
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

11

Enhancing the Performance of Feedback Scheduling

Ayan Bhunia
Student, M. Tech.

CSED, MNNIT
Allahabad- 211004 (India)

ABSTRACT
Feedback scheduling is a kind of process scheduling mechanism

where process doesn’t come with any priority. According to the

CPU burst needed by the process and the CPU burst remaining the

processes are shifted between queues of the feedback scheduler to

get completed. In multilevel feedback queue the total architecture

is divided into multiple prioritised queues. In this paper, we give

an approach for jobs which starve in the lower priority queue for

long time to get CPU cycle. As a result response time of those

starved processes decreases eight to ten percent and over all turn

around time of the whole scheduling process decreases around

eight to ten percents. In comparison to other types of MLFQs the

performance of the proposed scheduling technique is better and

practical according to the consequence.

Keywords
CPU burst, feedback analysis, starvation, response time, shifting

to upper queues.

1. INTRODUCTION
In Multilevel Feedback Queue [1],[3] processes are scheduled

according to their remaining CPU burst and they are shifted down

from queue to queue as they have some remaining CPU burst.

Every queue has unique time slice that gradually increases from

upper level queue to lower level queue. So the CPU intensive jobs

go down from upper queues to lower queues gradually for getting

completed. Thus, lower priority queues are filled with CPU

intensive jobs and as a result these processes start to starve for

getting CPU attention. So then it will follow first come first serve

scheduling among these jobs. It can deliver excellent overall

performance similar to shortest job first or shortest time remaining

come first scheduling for turnaround time, while it can also

provide a responsive system for interactive jobs just like Round

Robin scheduling. Here interactive job means the jobs which go

for input and output operations frequently compare to the jobs

which are more focused on getting CPU cycles which are

considered as CPU intensive jobs. For this reason, many systems,

including BSD Unix derivatives, Solaris, and Windows NT and

subsequent versions use a form of MLFQ as their base scheduler

[5]. In this paper the issue is resolved that the architecture

mentioned in the previous paper [1] of MLFQ. The drawback is

found that after processes reaches in the lowest queue, they

remain in that queue until they get finished. As a result a severe

slowdown in the scheduling and increase the response time and

turn around time of the remaining starved processes. Here severe

slowdown means that waiting time of the processes are getting

increased while residing in the lowest queue. The architecture of

MLFQ in this paper we propose, that dynamically reduce the

response time of the processes that go down to the lowest queue

and as a whole decrease the turn around time of whole scheduling.

2. RELATED WORK
In past few years different approaches are used to increase the

performance of MLFQ scheduling in different ways. In paper [6],

Recurrent Neural Network has been utilized to optimize the

number of queues and quantum of each queue of MLFQ scheduler

to decrease response time of processes and increase the

performance of scheduling. Here this proposed neural network

takes inputs of quantum of queues and average response time and

getting the required inputs it takes the responsibility of finding

relation between the specified quantum changes with average

response time. It can find the quantum of a specified queue with the

help of optimized quantum of lower queues. Thus, this network

fixed changes and specify new quantum which overall optimize the

scheduling time. In this paper [8] smoothed competitive analysis is

applied to multilevel feedback algorithm. Smoothed analysis is

basically mixture of average case and worst case analysis to

explain the success of algorithms. This paper analyses the

performance of multilevel feedback scheduling in terms of time

complexity. Any performance enhancing approach can use this

approach for performance analysis in terms of time complexity. In

another paper [10], multilevel feedback queue scheduling

algorithm is implemented in Linux 2.6 kernel and new Linux2.6

scheduler performance compared with the proposed approach. It

describes two algorithms elaborately and then for different load of

job, which are running in background, this scheduler is applied for

calculating the average response rime. And to maintain simplicity

inverse relationship is maintained between priority of processes

and time slice length. This paper is a real guideline for designer of

cognitive scheduling systems. Now to analyse the performance

enhancement, the proposed approach is implemented and simulated

in Condor [2] which provides high throughput computing

environment , that handles job queue mechanism, scheduling

policy, priority scheme, resource monitoring and resource

management, based upon the policy fixed for execution Condor

executes the job when user submits the job. For compute intensive

jobs Condor is very useful. Basically, Condor pool is composed of

more than one machine those are under one main machine called

central manager [11]. Pool is a collection of machine and jobs. Job

submitted in Condor is basically executed depending upon the

Class Ad [11] of machine where it is being submitted and when

Class Ad of machine matches then that job is executed in that

machine. This is called matchmaking [11]. Now for simulation

based approach Condor is used for simulation of the comparison

based analysis of two scheduling policies which are Round Robin

Opportunistic pol9icy and Multi-level Queue Opportunistic policy

in the paper [7]. By effective study of this paper reveals that, for

simulation based performance analysis of different type of

scheduling policies, Condor is one of the effective way that

provides high throughput computing environment. Condor not only

executes job on standalone machine it also migrates jobs when

more than one computer system is joined in the cluster and it finds

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

12

idle machine to share the workload for better system throughput,

basically in this paper [9] it is elaborated that in Condor when

migrates job it checkpoints the current job and sent it to the idle

remote machine which belong to it’s cluster, for execution. Thus,

for better computing Condor is one of the effective approach. In

context to this, a leverage quantity is calculated which is the ratio

of remote resources utilized and the sending machines utilized

resources to support job migration, check pointing and supporting

system calls. This leverage quantity is really a matter of issue of

any high throughput computing environment for checking

environment efficiency. Apart from that check pointing and job

migration for data intensive application can create heavy traffic in

the total grid, now Condor can handle this network traffic and

manages network resources efficiently which is elaborated in the

paper [8]. So, Condor not only handles jobs efficiently but also

manages network for speedup networking essentials. Before going

further review, computing environment of Condor is of several

types. Some of useful environments supported by Condor are

Vanilla, Standard, and Grid etc. [11]. For check pointing and job

migration Standard or Grid universe can be used. In context to the

Vanilla universe, the paper [4] described the feature of this

universe through Weibull and Log-normal distribution. The paper

signifies the Vanilla universe’s efficiency of creating a reliable

high throughput computing environment. Thus, Vanilla

environment’s efficiency is utilized in our approach for simulation.

3. PROPOSED APPROACH
In this approach, all the processes are inserted to the first queue and

given quantum depending on which queue it is residing. Now

before shifting to the next lower queue its CPU burst is modified

and waiting time is calculated. Then remaining CPU bursts of each

process is calculated according to the time slice of that particular

queue. In this way the processes are gradually shifted from one

queue to next queue depending on their remaining CPU burst. Now

when remaining processes reaches the lowest queue to reduce

starvation after scheduling for the first time in that queue, processes

are sorted according to their remaining CPU burst. Then they are

classified according to some range of values. Here range means

what if scheduling function of lowest queue is observed it can be

analysed how it is done. Then according to that processes are

sending to that queue for total completion of those processes. The

algorithm, control flow diagram and result elaborate it fully.

3.1 Proposed Architecture
In proposed architecture there are five queues .The proposed

architecture is drawn as figure 1. The processes, which will be

scheduled, will come to the queue 1 and it will go downwards to

the lower priority queues till get finished. Input file will supply

the processes information while the proposed architecture

schedules the processes and the results of scheduling will be

stored in the output file. Now one major common issue of this

architecture is that the number queues are not constant but the

time slice of each queue is increased from upper to lower. The

architecture supports the scheduling policy of feedback analysis

where processes do not have any fixed priority in the beginning

according to the CPU burst and the time slice of each queue they

are scheduled the proposed algorithm elaborates the scheduling

mechanism in details.

Fig 1: Proposed Architecture

From the above diagram it is clearly shown that this architecture

shows that after process are traversed down to lowest queue the

processes are again rescheduled to the upper queues according to

the remaining time of the their CPU burst which really makes the

scheduling more faster and if the processes are not eligible for

sending to the upper queues they are recursively scheduled in the

lowest queue and every next round some processes according to

their remaining CPU burst sent to the upper queues.

3.2 PROPOSED ALGORITHM
In this proposed algorithm three major functions are implemented

in each layer of the multilevel feedback queue. Those functions

are inserting processes one by one in each queue, feedback

analysis of the processes and waiting time calculation of each

process after scheduled in particular queue. The scheduling

function calls are implemented recursively in lowest queue to get

the scheduling faster and to scheduling from upper queue to lower

queue are implemented by calling from one queue’s scheduling

algorithm to another queue’s scheduling algorithm to make it

more reliable and dynamic. The three major functions are 1)

INSERT IN QUEUE N (); where n represents any nth queue of

MLFQ.2) FEEDBACK ANALYSIS; [1] 3) WAITING TIME

CALCULATION; this section describes the proposed algorithm.

Main program Body

{

 Take the information of the each process from a file.

For all Pi, where 1<= i <= n

 {

 Call INSERT IN QUEUE 1 () with its arrival time in q1; //this is

the function to insert the process in the First queue.

 }

Call SCHEDULING IN QUEUE 1 (n, q1); // n is the no of

process and q1 is the quantum of the first queue.

}

SCHEDULING IN QUEUE1 ()

{

 For all Pi, where 1<=i<=n

 {

 FEEDBACK ANALYSIS (); // this function calculate that how

much CPU burst remaining of a process so that it can be shifted to

lower queue.

 WAITING TIME CALCULATION (); // this function

calculates the waiting time of a process when it get scheduled in a

particular queue of the MLFQ.

 Either it gets completed.

 Or,

INPUT

FILE

OUTPUT

FILE

QUEUE 1

QUEUE 2

QUEUE 3

QUEUE 4

QUEUE 5

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

13

 Call INSERT IN QUEUE 2 () with its turn around time in q1; //

this is the function to insert the process in the Second Queue.

 }

Count the number incomplete process,

Call SCHEDULING IN QUEUE 2 (n1 , q2 , t1);// n1 is the

number processes shifted to lower queue, q2 is the quantum of the

second queue and t1 is the current time from where scheduling in

second queue will start.

}

SCHEDULING IN QUEUE 2 ()

{

 For all Pi, where 1<=p<=n1

 {

 FEEDBACK ANALYSIS ();

WAITING TIME CLCULATION ();

Either it gets completed.

 Or.

Call INSERT IN QUEUE 3() with its turn around time in q2; //

this is the function to insert the process in the Third Queue.

 }

Count the number of incomplete processes.

Call SCHEDULING IN QUEUE 3(n2 , q3 , t2) // n2 is the

number processes shifted to next lower queue, q3 is the quantum

of the third queue and t2 is the current time from where

scheduling in third queue will start.

}

SCHEDULING IN QUEUE 3 ()

{

 For all Pi, where 1<=p<=n2

{

 FEEDBACK ANALYSIS ();

WAITING TIME CLCULATION ();

Either it gets completed.

 Or.

Call INSERT IN QUEUE 4 () with its turn around time in q3; //

this is the function to insert the process in the Fourth Queue.

 }

Count the number of incomplete processes.

Call SCHEDULING IN QUEUE 4(n3 , q4 , t3) // n3 is the

number processes shifted to next lower queue, q4 is the quantum

of the fourth queue and t3 is the current time from where

scheduling in fourth queue will start.

}

SCHEDULING IN QUEUE 4 ()

{

 For all Pi, where 1<=p<=n3

{

 FEEDBACK ANALYSIS ();

WAITING TIME CALCULATION ();

Either it gets completed.

 Or.

Call INSERT IN QUEUE 5 () with its turn around time in q4; //

this is the function to insert the process in the Fifth Queue.

 }

Count the number of incomplete processes.

Call SCHEDULING IN QUEUE 5(n4 , q5 , t4) // n4 is the

number processes shifted to next lower queue, q5 is the quantum

of the third queue and t4 is the current time from where

scheduling in fifth queue will start.

}

SCHEDULING IN QUEUE 5 ()

{

 For all Pi, where 1<=p<=n4

 {

FEEDBACK ANALYSIS ();

WAITING TIME CALCULATION ();

Either it gets completed.

Or

Check the remaining Burst

If (burst<=q1)

{

Call INSERT IN QUEUE 1 () with its turn around time in queue

5;

Increase the counter that will hold the number of processes that

are shifted to first queue.

}

Else if (q1<burst<=q2)

{

Call INSERT IN QUEUE 2 () with its turn around time in

queue5;

Increase the counter that will hold the number of processes that

are shifted to second queue.

}

Else if (q2<burst<=q3)

{

Call INSERT IN QUEUE 3 () with its turn around time in

queue5;

Increase the counter that will hold the number of processes that

are shifted to third queue.

}

Else if (q3<burst<=q4)

{

Call INSERT IN QUEUE 4 () with its turn around time in

queue5;

Increase the counter that will hold the number of processes that

are shifted to fourth queue.

}

Else

{

Call INSERT IN QUEUE 5 () with its turn around time in

queue5;

Increase the counter that will hold the number of processes that

are shifted to fifth queue.

}

Call SCHEDULING IN QUEUE 1 (n1’, q1, t); //n1’ is the count

of the processes send to queue 1 for completion, q1 is the

quantum of the queue 1 and t is the time when first round of

scheduling in queue 5 completes

Call SCHEDULING IN QUEUE 2 (n2’, q2, t); n2’ is the count of

the processes send to queue 2 for completion, q2 is the quantum

of the queue 2 and t is the time when first round of scheduling in

queue 5 completes

Call SCHEDULING IN QUEUE 3 (n3’, q3, t); n3’ is the count of

the processes send to queue 3 for completion, q3 is the quantum

of the queue 3 and t is the time when first round of scheduling in

queue 5 completes

Call SCHEDULING IN QUEUE 4 (n4’, q4, t); n4’ is the count of

the processes send to queue 4 for completion, q4 is the quantum

of the queue 4 and t is the time when first round of scheduling in

queue 5 completes

Call SCHEDULING IN QUEUE 5 (n5’, q5, t); n5’ is the count of

the processes send to queue 5 for completion, q5 is the quantum

of the queue 5 and t is the time when first round of scheduling in

queue 5 completes

}

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

14

FEEDBACK ANALYSIS ()

{

Suppose, Time slice is d and CPU burst of the process Pi (where

i=0, 1, 2…., .n) is t.

if (t<= d)

{

Allocate the time slice to the process

{

If process completes its execution

Exit () ;}

Else

{

t’=t-d;

Update the process information;

Insert the process in the next lower queue;

}

}

WAITING TIME CALCULATION ()

{

Declare a variable Varo and initially assign value one to it.

As process comes arriving from time stamp one.

Therefore, Varo =1;

For each process Pi for all processes

Do {

Waiting time= Varo – process arrival time;

 If (CPU burst of the process <= time slice)

 {

 Varo = Varo + burst time of the process;

 }

 Else

 {

 Varo =Varo+ time slice of that particular queue;

 }

3.3 CONTROL FLOW DIAGRAM
This control flow diagram will describe the mechanism that how

processes will be scheduled from first queue to the last queues

according the proposed architecture and how the algorithm works

when it get implemented. The following diagram really describes

the proposed mechanism which is understandable after consulting

the results and Gantt chart. Here SCHEDULING_QUEUE IN n is

the generalized form of all scheduling function where n represents

a particular queue of a MLFQ.

 Main Function ()

SCHEDULING_QUEUE IN 1 (t1);

SCHEDULING_QUEUE IN 2 (t2);

SCHEDULING_QUEUE IN 3 (t3);

SCHEDULING_QUEUE IN 4 (t4);

SCHEDULING_QUEUE IN 5 (t5);

Time line: t1<t2<t3<t4<t5<t6<t7

Fig 2: Scheduling Sequence

Repeat the steps of scheduling in the lowest queue are

synchronized until all the processes get selected and completed by

calling it recursively. In the earlier section of proposed algorithm

one thing is clearly mentioned that in each layer basically three

functions are implemented. Now the total scheduling mechanism

is described by the above diagram that how the processes are

traversed from upper queues to lower queues. The above diagram

depicts the sequence of scheduling flow and details of control

flow. In the lowest queue to reduce starvation processes are boost

to upper queues according to the remaining time of their CPU

burst. The time line describes that as the times goes on scheduling

is get confined in the lowest queue and this scheduling sequence

follow the proposed algorithm and describes how process are get

managed to get finished.

3.4 GANTT CHART
Following example elaborates the performance enhancing

scenario with suitable Gantt chart and discussions. Suppose,

MLFQ scheduler has five queues having time slice suppose 16, 32,

64, 128 and 256. This time slice assumption is taken to show the

increasing order of time slice and power MLFQ property.

Table 1: Test Case Input

Process identifier CPU burst Arrival time

1 621 1

2 751 4

3 499 6

4 526 9

5 546 10

Scheduling is shown by the Gantt chart to see when, where and

how the process is getting executed and also to calculate the turn

around time.

t1= 1

FIRST SCHEDULING IN QUEUE

P1 P2 P3 P4 P5

 1 17 33 49 65 81

t2= 81

FIRST SCHEDULING IN QUEUE 2

P1 P2 P3 P4 P5

 81 113 145 177 209 241

t3=241

FIRST SCHEDULING IN QUEUE 3

P1 P2 P3 P4 P5

 241 305 369 433 497 561

t4=561

FIRST SCHEDULING IN QUEUE 4

P1 P2 P3 P4 P5

SCHEDULING IN

QUEUE 1 (t6)

SCHEDULING IN

QUEUE 2 (t6)

SCHEDULING

IN QUEUE 3 (t6)

SCHEDULING IN

QUEUE 4 (t6)

SCHEDULING IN

QUEUE 1 (t7)

SCHEDULING

IN QUEUE 3 (t7)

 SCHEDULING IN

QUEUE 4 (t7)

SCHEDULING IN

QUEUE 5 (t6)

SCHEDULING IN

QUEUE 2 (t7)

SCHEDULING IN

QUEUE 5 (t7)

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

15

 561 689 817 945 1073 1201

t5=1201

FIRST SCHEDULING IN QUEUE 5

P1 P2 P3 P4 P5

 1201 1457 1713 1969 2225 2481

Remaining burst of P1 is 125, P2 is 255, P3 is 3, P4 is 30,

P5 is 50.

 t6=2481

 QUEUE 1 QUEUE 4

 2481 2584 2481 2606

 QUEUE 2 QUEUES 3

 2481 2511 QUEUE 5 2481 2531

 2481 2736

Fig 3: Sending Jobs to Required Queues

So, Turnaround time is 2736 in proposed algorithm. Now if we

use the previous algorithm then the scheduling will be in the

following way,

t6=2481

SECOND SCHEDULING IN QUEUE 5

P1 P2 P3 P4 P5

 2481 2606 2861 2864 2894 2944

Here, turnaround time is 2944 which is greater than the proposed

approach. It is shown that with the proposed approach turnaround

time of scheduling is getting decreased and system is getting

faster. As the total scheduling time is decreased the turnaround
time of each process is also decreased.

4. SIMULTAIONS AND RESULT

ANALYSIS
The simulation is done in Condor [2] which provides a high

through put computing environment to execute heavy data job.

Test case inputs are taken to show that for different type of CPU

burst of processes how results are coming for different type of

MLFQs. This result analysis really gives a comparison based idea

of proposed approach and other existing type of MLFQs.

Table 2: First Test Case Input

Process identifier CPU burst Arrival time

1 421 1

2 551 4

3 299 6

4 326 9

5 346 10

Table 3: First Test Case Output

Algorithm Turn around time

Power MLFQ 2535

Equal MLFQ 1935

Proposed approach 2535

Table 4: Second Test Case Input

Process identifier CPU burst Arrival time

1 621 1

2 751 4

3 499 6

4 526 9

5 546 10

Table 5: Second Test Case Output

Algorithm Turn around time

Power MLFQ 2944

Equal MLFQ 3007

Proposed approach 2736

Table 6: Third Test Case Input

Process identifier CPU burst Arrival time

1 821 1

2 951 2

3 699 8

4 726 11

5 746 14

Table 7: Third Test Case Output

Algorithm Turn around time

Power MLFQ 4068

Equal MLFQ 3943

PROPOSED APPROACH 3969

Combining the all three test case inputs and outputs the

comparison based graph is drawn to show how this approach is

efficient than existing MLFQs.

Fig 4: Comparison of Different MLFQ’s Performance

The paper presents the improvement of the Multi-level Feedback

Queue’s CPU time allocation strategy, by adding parallelism.

After, that calculating the time of completion of the scheduling in

each queues. This new approach increases the system efficiency

by decreasing the scheduling process and increase the response

time of the processes which are in the lowest queue and starving.

This parallelism can be implemented practically then it really

affects the scheduler to schedule in more efficient manner. And

P4

P1

P3

P5

P2

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

16

file handling of this implantation done with the help of condor [2].

By using condor_submit [11][9] command, we submit the

scheduler programme in condor computing environment. Any

vanilla [11] or standard [11] computing environment is enough to

run job. It needs the input file which stores the information of the

processes and the output and waiting time is calculated and stored

in he output file. This file handling is done by condor and Condor

is very first to calculate[4][5] and here condor is needed because

CPU burst of the processes are very high and we have to have

calculate the times of completion of the processes of each queue

and the calculating the remaining burst and waiting time all this

things. So condor computing environment [7] [9] is a very helpful

way to solve this computation problem.

Fig 5: Submit Description File for Condor

Executable is the exe file of the job and file.in the input file that

stores information of the processes and output file is result.out file

which stores the result of scheduling. Queue is the word that

describes that job is submitted to condor cluster for single time.

There is another two files generated after completion of the job

execution is info.log and info.error. First one is the log file that

get generated which stores the in formations such as time of job

submission, time when job get executed , address of the executing
machine, date of submission, date of finish etc .

5. CONCLUSION
As starvation in the lower level queue is an important issue in

multilevel feedback queue scheduling. Hence our approach gives

an optimistic solution regarding reducing starvation of those

remaining processes. And it can be seen from the results that

overall turnaround time of the processes is getting minimized by

eight to ten percents and scheduling becomes much faster.Our

approach extends the performance of feedback scheduling

algorithm by minimizing the response time and overall turn
around time of the system by around ten percentage.

6. REFERENCES
[1] Hoganson, Kenneth (2009), “Reducing MLFQ Scheduling

Starvation with Feedback and Exponential Averaging”,

Consortium for Computing Sciences in Colleges,

Southeastern Conference, Georgia.

[2] Liu, Chang, Zhao, Zhiwen and Liu, Fang (2009), “An

Insight into the Architecture of Condor –A Distributed

Scheduler”, IEEE, Beijing, China.

[3] Parvar, Mohammad R.E, Parvar, M. E. and Safari, Saeed

(2008), “A Starvation Free IMLFQ Scheduling Algorithm

Based on Neural Network”, International Journal of

Computational Intelligence Research ISSN 0973-1873

Vol.4, No.1 pp. 27–36

[4] Wolski, Rich, Nurmi, Daniel and Brevik, John (2007), “An

Analysis of Availability Distributions in Condor”, IEEE,

University of California, Santa Barbara.

[5] Torrey, L.A., Coleman, J. and Miller, B.P. (2007), “A

Comparison of the Interactivity in the Linux 2.6 Scheduler

and an MLFQ Scheduler”, Software Practice and

Experience, Vol. 37, No 4, pg. 347-364, John Wiley & Sons,

Ltd.

[6] Becchetti, L., Leonardi, S. and Marchetti S.A. (2006),

“Average-Case and Smoothed Competitive Analysis of the

Multilevel Feedback Algorithm” Mathematics of Operation

Research Vol. 31, No. 1, February, pp. 85–108.

[7] Abawajy, Jemal H. (2002), “Job Scheduling Policy for High

Throughput Computing Environments”, Ninth IEEE

International Conferences on Parallel and Distributed

Systems , Ottawa, Ontorio, Canada.

[8] Basney, Jim and Livny, Miron (2000), “Managing Network

Resources in Condor”, 9th IEEE Proceedings of the

International Symposium on High Performance Distributed

Computing, Washington, DC, USA.

[9] Litzkow, Micheal J., Linvy, Miron and Mutka, Matt W.

(1988), “Condor – A Hunter of Idle Workstations” IEEE,

Department of Computer Sciences, University of Wisconsin,

Madison.

[10] Scheduling: The Multilevel Feedback Queue.

http://pages.cs.wisc.edu/~remzi/Classes/537/Fall2009/Notes

/cpu-sched-mlfq.pdf

[11] Condor Team, University of Winconsin-Madision, “Condor

Version 7.2.5 Manual”.

Universe=vanilla
Executable= job

Input= file. In

Output=result. Out
Log= info. Log

Queue.

