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ABSTRACT 

The Bounded Diameter (a.k.a Diameter Constraint) Minimum 

Spanning Tree (BDMST/DCMST) is a well-known 

combinatorial optimization problem. In this paper, we recast a 

few well-known heuristics, which are evolved for BDMST 

problem to a Bi-Objective Minimum Spanning Tree 

(BOMST) problem and then obtain Pareto fronts. After 

examining Pareto fronts, it is concluded that none of the 

heuristics provides the superior solution across the complete 

range of the diameter. We have used a Multi-Objective 

Evolutionary Algorithm (MOEA) approach, Pareto 

Converging Genetic Algorithm (PCGA), to improve the 

Pareto front for BOMST, which in turn provides better 

solution for BDMST instances. We have considered edge-set 

encoding to represent MST and then applied recombination 

operators having strong heritability and mutation operators 

having negligible complexity to improve the solutions. 

Analysis of MOEA solutions confirms the improvement of 

Pareto front solutions across the complete range of the 

diameter over Pareto front solutions generated from individual 

heuristics. We have considered multi-island scheme using 

Inter-Island rank histogram and performed multiple run of the 

algorithm to avoid from trapping into local-optimal solution-

set.  

General Terms 

Algorithm, Design, Experimentation. 

Keywords 

Combinatorial optimization, multi-objective optimization, 

heuristics, MST, BDMST problem, evolutionary algorithm, 

Pareto front, edge list encoding. 

 

1. INTRODUCTION 
BDMST has many applications in real-world [2, 4, 22]; it is 

an NP-hard problem within diameter bound (D) ranges 4 ≤ D 

< |V| - 1 [9], where diameter bound (D) is a constraint, the 

maximum feasible longest path between two vertices of a 

connected, undirected, weighted graph G to generate feasible 

MSTs and V is the set of vertices of G. Well-known heuristics 

which are evolved to provide solutions to BDMST problem, 

are: e.g., one time tree construction (OTTC) [8], iterative 

refinement (IR) [8], randomized greedy heuristics (RGH) 

[21], random tree construction (RTC) [10], center based tree 

construction (CBTC) [10] and center-based recursive 

clustering (CBRC) [20]. Initially, algorithmic complexity 

directed the development of various heuristics. The 

complexity of OTTC, IR, CBTC and CBRC is O(n3) [8, 10, 

20]. Depending on initial vertex, generated spanning tree (ST) 

differs for OTTC, IR and CBTC heuristics; therefore, one 

needs to execute the heuristics with each of the vertices as 

initial vertex with the expectation to get better low-weight 

spanning tree and then select the best generated tree which 

makes the complexity O(n4). RGH has complexity O(n2) [21]. 

RGH generates ST randomly; thus, by increasing number of 

execution of the algorithm (say, no. of execution = n), the 

possibility to produce better solution is increased and the 

complexity of RGH raises to O(n3).  

 

In this work, we have adapted well-known heuristics to 

formulate bi-objective MST problem and then obtained Pareto 

fronts [23, 24]. BDMST is a specialize instance of BOMST. 

Considering Pareto front solutions for each heuristic as initial 

population, we provide an MOEA approach to improve Pareto 

front which in turn improves the BDMST solution within a 

particular diameter constraint for that heuristic. We have 

considered various performance metrices to analyze the 

MOEA solution set which supports the improvement of 

quality of solutions. 

 

The paper is organized as follows, in Section 2, we include 

the basic definitions and outline problem formulation. We 

describe the overview of those heuristics which we deal in this 

work in Section 3. Next, Section 4 contains the evolutionary 

algorithm and the description of recombination and mutation 

operators. The results are contained in Section 5. We conclude 

with short discussion and future work in Section 6. 

 

2. PRELIMINARY 

2.1 Basic Definitions 
Definition 1 Multiobjective Optimization Problem (MOP). 

In an MOP, a number of objectives have to be minimized/ 

maximized along with constraints (optional) to achieve goal 

vectors which can be written as: 

Maximize/Minimize : F(X) = {f1(X), f2(X),…, fm(X)} 

subject to satisfaction of the constraints: 

C(X) = {c1(X), c2(X),…, ck(X)} ≤  (0,…,0) 

 

A set of objective values constitutes an objective space and 

the collection of decision variables forms a decision space. 

Definition 2 Pareto-optimal set. 

Without loss of generality, we assume Multi-Objective 

Spanning Tree (MOST) (includes BOMST) and BDMST are 

m-objective minimization problem. In an m-objective 

minimization problem, a vector of decision variables x  X' 

includes in Pareto-optimal (P) set as a Pareto-optimal point if 

another x* does not exist such that fi (x*) ≤ fj(x) for all i = 1, 2, 

3,…,m and fi (x*) < fj(x) for atleast one j. Here,  X'  denotes the 

feasible region of the problem (i.e. where the constraints are 

satisfied).  
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Definition 3 Pareto dominance. 

A vector (u1,…,uk) dominate (v1,…,vk) denoted by ( 

) , iff u is partially less than v; it can be represented as 

follows, 

i  1,2,...,k, ui ≤ vi  ^  i  1 2,…, k :  ui < vi. 

Definition 4 Pareto front. 

Pareto front (PF*), for a given MOP (x) and Pareto-optimal 

set P, can be stated as, PF* = u =   =  (f1(x),…, fk(x)), x  P. 

 

Definition 5 Bi-Objective MST Problem (BOMST). 

A connected, undirected, weighted graph G = (V, E) is given; 

a minimum spanning tree (MST) or minimum-weight 

spanning tree is a spanning tree T with weight less than or 

equal to the weight of every other spanning tree. The single-

objective MST problem can be formally stated as: 

 

Minimizes, Wt(T) =   

 

The diameter of a tree is the maximum eccentricity of its 

vertices, the maximum longest path exists between two 

vertices. The BDMST problem is formulated as: 

 

Minimizes, Wt(T) =   

with constraint, diameter of T ≤  D, where D, the diameter 

bound, is given. 

 

It was not known which of the algorithms yield the best 

solution, there are claims of getting a better tree for a specific 

diameter value. None of the heuristic shows the best result for 

complete range of the diameter. To illustrate this point, we 

have plotted results for obtaining DCMST for all values of the 

diameter with different heuristics. 

 

We choose only one random plot which is shown in Figure 1 

for 100 node non-Euclidean instance. OTTC and CBTC, both 

generate superior solutions leaving only negligible drift across 

the complete diameter bound for non-Euclidean instances. 

RGH generates better solutions within very small diameter 

bound; whereas for Euclidean instances it generates superior 

solutions across a much larger diameter bound range. For 

Euclidean instances, CBTC gives superior results for larger 

diameter range and IR provides nearly similar solution to 

CBTC for larger diameter range. We have seen similar pattern 

of solutions across the Pareto front for different instances. 

Therefore, on visualizing one plot either for Euclidean or non-

Euclidean instances, we can conclude which heuristic 

generates superior solution on a certain range across the 

Pareto front. 

 

Lately, the research efforts were directed on improving the 

solution quality. It was not attempted which heuristic to use 

for a given application needing the entire range of diameters. 

Some work has been done on improving the quality of 

solutions by EA [18]. 

In an attempt to yield, always the best solutions possible 

across the entire ranges of the diameter, the work in this paper 

is focused on obtaining a Pareto front which gives the best 

possible solution across the whole Pareto front. With that aim, 

we recast BDMST problem and then we provide the MOEA 

approach (PCGA [15] and modified PCGA) to the solutions to 

yield an improved Pareto front across the full range of 

diameter. Through an improved Pareto front, one can get the 

best possible instance of an MST satisfying the specified 

diameter constraint. 

 
 

Figure 1: Pareto front obtained from OTTC, IR, CBTC, 

RGH and CBRC heuristics for 100 node non-Euclidean 

instance. OTTC and CBTC, both generates superior 

solutions leaving only negligible drift across the complete 

diameter bound for non-Euclidean instances. RGH 

generates better solutions within very small diameter 

bound. 

 

3. OVERVIEW OF HEURISTICS 
We have considered the existing well-known heuristics for 

BDMST problem. 

 

3.1 One Time Tree Construction 
Deo and Abdalla [8] proposed One Time Tree Construction 

(OTTC), based on Prim’s algorithm. It builds a spanning tree, 

starting from each node and connecting the nearest neighbor 

that does not violate the diameter constraint. The complexity 

of this algorithm is O(n3), where n is the number of vertices in 

the graph. There are number of research papers for BDMST 

problem using OTTC for both Euclidean and non-Euclidean 

instances [3, 8, 10, 20, 21, 25]; all those works generalize 

MST problem with particular diameter constraint. But, for bi-

objective MST problem using OTTC heuristics very little 

work has been done [14]. 

 

3.2 Iterative Refinement 
Iterative Refinement (IR) heuristic is proposed again by Deo 

and Abdalla [8]; initially, an unconstrained minimum 

spanning tree (MST) for the input graph is computed using the 

Prim’s algorithm, then in each iteration one edge is removed 

that breaks the longest path in the spanning tree and replaced 

it by a non-tree edge without increasing the diameter. This 

process continues until diameter constraint is satisfied or the 

algorithm fails. IR is computationally expensive [21] due to 

large number of iteration of edges and not guaranteed a 

feasible solution. The complexity of this algorithm is O(n3). 

 

In real-life, variety of problem domain exists which leads the 

consideration of IR in our work. We have seen in our obtained 

Pareto front that for a particular range of diameter, IR works 

better than other few heuristics for Euclidean instances and it 

supports that IR works better for large diameter.  
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3.3 Randomized Greedy Heuristics or 

Randomized Tree Construction 
Possessing the complexity of a reduced factor of n in 

comparison to other existing heuristics [21], Randomized 

Greedy Heuristics (RGH) provides randomness by choosing 

the start vertex and all subsequent vertices at random from the 

set of vertices which are not yet in the spanning tree. But the 

connection of new vertex to the tree is yet greedy; it always 

connects lowest-weight edge between new vertex and tree-

eligible vertex whose depth is less than D/2. This heuristic is 

named as Randomized Tree Construction (RTC) in [10] and 

as Randomized Greedy Heuristics in [21]. RTC has the 

complexity of O(n3). RGH is a well-known heuristics for 

generating better solutions (i.e. MSTs) for low-range diameter 

on Euclidean instances for BDMST problem. We consider 

RGH for both Euclidean and non-Euclidean instances in our 

bi-objective MST problem to easily visualize the solution 

characteristics over different diameter range through obtained 

Pareto front. 

 

3.4 Center Based Tree Construction 
Center Based Tree Construction (CBTC) [10] is a variation of 

RGH/RTC and proposed by Julstrom [10]. Here, spanning 

tree is built by centering a chosen starting vertex and then 

adding subsequent vertices with the satisfaction of given 

depth bound. 

 

3.5 Center Based Recursive Clustering 
Nghia and Binh [20] proposed Center Based Recursive 

Clustering (CBRC) [20] heuristic which is based on 

RGH/RTC, only the concept of center changes in each level 

with the growing spanning tree. This algorithm recursively 

cluster the vertices of the graph, in that every in-node of the 

spanning tree is the center of the sub-graph. These sub-graphs 

are composed of nodes in the sub-tree rooted at that in-node. 

The inspiration of introducing CBRC came from the 

observation [1, 21] that good solutions for BDMST problem 

have “star-like structures“.  

 

In most of the previous work, Euclidean data sets have been 

considered and little efforts have been done with non-

Euclidean instances. However, it is shown that the 

conclusions drawn on Euclidean data set are not necessarily 

similar for non-Euclidean instances. 

 

4. EVOLUTIONARY APPROACH 
Evolutionary algorithms show better solutions for both 

BDMST [3, 11, 21] and MOST problem [17, 19]. Researchers 

have shown that better solutions are obtained with the 

consideration of either random spanning trees (STs) or STs 

generated from a particular heuristic as initial population. 

Solution quality also depends on the encoding considered to 

represent STs. In an attempt, considering well-known edge-set 

encoding to represent STs, we obtained improved solutions 

for each heuristic by MOEA and genetic operators. Well-

known MOEAs that do not require problem specific 

knowledge to the extent are Non-dominated Sorting Genetic 

algorithm II (NSGA-II) [7], Pareto Converging Genetic 

Algorithm (PCGA) [16], Strength Pareto Evolutionary 

Algorithm 2 (SPEA-2) [26], PAES [12] etc. Researchers 

revealed that in this particular case, the variations of solution 

quality for different MOEAs are negligible [18]. We have 

considered a steady-state MOEA, PCGA with monitoring of 

convergence by rank histogram. Regarding MOEA, it is a 

common concern that the solution should not stuck into local 

optima and it directs the consideration of multi-island scheme 

using Inter-Island rank histogram. 

  

4.1 Evolutionary Operators 
We have used one recombination operator and two simple 

mutation operator namely greedy edge replacement mutation 

and edge-delete mutation. We have modified the edge-delete 

mutation operator and recombination operator as proposed in 

[3, 17, 20, 21]. 

 

4.1.1 Recombination Operator 
We have adapted well-known recombination operator 

proposed by Raidl and Julstrom [21]; it supports strong 

heritability by providing favor to select common parental 

edges into its offspring. In this work, the modified 

recombination operator generates offspring by considering a 

common parental edge as an initial edge; it provides a high 

probability of a common edge of parent to be in the offspring. 

Originally, this recombination operator is proposed to 

generate offspring-MSTs for a particular diameter constraint. 

Here, in BOMST problem, we have worked on wide range of 

diameter; therefore, discarded the strict diameter-constraint 

checking of original proposed operator. We have modified the 

diameter-constraint checking in original proposed operator to 

generate partially directed MSTs within diameter constraint.  

 

We use the notations that a set F1 contains edges appearing in 

both parents, F2 contains set of edges appear in only in one 

parent; U represents set of non-tree vertices, C represents set 

of vertices included in tree i.e. tree-vertices. Two set A1 and 

A2 maintain set of edges from F1 and F2, respectively during 

the growing phase of spanning tree and are modified if the 

newly added vertex v from U satisfies diameter constraint. 

Until all non-tree vertices are considered as a tree-edge, set 

A1 is checked; if A1 set is non-empty, a random edge from 

A1 is chosen for growing spanning tree; otherwise, set A2 is 

checked. If both set A1 and A2 are empty, then only a random 

edge connecting vertices from set C and set U are considered.  

 

F1 ←  edges appearing in both parents ; 

F2 ← edges appearing in only single parent ; 

depth[v]  ← -1 ; v = 1,2,...total_nodes ; 

T ←  ; 

// Randomly chosen edge from F1 

T ←  {(v0,v1)} ; 

C ← {v0,v1} ; 

U ←  V – {v0,v1} ; 

depth[v0] ←  0 ; 

depth[v1] ← 0 ; 

A1 ←  edges from F1 incident on {v0,v1} ; 

A2 ← edges F2 incident on {v0,v1} ; 

// Next part is done iteratively for rest of the nodes to include 

in T 

while U ≠  do 

         if A1 ≠  then 

            pick an edge {(u,v)}  A1 at random ; 

            T  ← T  {(u,v)} ; 

            A1 ←  A1 – {(u,v)} ; 

        else 

           if A2 ≠  then 

              pick an edge {(u,v)}   A2 at random ; 

              T ← T {(u,v)} ; 

              A2 ←  A2 – {(u,v)} ; 

           else 

              pick u   C at random ; 

              pick v   U at random ; 
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              T ← T  {(u,v)} ; 

           end if 

        end if 

        if v  U then 

           U  ← U – {v} ; 

           depth[v]  ← depth[u] + 1 ; 

           if depth[v] <  D/2  then 

              A1  ← A1   all edges from F1 incident on v ; 

              C ← C   v ; 

           end if 

       else 

          if u  U then 

             U  ← U – {u} ; 

             A1 ←  A1   all edges from F1 incident on u ; 

             A2 ←  A2   all edges from F2 incident on u ; 

             C ←  C   u ; 

         else 

            T  ← T – {(u,v)} ; 

         end if 

        end if 

end while 

 

Algorithm 1: Recombination operator.  

 

4.1.2 Mutation Operators 
The EA applies two mutation operators. Greedy edge 

replacement mutation generates valid tree. But, the edge-

delete mutation operator only randomly deletes an edge from 

an individual to reduce the probability of occurrence of that 

edge into the offspring; thus, this mutation operator never 

produces a valid tree. Therefore, mutated individual using 

edge-delete mutation operator always takes part in 

recombination with other valid tree individual. We delete an 

edge from a valid tree to incorporate a poor solution with the 

expectation of generating better solution in next generations; 

thus, the selection of the probability of occurrence for this 

mutation operator should be much less than the greedy edge 

replacement operator. 

 

 4.1.2.1 Greedy Edge Replacement Mutation 

Operator 
 In greedy edge replacement mutation operation, an edge         

from a valid spanning tree is deleted randomly and replaced 

with a lowest cost edge that forms a bridge between two 

separated sub-tree [21]. This mutation operation is simple and 

has a complexity of O(n).  

 

4.1.2.1. Modified Edge Delete Mutation Operator  
In modified edge delete mutation operator, we randomly 

delete an edge from a spanning tree to reduce the probability  

of that edge during the generation of offspring. The 

probability of occurrence of this operator is considered very 

small with the hope that a new unexpected edge will be 

considered in offspring to give better solutions in successive 

generations. The complexity of this operation is O(1). This 

mutation operator is easy and simple to implement; only one 

random delete operation is needed and then that invalid ST is 

chosen as one of the parent to perform the recombination 

operation.  

 

 
 

Figure 2: Greedy edge replacement operation applied on a 

randomly selected individual: a randomly selected edge is 

deleted and replaced with a minimum cost edge 

connecting two disconnected sub-tree within diameter 

bound = 5. 

 

 

 
Figure 3: Modified Edge Delete Mutation operation 

applied on a randomly selected individual: a randomly 

selected edge is deleted to reduce the probability to 

consider that edge for newly generated offspring. 

 

The good qualities of these operator, in terms of heritability is 

demonstrated by the empirical results presented later in this 

paper. 

5. RESULTS 

5.1 Problem Instances 
Without loss of generality, we have considered complete 

graphs for both Euclidean and non-Euclidean problem 

instances; the standard benchmark BDMST problem instances 

(as used in [10, 21, 25] ) are used for Euclidean problem set, 

downloadable from http://tomandtun.googlepages.com/phd. 

For 50 node non-Euclidean problem instances, weights are 

randomly generated within range [0.01, 0.99] and for 100 

node, we have considered the instances used by Julstrom [10]. 

Due to dissimilar nature of input problem instances, nature of 

solutions varies over wide range of diameter for Euclidean 

and non-Euclidean problem instances. 
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5.2 Pareto front solutions from Heuristics 
 

We have performed operation on first five instances of the 

input for both Euclidean and non-Euclidean complete graphs; 

then, obtained Pareto fronts for each instance considering 

OTTC, IR, CBTC, RTC, CBRC heuristics in one plot. Due to 

space limitation we choose only one random plot shown in 

Figure 1 for 100 node non-Euclidean instance. 

 

5.3   Results from EA 
We have applied the solutions across the Pareto front for each 

heuristic individually to the EA as initial population and 

obtained an improved Pareto front for each heuristic. 

Improved Pareto front plot for OTTC is shown in Figure 4, for 

50-node 1st Euclidean problem instance. Figure 5 depicts the 

CBTC, RGH and improved RGH Pareto front obtained for a 

non-Euclidean instance. We have included few sampler plots 

in this paper due to space concern; performance measurement 

of heuristics and EA is easily visualized from any sampler 

instance plot. Solutions generated from RGH and CBTC 

heuristic, together provides the superior solutions for 

Euclidean instance; thus Pareto fronts generated for RGH and 

CBTC, are considered in each plot. On visualizing the plots 

we conclude that EA on OTTC solutions improve the solution 

set across complete range of diameter for Euclidean instances 

and generated improved Pareto front is closer to RGH Pareto 

front; whereas RGH provides best solutions for Euclidean 

instances within small range of diameter. 

 
OTTC Pareto front is closer to CBTC Pareto front in higher 

diameter bound range. Similar nature of improved Pareto 

front is observed for IR and CBRC for Euclidean instances. 

Improved RGH Pareto front does not show much 

improvement on smaller diameter range; but, it provides 

better solutions for larger diameter range. Whereas improved 

CBTC Pareto front provides a smaller improvement over 

CBTC Pareto front. RGH generates poor solution set than 

OTTC and CBTC for non-Euclidean instances; CBTC and 

OTTC provide similar solutions with negligible drift and EA 

over OTTC solutions provide new solutions along with old 

solutions across the Pareto front. On applying EA over RGH 

solutions generates better solution set as shown in Figure 5. 

 

 
 

Figure 4: Pareto front obtained from OTTC, RGH, CBTC 

and OTTC+EA heuristics for 50 node Euclidean 1st 

instance. MOEA on OTTC Pareto front solutions 

improves the Pareto front over entire range of diameter.  

 
Figure 5: Pareto front obtained from RGH, CBTC and 

RGH+EA heuristics for 100 node non-Euclidean instance. 

EA on RGH Pareto front solutions extends the Pareto 

front over large diameter range. 

 

Table 1 depicts the improved best solution for BDMST 

problem from various well-known heuristics using EA for 

Euclidean instances. For node size n = 50, diameter bound D 

is set to 5 and for n = 100, D = 10; the benchmark diameter 

bound is set for particular node size as used in [3, 10, 20, 21, 

25]. The average weight of solutions within particular 

diameter bound is also improved by EA for all Euclidean and 

non-Euclidean instances. Considering a directed initial 

population ( as generated from each heuristics) EA operators 

try to generate new improved solutions in successive 

generations across the complete range of diameter bound.  

 

Along with easily visualizable Pareto front plots, we have 

considered convergence metric [6], spread [5], C-measure 

[27] and hypervolume/S-metric [13] to assess the performance 

of MOEA. The reference set is considered as the Pareto front 

obtained from all EA solutions. 

 

5.3.1 Avoiding Local Optimal  
We have used Kumar and Rockett [15] proposed rank-

histogram scheme to assess the movement of solution-front 

generated by heuristics towards convergence. It is a common 

concern that whether the obtained solution-set is near to the 

optimum Pareto front or not. In several problems continuing 

the EA search where search gets trapped in local optima is a 

waste of computational resources and time [16]. We have 

considered multi-island scheme using Inter-Island rank 

histogram [16]. Therefore, we perform multiple runs of the 

algorithm and combine the genetic information from different 

runs to extract the Pareto front. Table 2 shows different metric 

values (Convergence, Spread and Hypervolume) for different 

tribes and their combination for RGH on 50-node Euclidean 

1st instance. The hypervolume and spread metrices show 

improved performance by combining tribes. We have 

considered Inter-Island rank histogram scheme to calculate 

the empirical results and all metric values for improved Pareto 

fronts on each heuristics. 

 

5.3.2 Convergence 
Table 3 contains average convergence value obtained from 1st 

five standard instances of 50 node Euclidean and 100 node 

non-Euclidean problem instances. EA gives better 

convergence over heuristics for both Euclidean and non-

Euclidean problem instance. Convergence of EA on Euclidean 

CBTC Pareto front solutions is increased due to its superior 

solutions across larger diameter range includes into reference 
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Pareto front and negligible improvement is achieved. 

Convergence of EA on non-Euclidean RGH Pareto front 

solutions is increased due to increasing number of solutions 

on improved Pareto front in comparison to Pareto front 

obtained from RGH heuristic and for higher range EA 

achieved near-equal solutions to reference Pareto front. 

 

5.3.3 Spread 
Spread measurement implies the diversity with respect to a 

reference front. Table 4 shows the average spread 

measurement for OTTC, IR, RGH, CBRC and CBTC Pareto 

fronts and improved Pareto fronts. We have considered 

reference front as the Pareto front which is generated from 

large EA solution set consisting all improved heuristics 

solution. Diversity is improved for Pareto fronts generated by 

MOEA;  degraded negligible diversity value in few cases 

depicts the reduced number of solution set in improved Pareto 

front. 

 

5.3.4 C-Measure 
C-measure calculates the percentage of a Pareto front 

solutions which are dominated by a reference front. C-

measure is not symmetric. If A is the comparator Pareto front 

and B is Pareto front generated from MOEA, C(A,B) = 0 

implies that no points in A dominates any point in B; C(A,B) = 

1 implies that all points in B are dominated by, or equivalent 

to point lies in front A. Pareto fronts generated by the 

conventional heuristics A are completely dominated by, or 

equivalent to Pareto fronts generated by the MOEA B; thus, 

C(A,B) value is 0. Whereas C(B,A) value range from 0.55 to 

1.00 for all such all Euclidean and non-Euclidean instances. 

   

5.3.5 Hypervolume 
Table 5 contains average S-measure/ hypervolume [13] of the 

multi-dimensional region which is enclosed by obtained 

Pareto fronts. Hypervolume measurement depends on 

selection of a particular reference point. In this work, we have 

chosen a particular reference point as a maximum obtained 

solution for each objective for a particular instance by 

accumulating obtained Pareto fronts from heuristics and 

improved Pareto fronts using EA for that instance. The 

hypervolume depicted in table 5 is calculated by averaging the 

hypervolume obtained from 1st five instances for 50 and 100 

node Euclidean and non-Euclidean problem data set. RGH 

shows superior hypervolume for Euclidean instances; 

whereas, CBTC and OTTC show close superior hypervolume 

for non-Euclidean instances. This metric shows the superiority 

of obtained MOEA Pareto fronts over Pareto fronts obtained 

from different heuristic for both Euclidean and non-Euclidean 

instances. The improvement of Pareto fronts obtained for 

OTTC and CBTC for non-Euclidean instances using MOEA 

is smaller for non-Euclidean instances in comparison to other 

improved Pareto fronts obtained for both Euclidean and non-

Euclidean instances. 

 

6. CONCLUSIONS AND FUTUREWORK 
In this paper, We have recasted a few known BDMST 

heuristics for BOMST problem and concluded with Pareto 

front plots that none of the heuristics shows superior solution 

across the complete range of diameter bound for both 

Euclidean and non-Euclidean instances. Again, nature of 

superiority of heuristics over different region varies on type of 

instances (i.e. Euclidean or non-Euclidean). On applying 

MOEA approach on each heuristics Pareto front solutions, the 

solution-set for each heuristics is improved; thus, improved 

Pareto front is generated. We have considered multi-island 

rank histogram scheme to avoid from trapping into local-

optimal solution-set. MOEA improves the solutions generated 

from each heuristics across the complete range of diameter 

which in turn improves the BDMST solutions for a particular 

diameter constraint. 
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Table 1: Results of OTTC, IR, RGH, CBRC and CBTC on 5 Euclidean instances of BDMST (best solutions 

generated from heuristics and EA) problem of size 50 and 100. [The subscript over the size indicates a different 

instance.] 

 

Instance D OTTC IR RGH CBRC CBTC 

SizeInstane  Best    BestEA Best    BestEA Best   BestEA Best    BestEA Best  BestEA 

501 5 13.84   11.12 11.54   11.21 9.62      9.59 12.61    11.80 10.88   10.80 

502 5 14.19   12.42 12.89   12.81 8.80      8.80 13.09    11.00 9.47     9.47 

503 5 12.53   12.53 11.97   11.14 10.17    8.91 11.00   10.46 11.03   11.03 

504 5 11.04   11.04 11.56   10.72 8.35      8.23 10.85     9.83 10.10   10.10 

505 5 13.04   12.30 11.34   11.00 9.13      9.00 13.98   10.98 11.13   11.13 

1001 10 18.79   11.88 11.04   10.82 9.28      8.84 17.26   14.45 14.22   12.01 

1002 10 17.69   14.78 10.45   10.10 9.51      9.32 17.43   11.24 13.61   11.70 

1003 10 19.90   15.75 10.77     9.92 9.49      9.01 22.64   17.46 13.66   11.19 

1004 10 17.64   15.33 11.16   10.69 9.65      9.47 18.42   14.23 14.05   12.13 

1005 10 16.63   16.56 11.55   11.09 9.81      9.44 17.37  13.88 14.50   12.85 

Tribe Convergence Spread Hypervolume 

Tribe1 0.0119 0.6309 378.44 

Tribe2 0.0119 0.6299 378.44 

Tribe3 0.0110 0.6297 380.23 

Combined 0.0116 0.6302 379.04 

Table 2: Different metric values (Convergence, Spread and Hypervolume) for different tribes and their 

combination for RGH on 50-node Euclidean 1st Instance. The hypervolume and spread metrices show improved 

performance by combining tribes. 

Table 3: Average convergence of OTTC, IR, RGH, CBRC and CBTC Pareto fronts on 5 Euclidean and non-

Euclidean instances of BDMST ( Pareto front solutions generated from heuristics and EA and the reference set is 

considered as the Merged Pareto front generated from all EA solutions) problem of size 50 and 100 respectively. 

Instance sizetype Convergence 

on 

OTTC IR RGH CBRC CBTC 

50E Heuristic 0.0801 0.0425 0.0134 0.0458 0.0239 

50E EA 0.0533 0.0259 0.0078 0.1187 0.0290 

100nonE Heuristic 0.0126 0.0649 0.0303 0.1484 0.0074 

100nonE EA 0.0107 0.0578 0.0308 0.0693 0.0038 

Instance sizetype Spread on OTTC IR RGH CBRC CBTC 

50E Heuristic 0.289 0.456 0.711 0.655 0.423 

50E EA 0.320 0.455 0.603 0.487 0.427 

100nonE Heuristic 0.940 0.793 0.955 0.736 0.940 

100nonE EA 0.938 0.763 0.937 0.760 0.950 

Table 4: Average Spread of OTTC, IR, RGH, CBRC and CBTC Pareto fronts on 5 Euclidean and non-Euclidean 

instances of BDMST ( Pareto front solutions generated from heuristics and EA and the reference set is considered as 

the Merged Pareto front generated from all EA solutions) problem of size 50 and 100 respectively. 
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Table 5: Average Hyper-Volume of OTTC, IR, RGH, CBRC and CBTC Pareto fronts on 5 Euclidean and non-

Euclidean instances of BDMST ( Pareto front solutions are generated from heuristics and EA and the reference 

point for each individual instance is considered by choosing the maximum co-ordinates. This coordinates are the 

maximum diverse point which is generated by cumulating all heuristics and EA solutions for an instance.) problem 

of size 50 and 100 respectively. 

Instance sizetype Hypervolume 

for 

OTTC IR RGH CBRC CBTC 

50E Heuristic 256.14 272.09 280.42 222.58 278.45 

50E EA 273.45 278.04 289.97 276.20 282.11 

100E Heuristic 1109.20 1190.49 1211.90 948.95 1192.43 

100E EA 1175.83 1209.19 1245.82 1186.93 1212.97 

50NonE Heuristic 320.11 286.80 308.26 254.20 320.50 

50NonE EA 320.82 295.51 312.77 300.04 320.86 

100NonE Heuristic 1014.67 944.95 986.71 803.84 1016.42 

100NonE EA 1015.48 958.21 999.55 952.69 1017.13 


