous distribution F(x), the p percentile (also referred 

to as fractile or quantile), xp , for a given p, 0 < p <1, is a number 

such that  

   p pP(X x ) F(x ) p                (1.5) 

The quantile function of Marshall-Olkin Extended Weibull 

(MOEW) model can be obtained by solving 

 

1/

p
p

x log 1
(1 p)

.                          (1.6) 

The computation of quantiles the R function qext.weibull( ), given 

in  [8], can be used.  In particular, for p= 0.5 we get 

 
1/

0.5Median(x ) log 1                  (1.7) 

1.1.2  The random deviate generation 

The random deviate can be generated from  MOEW(  , λ) by 

1/
u

x log 1 ; 0 < u < 1
(1 u)

                   (1.8) 

where u has the U(0, 1) distribution. The R function 

rext.weibull(), given in  [8], generates the random deviate from 

MOEW( , λ). 

1.1.3 The Hazard Function(hrf) 

The Hazard Function of Marshall-Olkin Extended Weibull 

(MOEW) model is: 

1

h x; , ( , ) > 0 and   
x

, x 0
1 (1 ) exp x

       (1.9) 

and the allied R function  hext.weibull( ) given in [8].  

Some of the typical Marshall-Olkin Extended Weibull (MOEW) 

model hazard functions for different values of  and for  = 1 are 

depicted in Figure2. It is clear from the Figure 2 that the hazard 

function of the Marshall-Olkin Extended Weibull (MOEW) model 

can take different shapes 

 
Fig 2: Plots of the hazard function of the MOEW model for 

=1 and different values of   

Characterization of hrf 

In summary, the characterization of hrf is as follows [11]: 

(i) λ ≥ 1 and α > 1, or λ > 1 and α ≥ 1, then h(x) is increasing. 

(ii) λ ≤ 1 and α < 1, or λ < 1 and α ≤ 1, then h(x) is decreasing. 

(iii) α > 1 and λ < 1, then h(x) is initially increasing and 

eventually increasing, but there may be an interval where it 

is decreasing. When λ is small enough, the curve of h(x) has 

local maximum extreme value point (x = x1
*), and after the 

point, it takes bathtub-shaped. This implies that the curve of 

h(x) has a local minimum extreme value point, i.e., the 

change point (x = x2
*)  which is obtained by solving 

1 1 exp x

1 1 x .exp x 0
              (1.10) 
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(iv) Above Eq. (1.10) is obtained from Eq. (1.9) by taking the 

first derivative with respect to x. It has two possible 

solutions; the smaller one is x1
* and the larger is x2

*. 

(v)   α < 1 and λ > 1, then h(x) is initially decreasing and 

eventually decreasing, but there may be an interval where it 

is increasing. In the case, when λ is large enough, there are 

two local extreme value points: one is at x = x1
* and the 

other at x = x2
*, which are obtained from Eq. (1.10). x1

* and 

x2
* correspond to the smaller and larger solutions, 

respectively. 

 

1.1.4   The cumulative hazard function 

 The cumulative hazard function H(x) defined as 

    H(x) 1 logF(x)                            (1.11) 

can be obtained with the help of pext.weibull( ) function given in 

[8] by choosing arguments lower.tail=FALSE and log.p=TRUE. 

i.e.  

- pext.weibull(x,alpha,lambda, lower.tail=FALSE, log.p = TRUE) 

1.1.5   Failure rate average (fra) and Conditional 

survival function(crf) 

Two other relevant functions useful in reliability analysis are 

failure rate average (fra) and conditional survival function (crf). 

The failure rate average of X is given by 

H(x)
FRA(x) =

x
          , x > 0,                  (1.12) 

where H(x) is the cumulative hazard function. The conditional 

survival of X is defined by     

S(x + t)
S(x | t) = 

S(x)
  , t > 0, x > 0, S (·) > 0, (1.13) 

respectively, where F(·) is the cdf of X. Similarly to h(x) and 

FRA(x), the distribution of X belongs to the new better than used 

(NBU), exponential, or new worse than used (NWU) classes, 

when S(x | t) < S(x), S(t | x) =  S(x), or S(x | t) > S(x), 

respectively. 

The R functions hra.ext.weibull( ) and crf.ext.weibull( ) given in 

[8] can be used for the failure rate average (fra) and conditional 

survival function(crf), respectively. 

2. MAXIMUM LIKELIHOOD 

ESTIMATION 

Let x=(x1, . . . , xn) be a  sample of size n from MOEW(α, λ), then 

the log-likelihood function L(α, λ) can be written as[23];  

 

n n

i i
i 1 i 1

n

i
i 1

logL = n log n log 1 log x x

2 log 1 (1 ) exp x

       (2.1) 

Therefore, to obtain the MLE‟s of α and  λ we can maximize (2.1) 

directly with respect to α and  λ or we can solve the following two 

non-linear equations using iterative procedure:   

n

i
i 1

n i ii

i 1
i

logL n
 = log x

x log x 1 (1 ) exp x
0

1 (1 ) exp x

       (2.2) 

n

i 1
i

logL n 1
 = 2 0

exp x (1 )
 .              (2.3) 

2.1 Information Matrix and Asymptotic 

Confidence Intervals  

Since the MLEs of the unknown parameters  = ( , λ) can not be 

obtained in closed forms, it is not easy to derive the exact 

distributions of the MLEs. We can derive the asymptotic 

confidence intervals of these parameters when >0, and λ>0. The 

simplest large sample approach is to assume that the MLE ˆˆ( , )  

are approximately bivariate normal with mean ( , λ) and 

covariance matrix 1
0I  [9], where 1

0I  is the inverse of the 

observed information matrix 

1
2 2

2
1ˆ ˆˆ ˆ, ,1

ˆ0 ˆ( , )2 2

2
ˆ ˆˆ ˆ, ,

ln L ln L

I H

ln L ln L

 

ˆˆ ˆvar( ) cov( , )

ˆ ˆˆcov( , ) var( )
.                                    (2.4) 

The above approach is used to derive the 100(1- γ/2 )% confidence 

intervals of the parameters  = ( , λ) as in the following forms 

/ 2ˆ ˆz Var( )    and / 2
ˆ ˆz Var( )               (2.5). 

Here, Zγ/2 is the upper (γ/2)th percentile of the standard normal 

distribution. 

2.2 Computation of Maximum Likelihood 

Estimation 

We are using software reliability data set SYS2.DAT - 86 time-

between-failures [10] is considered for illustration of the proposed 

methodology. In this real data set, Time-between-failures is 

converted to time to failures and scaled. 

In MOEW model, the direct maximization of log-likelihood 

function given in (2.1) using Newton-Raphson method in R gives, 

the ML estimates and standard error. The 95% confidence interval 

is computed using (2.4) and (2.5). The Table 1 shows the ML 

estimates, standard error(SE)  and 95 % Confidence Intervals of 

the parameters alpha and lambda. 
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Table 1 Maximum likelihood estimate, standard error and 

95% confidence interval 

Parameter MLE Std. Error 95% Confidence Interval 

alpha 0.3035937 0.0049873 (0.29381859, 0.31336880) 

lambda 279.21777 2.969300 (273.397947, 285.037603) 

3.  MODEL VALIDATION 

To study the goodness of fit of the Marshall-Olkin Extended 

Weibull (MOEW) model, we compute the Kolmogorov-Smirnov 

statistic between the empirical distribution function and the fitted 

distribution function when the parameters are obtained by method 

of maximum likelihood. For this we can use R function 

ks.ext.weibull( ), given in [8]. The result of K-S test is D = 0.0708 

with the corresponding p-value = 0.7545, Therefore, the high p-

value clearly indicates that Marshall-Olkin Extended Weibull 

(MOEW)  model can be used to analyze this data set, and we also 

plot the empirical distribution function and the fitted distribution 

function in Figure 3. From above result and Figure3, it is clear 

that the estimated Marshall-Olkin Extended Weibull (MOEW) 

model provides excellent fit to the given data. 

 
Fig 3:   The graph for empirical distribution function and fitted 

distribution function. 

There are two other graphical methods widely used i.e. Quantile-

Quantile (Q-Q) plots and the Probability-Probability (P-P) plots 

for checking whether a fitted model is in agreement with the data. 

In other words, we measure the quality of the fitted model. The 

pattern of points on a graph can be far more informative than the 

values of overall test statistics. 

3.1 The Q-Q Plots 

 Let F̂(x)  be an estimate of F(x) based on xl, x2,. . . , xn. The 

scatter plot of the points  

1
1:nF̂ (p )   versus   xi : n   ,  i = 1 , 2, . . . ,n , is called a Q-Q plot. 

Thus, the Q-Q plots show the estimated versus the observed 

quantiles. If the model fits the data well, the pattern of points on 

the Q-Q plot will exhibit a 45-degree straight line. Note that all 

the points of a Q-Q plot are inside the square 

 1 1
1:n n:n 1:n n:n

ˆ ˆF (p ) , F (p ) x , x  . 

The corresponding R function qq.ext.weibull ( ) is given in [8]. As 

can be seen from the straight line pattern in Figure4, the Marshall-

Olkin Extended Weibull (MOEW) model fits the data very well. 

 

Fig 4:   Quantile-Quantile(Q-Q) plot using MLEs as estimate. 

3.2 The P-P Plots 

Let xl, x2,. . . , xn be a sample from a given population with 

estimated cdf F̂(x) . The scatter plot of the points 1:nF̂(x ) versus   

pi : n  ,  i = 1 , 2 , . . . , n, is called a P-P plot. If the model fits the 

data well, the graph will be close to the 45-degree line. Here we 

note that all the points in the P-P plot are inside the unit square [0, 

l] x [0, 1]. The corresponding R function pp.ext.weibull( ) is given 

in [8]. 

 
Fig 5:  Probability-Probability(P-P) plot using MLEs as estimate. 

 

As can be seen from the straight line pattern in Figure5 the  

Marshall-Olkin Extended Weibull (MOEW) model fits the data 

very well. 

4. BAYESIAN ESTIMATION USING 

MCMC TECHNIQUE 

The most widely used piece of software for applied Bayesian 

inference is the OpenBUGS. The software offers a user-interface, 

based on dialogue boxes and menu commands, through which the 

model may then be analyzed using Markov Chain Monte Carlo 
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techniques. It is a fully extensible modular framework for 

constructing and analyzing Bayesian full probability models [18] 

for the existing probability models. As the MOEW model is not 

available in OpenBUGS. Thus it requires incorporation of a 

module to estimate parameters of MOEW model. 

A module dext.weibull_T(alpha, lambda)  is written in 

component Pascal, enables to perform full Bayesian analysis of 

Marshall-Olkin Extended Weibull(MOEW) model into 

OpenBUGS using the method described in [19] and [20]. 

4.1  Implementation of Module - 

dext.weibull_T(alpha, lambda):  

The developed module is implemented to obtain the Bayes 

estimates of the MOEW model using MCMC method. The main 

function of the module is to generate MCMC sample from 

posterior distribution for non-informative set of priors, i.e. 

uniform priors. 

4.1.1 Uniform Prior distributions 

It frequently happens that the experimenter knows in advance that 

the probable values of  lie over a finite range [a, b] but has no 

strong opinion about any subset of values over this range. In such 

a case a uniform distribution over [a, b] may be a good 

approximation of the prior distribution, its p.d.f. is given by 

1
          ; 0<a b

b a

( )

0                 ; otherwise

 

 

4.2 OpenBUGS code to run MCMC) 

Model 

 { 

  for( i in 1 : N )  

     { 

           x[i] ~ dext.weib_T(alpha, lambda) 

      }  

 #Prior distributions of the Model parameters 

  # Uniform prior for alpha 

    alpha ~ dunif(0.0, 5.0) 

  # Uniform prior for lambda  

   lambda ~ dunif(100.0, 800.0) 

         } 

Data   

list(N=86, x=c(4.79, 7.45, 10.22, 15.76, 26.10, 28.59, 35.52, 41.49, 

42.66, 44.36, 45.53, 58.27, 62.96, 74.70, 81.63, 100.71, 102.06, 

104.83, 110.79, 118.36, 122.73, 145.03, 149.40, 152.80, 156.85, 

162.20, 164.97, 168.60, 173.82, 179.95, 182.72, 195.72, 203.93, 

206.06, 222.26, 238.27, 241.25, 249.99, 256.17, 282.57, 282.62, 

284.11, 294.45, 318.86, 323.46, 329.11, 340.30, 344.67, 353.94, 

398.56, 405.70, 407.51, 422.36, 429.93, 461.47, 482.62, 491.46, 

511.83, 526.64, 532.23, 537.13, 543.06, 560.75, 561.60, 589.96, 

592.09, 610.75, 615.65, 630.52, 673.74, 687.92, 698.15, 753.05, 

768.25, 801.06, 828.22, 849.97, 885.02, 892.27, 911.90, 951.69, 

962.59, 965.04, 976.98, 986.92, 1025.94)) 

Initial values  

# Chain 1 

 list(alpha=0.01, lambda=150.0)  

# Chain 2 

 list(alpha=2.00, lambda=300.0) 

 

We run the model to generate two Markov Chains at the length of 

40,000 with different starting points of the parameters. The 

convergence is monitored using trace and ergodic mean plots, we 

find that the Markov Chain converge together after approximately 

2000 observations. Therefore, burnin of 5000 samples is more 

than enough to erase the effect of starting point(initial values). 

Finally, samples of size 7000 are formed from the posterior by 

picking up equally spaced every fifth outcome, i.e. thin=5, starting 

from 5001.This is done to minimize the auto correlation among 

the generated deviates. Therefore, we have the posterior sample 

{ 1i , 1i}, i = 1,…,7000 from chain 1 and 2i , 2i}, i = 1,…,7000 

from chain 2.  

The chain 1 is considered for convergence diagnostics plots. The 

visual summary is based on posterior sample obtained from chain 

2 whereas the numerical summary is presented for both the chains. 

4.3 Convergence diagnostics 

The first step in making an inference from an MCMC analysis is 

to ensure that an equilibrium distribution has indeed been reached 

by the Markov chain, i.e., that the chain has converged. For each 

parameter, we started the chain at an arbitrary point (the initial 

value or init chosen for each parameter), and because successive 

draws are dependent on the previous values of each parameter, the 

actual values chosen for the inits will be noticeable for a while. 

Therefore, only after a while is the chain independent of the 

values with which it was started. These first draws ought to be 

discarded as a burn-in as they are unrepresentative of the 

equilibrium distribution of the Markov chain. 

4.3.1 History (Trace) plot 

 

 

Fig 6:    Sequential realization of the parameters  and λ. 

There are several ways to check for convergence. Most methods 

use at least two parallel chains. Visual checks are routinely used 

to confirm convergence. The sequential realizations of the 

parameters of the model can be observed in Fig 6. 
 

Visual inspection of the time series plot produced by “history” 

suggests that the Markov chains have converged. It looks like nice 

oscillograms around a horizontal line without any trend. 
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4.3.2 Running Mean (Ergodic mean) Plot 

Generate a time series (iteration number) plot of the running mean 

for each parameter in the chain. The running mean is computed as 

the mean of all sampled values up to and including that at a given 

iteration. The convergence pattern based on ergodic averages is 

shown in Figure7, which indicates the convergence of the chain. 

 

 

Fig 7:  The Ergodic mean plots for alpha and lambda 

 

4.3.3 Autocorrelation  

The autocorrelation function is Figure8. For this model, the chains 

are hardly autocorrelated at all. This is good as our posterior 

sample contains more information about the parameters than when 

successive draws are correlated. The graph shows that the 

correlation is almost negligible. So we may consider the 

independent samples from the target distribution, i.e., posterior. 

 

 
Fig 8:    The autocorrelation plots for alpha and lambda 

 

4.3.4 Brooks-Gelman-Rubin(BGR) diagnostic 

The BGR convergence diagnostic is appropriate for the analysis of 

two or more parallel chains, each with different starting values 

which are overdispersed with respect to the target distribution. 

The green line represents the between variability, the blue line 

represents the within variability, and the red line represents the 

ratio. Evidence for convergence comes from the red line being 

close to 1 on the y-axis and from the blue and green lines being 

stable (horizontal) across the width of the plot. 

 
Fig 9:    The BGR plots for alpha and lambda. 

From the Figure9, it is clear that convergence is achieved. Thus 

we can obtain the posterior summary statistics. 

4.4 Numerical Summary 

In Table 2, we have considered various quantities of interest and 

their numerical values based on MCMC sample of posterior 

characteristics for MOEW model under Uniform priors. The 

numerical summary is based on final posterior sample (MCMC 

output) of 7000 samples for alpha and lambda.  

{ 1i ,λ1i},    i = 1,…,7000 from chain 1 and  {  2i ,λ2i},  i 

= 1,…,7000 from chain 2.  

The Bayes estimates under squared error, absolute and zero-one 

loss functions are posterior mean, median and mode respectively 

as shown in Table 2. Five point summary is also given. The 

Highest probability density (HPD) intervals are computed the 

algorithm described by [1] and [2] under the assumption of 

unimodal marginal posterior distribution 

Table 2 Numerical summaries based on MCMC sample of 

posterior characteristic 
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4.5    Visual summary  

There are two methods are used for visual summary 

4.5.1 Box plots 

The boxes represent inter-quartile ranges and the solid black line 

at the (approximate) centre of each box is the mean; the arms of 

each box extend to cover the central 95 per cent of the distribution 

- their ends correspond, therefore, to the 2.5% and 97.5% 

quantiles. (Note that this representation differs somewhat from the 

traditional.) 

 

Fig 10:  The boxplots for alpha and lambda. 

4.5.2 Kernel density estimates 

Histograms can provide insights on symmetric, behavior in the 

tails, presence of multi-modal behavior, and data outliers; 

histograms can be compared to the fundamental shapes associated 

with standard analytic distributions. 

Figure11 provides the kernel density estimate of α and λ. It can be 

seen that α is symmetric whereas λ shows positive skewness. 

 

 
Fig 11:   Histogram and kernel density estimate of α and λ based 

on MCMC samples, vertical lines indicate the 
corresponding ML and Bays estimates. 

 

5. COMPARISON WITH MLE 

For the comparison with MLE we have plotted three graphs. In 

Figure12 the density functions ˆˆf(x; , ) using MLEs and 

Bayesian estimates, computed via MCMC samples under uniform 

priors are plotted. 

 

Fig 12:  The density functions ˆˆf(x; , )  using MLEs and 

Bayesian estimates 
The Figure13 represents the Quantile-Quantile(Q-Q) plot of 

empirical quantiles and theoretical quantiles computed from MLE 

and Bayes estimates. 

 

 
Fig 13: Quantile-Quantile(Q-Q) plot of empirical quantiles and 

theoretical quantiles  

The Figure14 exhibits the estimated reliability function(dashed 

line) using Bayes estimate under uniform priors and the empirical 

reliability function(solid line).  

 

 
Fig 14: The estimated reliability function(dashed line) using 

Bayes estimate and the empirical reliability function 
(solid line). 

It is clear from the above Figures 12, 13 and 14, the MLEs and 

the Bayes estimates with respect to the uniform priors are quite 

close and fit the data very well. 
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6. CONCLUSION 

In this paper, the statistical characteristics of the MOEW model 

are studied. The developed methodology for MLE and Bayesian 

estimation has been demonstrated on a real software reliability 

data set when both the parameters of the MOEW model are 

unknown under non-informative priors. The Bayes estimates have 

been obtained under various loss functions. The symmetric 

Bayesian credible intervals and HPD intervals have been 

constructed. Through the use of graphical representations, the 

intent is that one can gain a perspective of various meanings and 

associated interpretations. 

The MCMC method provides an alternative method for parameter 

estimation of the MOEW model. It is more flexible as compared 

to the traditional methods such as MLE method. Moreover, 

„exact‟ probability intervals are available rather than relying on 

estimates of the asymptotic variances. Indeed, the MCMC sample 

may be used to completely summarize posterior distribution about 

the parameters, through a kernel estimate. This is also true for any 

function of the parameters such as hazard function, mean time to 

failure etc. The MCMC procedure can easily be applied to 

complex Bayesian modeling relating to MOEW model.  

We have shown that the MOEW model is suitable for the software 

reliability data and the tools developed for analysis can also be 

used for any other type of data sets. 
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