International Journal of Computer Applications (0975 — 8887)
Volume 18— No.4, March 2011

Web Page Interface Localisation in Devanagari for
Commercial Interactive Applications by Enhancing basic
Functionality of Apache Server

M. L. Dhore
Vishwakarma Institute of
Technology, Pune, India

ABSTRACT

The Internet is a global medium of communication and
information sharing with the evolution of e-Commerce and e-
Governance applications along with enterprise architecture
evolution. It provides vast opportunities for existing
marketing professionals to establish business dimensions and
capture benefits with software resources. The serviceability
factors of the Internet have proven to be beneficial to society,
by and large, with the only limitation being the linguistic
barrier, since English has been the predominant language for
the World Wide Web since its inception and hence it’s usage
is confined to a specific community of people have a good
grasp of the English language.. The solution to this problem is
web page interface localisation. Web Page interface
localisation of commercial web based interactive applications
is the path-breaking solution which provides efficient and
effective user-friendly interface by translating the Web page
interface stored on the Web Server to the target native
language on the fly. Authors focused on how to provide local
language access for Indian National Language Hindi and
Marathi Language of Maharashtra state for the interface of
commercial web based application (domain specific
application) by using controlled language.

General Terms
Localisation and Internationalisation.

Keywords

Localisation, Bi-lingual dictionary, Web Interface. Interactive
Application.

1. INTRODUCTION

As the Internet continues to grow globally, Websites are
providing businesses around the globe by means of viewing
products & services. Over 100 million people access the
Internet in a language other than English. Over 50% of Web
Users speak a native language other than English. Research
have shown time and time again that Web users are up to four
times more likely to purchase from site that communicates in
customer’s language. In this paper, we have developed secure,
cost-effective method for language localisation of the Web
pages, which provides effective user-friendly interface by
translating the Web pages stored on the Web Server to the
target language on the fly. It is an attempt to provide local
language access for Indian National Language Hindi and
Marathi, the language of Maharashtra state for the interface of
commercial web based application (domain specific
application) by using controlled language [1][2][3]. It is
evident that computer usage in India can only reach the

S. K. Dixit
Walchand Institute of
Technology, Solapur, India.

J. B. Karande
Vishwakarma Institute of
Technology, Pune, India.

masses if the human — computer interface is in Indian
languages [1][3].

For translating the Web page interface in target language in
Hindi or Marathi in the Web Page Translation, users type the
URL of Web page. After this user selects target language and
gets translated version of Web page in target language. In
traditional Web Page Translation technique, Web page
interface is translated into target language and then translated
target language Web page is stored on the Web Server. So
whenever the Client requests the Server for Web page in
target language like Hindi or Marathi, corresponding
translated Web page is selected & sent back in response to
Client. The original English Web pages are translated into
languages in which Website is providing access to Clients.
But if some change has made in any original Web page then
change should be performed in all translated Web pages. If
change performed in original Web page is not updated
properly in all corresponding translated Web pages then
incorrect information gets displayed to Client.

The proposed solution is based on translating the interfaces of
commercial Web pages stored on the Web Server in the target
language on the fly. Proposed method solves the problem of
Web Page Translation since only original English Web pages
are stored on the Web Server. If Client requests Web page in
target language Hindi or Marathi, then original Web page is
dynamically translated into corresponding target language.

The developed Web Page Localisation software has several
characteristics. First, it provides safe, quick and cost effective
method for converting the existing Web pages. Second, The
Web pages can be localised into any language —Indian
languages Hindi and Marathi. The “translation on the fly”
methodology used by Web Page Localisation results in
significant reduction of the space required for storing the
translated Web pages in different languages on the Web
Server and continuing the stability of the original Web pages
and reducing complexity for updating.

2. RELATED WORK

The major contributors in the area of localisation in India are
C-DAC (Center for Development of Advanced Computing),
NCST (National Center for Software Technology) and
Indictrans Team. The applications they have localised are
Indian Railways Reservation Charts, Mahanagar Telephone
Nigams and Bilingual Telephone Directories. The C-DAC has
developed the localised Unicode version of the existing online
‘Web based Railway Enquiry System’ hosted at
www.trainenquiry.com and its related application modules.
Indictrans has done the conversion of live data and file-
journey-management database from nonunicode to Unicode
standard as well as localised the voter list search engine for

Chief Electoral Officer of Maharashtra. FACT Financial
accounting package is available in Hindi from Vedika
Software. Yudit is the localised editor for Hindi, Marathi and
Gujarati. Inputbhaaratii has developed several applications
for inputting indic scripts for web based applications[4].
Multilingual User Interface software is developed by IIT,
Chennai. Starvos Kokkotos has proposed architecture for
development of internationalized software called ISDA-i [5],
which is highly modular design and costly for implementation
as it requires to built up different libraries and configuration
files. Terence Parr [6] had proposed XML based string
template for localisation of strings and other data types like
currency, date, time etc. using locale. N. Anbarasan [7]
detailed on localisation process for web in Indian languages
and several issues related with localisation process. Cardenosa
J [8] proposed approach for localisation of software. Our
method describes how to modify Apache http core module to
support on the fly localisation for better response time of the
system.

3. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Following figure (Figure 1.) shows the overall architecture of
system.

Confignration Check Parseand
of Apache Target .| Translate
Server Langnage "| Response
Data
! t t
Loading of Access Dictionary
additional |—»| Response for
Module Data Interface
Labels

Figure 1. System Architecture

3.1 Configuration of Apache Server

To develop Web Page Localisation it is necessary to first
configure Apache 2.0 HTTP Server. The Apache Web Server
is currently the most popular Web Server, according to a Net
Craft Survey. Since Apache is an "open source" project, so
any one can have access to Apache code source, and anyone
can write its own modules to suits one needs. For translating
the Web pages into target language on the fly, writing &
loading own module is required in Web page interface
Localisation[11][12]. Since Apache is open source project so
writing own module & loading it is possible. For that purpose,
first Apache needs to be configured [13][14].

The configuration for Apache Server is located in a file called
httpd.conf, which is usually located in conf directory. The
httpd.conf file contains the main Server configuration
information. The basic behavior of the Server is contained in
this file, such as how it runs, what port it listens to, and
information on how to find other configuration files. This file
consists of configuration directives, which allows developers
to configure Apache Web Server according to needs. The
httpd core is responsible for reading and parsing the
httpd.conf configuration file.

We have configured DocumentRoot, ServerRoot and
Directorylndex configuration directives in configuration file.
DocumentRoot sets the directory from which httpd will serve

International Journal of Computer Applications (0975 — 8887)
Volume 18— No.4, March 2011

files to the application. It provides the path where the Web
pages of Website are stored on the Apache Web Server.
ServerRoot sets the absolute path to Server directory. This
directive tells the Server where to find all the resources and
configuration files. Directory Index provides Web pages to
which users can view[13][4].

3.2 Loading of Additional Module to

Extend the Functionality of Apache Server
At the high level, the Apache Server architecture is composed
of a core set of services that implement the most basic
functionality of a Web Server and a set of standard modules
that actually service the phases of handling an HTTP request.
The Server core accepts a HTTP request and implicitly
invokes the appropriate handlers, sequentially, in the
appropriate order, to service the request. Apache modules
actually implement the different phases of handling the
request. The role of the modules is to extend the functionality
of the Apache Web Server.

Apache permits loading of modules when they are needed. A
handler is for Apache the action that must be performed in
some phase of servicing a request. Modules define handlers
and a module might specify handlers for one, many or none of
the phases of a request. Handlers are the part of the module
that is called when the processing of the request enters the
phase for which the handler is defined. Handler generates the
response sent back to Client. Apache's modular structure has
simplified the way that functionality is added to the Server. Its
generalized Application Programmer's Interface greatly
simplifies the process of adding new or enhancing existing
functionality. Many of these modules are so useful that they
are included on a default Server configuration.

In Web page interface Localisation, we have developed our
own module for accessing response data posted by Server as
well as checking for target language. The module that is
coded by developers is dynamically loaded into the Apache
Web Server by using configuration directive “LoadModule”.
The LoadModule directive links in the object file or library
filename and adds the module structure named module to the
list of active modules. We have loaded our own
replace_module as “LoadModule replace_module
modules/mod_replace.so” [14].

3.3 Access Response Data Posted by

Server

In Web page interface Localisation for translating Web pages
into target language on the fly, it is required to access
response data, which Server sent as response to Client for
request. We have accessed response data with the help of
output filters. A filter is process that is applied to data that is
sent or received by the Server. Data sent by Clients to the
Server is processed by input filter and data sent by Server to
Clients is processed by output filter.

When the Apache developers first began talking about Apache
2.0, one of the major goals was for one module to be able to
modify the output of another. This is possible with the help of
filters. Filters operate using a "chaining" mechanism. The
filters are chained together into a sequence. When output is
generated, it is passed through each of the filters on this chain,
until it reaches the end (or "bottom") and is placed onto the
network.

The top of the chain, the code generating the output, is
typically called a "content generator.” The content generator's
output is fed into the filter chain using the standard Apache

output mechanisms: ap_rputs(), ap_rprintf(), ap_rwrite(), etc.
Each filter is defined by a callback. This callback takes the
output from the previous filter (or the content generator if
there is no previous filter), operates on it, and passes the result
to the next filter in the chain. This pass-off is performed using
the ap_fc_* functions, such as ap_fc_puts(), ap_fc_printf(),
ap_fc_write(), etc . When content generation is complete, the
system will pass an “"end of stream” marker into the filter
chain. The filters will use this to flush out any internal state.

In Apache filter terminology; each chunk is stored in a bucket,
and lists of buckets form brigades. Lists of brigades can then
create a Web document. Filters operate on one brigade at a
time, and are called upon repeatedly until the entire document
has been processed. This allows the Server to stream
information to the Client. With the output filters, the content
generator started with nothing, generated the base content, and
passed that content down the filter stack to be modified; at the
bottom of the filter stack, the data is sent to the network and
an empty brigade is returned back up the stack. Apache filters
are called as many times as necessary to process all of the data
produced by the handler. An output filter is given a bucket
brigade, does whatever it does, and hands a new brigade (or
brigades) down to the next filter in the output filter stack. To
be used at all, a filter must first be registered. Before a filter
can be enabled for a given request, it must be registered with
the Server. This is done using the ap_register_output_filter
function. This function is invoked with four arguments: the
filter name, the filter function pointer and the filter type, such
as ap_register_output_filter ~ (const char* name,
ap_out_filter_func filter_func, ap_init_filter_func filter_init,
ap_filter_type ftype) where name is the name to attach to filter
function filter_func is the filter function to name filter_init is
the function to call before the filter handlers are invoked
ftype is the type of filter function either

AP_FTYPE_RESOURCE, AP_FTYPE_CONTET_SET()

This function type is used for filter callbacks. It will be passed
a pointer to "this" filter, and a "bucket" containing the content
to be filtered. In filter— ctx, the callback will find its context.
This context is provided, so that it installed multiple times,
each receiving its own per-install context pointer
[11].Callbacks are associated with a filter definition, which is
specified by name. If the initialization function argument
passed to the registration functions is non-NULL, it will be
called if and only if the filter is in the input or output filter
chains and before any data is generated to allow the filter to
prepare for processing.

The *bucket structure (and all those referenced by —next and
—prev) should be considered "const". The filter is allowed to
modify the next/prev to insert/remove/replace elements in the
bucket list, but the types and values of the individual buckets
should not be altered [5].

After this registration is performed, then a filter may be added
into the filter chain by using ap_add_output_filter(). The filter
may beap_add_output_filter (const char* name, void *ctx,
request_rec *r, conn_rec *c) where name is the name of filter
to add, ctx is the context data to add in filter , r is the request
data to add filter for configuration file, ¢ is the connection to
add this filter. Filters are added in a FIFO manner. The first
filter added would be the first filter called. Associating a
request with a filter is done when adding the filter to the filter
stack. It is also possible to insert the filter automatically by
using the AddOutputFilter or SetOutputFilter directives.
AddOutputFilter Directive maps filename extensions to the
filters that will process responses from the Server as

International Journal of Computer Applications (0975 — 8887)

Volume 18— No.4, March 2011

AddOutputFilter filter [; filter...] extension [extension]

If more than one filter is specified, semicolons in the order in
which they should process the content must separate them.
Both the filter and extension arguments are case-insensitive,
and the extension may be specified with or without a leading
dot. The AddOutputFilter directive maps the filename
extension to the filters, which will process responses from the
Server before they are sent to the Client. We have added
AddOutputFilter REPLACE .html. After registration &
addition of output filter, we have accessed data by calling
apr_bucket_read() function. The brigade serves to enable
flexible and efficient manipulation of data, and is the unit that
gets passed to and from your filter. In Apache filter
terminology; each chunk is stored in a bucket, and lists of
buckets form brigades. So for each brigade, read bucket data
by using apr_bucket_read(). Implementation has shown in the
following flowchart figure.2.

_ ‘ — Access bucket from brigade
| Register O/p filter APR_BRIGADE_FOREACH
|(ap_register_output_filter)| \

] //"*
! 7 IsBs O\ L

Add O/p fiter S Fidetor e >

(ap_add_output_filter) \bUCket?, /

| N~ No

Read data from bucket
buck d
(apr table. get) (apr_bucket_read)

|
’. ‘ Parse data (ParseHtml) ‘

Access data posted |
by server | Convert into Target ‘
| lanquage

—

‘ Pass brigade to next

Access Target language

filter

Figure 2. Implementation Flowchart

3.4 Checking Target Language

In Web page interface Localisation for translating Web pages
into target language on the fly, it is required to access
“Accept- Language” header, which Client sent as target
language for request. The request_rec structure is used to hold
information about a current request between the Web Server
and a Client. The request_rec structure is key to Apache's
processing of Client requests. A pointer to a request_req
structure is passed to all phase handlers and many API
routines[14].

The request_rec structure describes a particular output filter
by using “AddOutputFilter” directive in behalf of a Client. In
most cases, each connection to the Client generates only one
request_rec structure. The request_rec contains pointers to a
resource pool, which will be cleared when the Server is
finished handling the request; to structures containing per-
Server and per-connection information, and most importantly,
information on the request itself.

The most important such information is a small set of
character strings describing attributes of the object being

requested, including its URI, filename, content-type and
content-encoding (these being filled in by the translation and
type-check handlers which handle the request, respectively).
Other commonly used data items are tables giving the MIME
headers on the Client's original request, MIME headers to be
sent back with the response. These tables are manipulated
using the table_get and table_set routines.

The request_rec structure contains information about
incoming HTTP headers in the form of table as table
*headers_in. This table contains a key/value pair for every
field in the request header. Some of the fields are also
represented in other ways, such as the Range field, but all of
the original request header fields are stored in this table in
their raw form [13]. We have accessed “Accept-Language”
header with the help of apr_table get() function from
request_rec structure for this table.

3.5 Parsing and Translating Response Data
The response from the Web Server to an HTTP request
contains a header and usually the actual response. The header
contains status information and information on the resource.
We have first accessed actual response data and then we
parsed text strings that need replacing in the response data
[16]. The text strings are then replaced with corresponding
target language strings if available in dictionary otherwise
only original strings are sent in response data. We have
created a dictionary of 300 multilingual (English-Hindi-
Marathi) labels of commercial web based interactive
applications.

4. EXPERIMENTATION

We have developed Web page interface Localisation for
translating existing Web pages into Devanagari language on
the fly. This software have been tested and verified for some
Web pages for target language Devanagari.

Following are the details of modules incorporated for
translation into target language.

apr_bucket_read(): To obtain response data in string from
bucket in order to parse and translate data into corresponding
target language.

APR_BRIGADE_FOREACH(): To obtain each bucket from
brigade in order to perform operations on each bucket.

apr_get table(): To obtain the value of “Accept-Language”
header i.e. to obtain target language.

StoreDict(): To store corresponding target language strings to
English strings in dictionary.

ParseHtmlI(): To parse response HTML data in order to
retrieve strings that are required to be converted. These strings
are then passed to StringConvert (). Thus response data is
translated into corresponding target language.

StringConvert(): To search target language string for English
string in order to return target language string to ParseHtml().

During experimentation, we simultaneously observed
translation of Web pages for target languages Hindi and
Marathi.

5. RESULTS AND FINDINGS

Our implementation is for the domain specific applications. It
is found that there are about 300 hundred labels which are

International Journal of Computer Applications (0975 — 8887)

Volume 18— No.4, March 2011

commonly used. We have preferred memory based translation
using translation memory. The database is created by using
the XML. Firstly, the dictionary is prepared for these labels
using hash function with chaining where the labels hashed to
the same location are chained with the link list. Then it is
converted into XML database. As the dictionary size is too
small and hash functions provide direct mapping the recall is
100 percent [15]. Web page interface localisation is the path-
breaking solution for language localisation of the web pages,
which provides effective user-friendly interface by translating
the web pages stored on the web server to the target language
on the fly. Here we have shown the output of web page
interface into Hindi and Marathi. We have carried out our
experimentation for seven interactive websites related with
the banking and job search portals. One example from
experimentation is shown in figure 3.

CICR o)

3T @l TATT HI

SETGE Cey

Hehaereg, fAfaa
HIHTETST ATfelT

IS A1

Te] AT ATl
HYOT 3T
e gt
gafera 3T

e gedr =]

o=zt [~]

\mm\

1@#3!1113?&‘

Figure 3. Web Page Interface in Marathi

6. CONCLUSION

We proposed efficient Web page interface localisation method
for translating existing Web pages into any target language on
the fly. Web page interface localisation is the proposed
solution for the growing demand of non-English language
interface for the Web pages. If someone has existing Web
pages, or is developing a separate site for a target market,
Web page interface Localisation is essential to preserve and
convey the right message to target audience e.g. online
banking, online shopping organizations. The results of
experimentation show that the software works well in the
sense that the existing Web pages are dynamically translated
into target languages like Hindi and Marathi.

7. ACKNOWLEDGMENTS

We express our gratitude to Prof. Abhyankar H K Former
Director of Vishwakarma Institute of Technology, for his
continuous encouragement to carry out the research in the
area of localisation. We also thank to Jayshree, Sanjesh,
Vaishali and Viren for contributing the research work in the
area of localisation at our institute. We also thank Disha,
Ruchi, and Jyoti Dhore for their help in creating the
multilingual dictionary. Special thanks to M R Dube,
Assistant Professor who has strengthened the linguistic of this
paper.

8. REFERENCES

[1] Frost & Sullivan, Local Language Information
Technology Market in India, TDIL, Department of IT,
Ministry of Communications and Information
Technology, India, 2003.

[2] John Hutchins, University of East Anglia, Norwich |,
“Current commercial machine translation systems and
computer-based translation tools: system types and their
uses” http://ourworld.compuserve/homepages

[3] R. Sharma, “Development of a bilingual electronic
glossary for automated assistance in user interface
localisation”, TIDL,2002.

[4] J. Shah, S. Hajare, “Localisation for e-governance”,
Journal of Language Technology, 2004, pp. 154-160.

[5] Stavros kokkotos and constantine spyropoulos, An
architecture for designing internationalized software,"
Software Technology and Engineering Practice, pp. 13-
1,July,1997

[6] T. Parr, Web application internationalization and
localisation in action, in 6th International conference on
Web engineering, vol. 263, pp. 64 70, ACM New York,
NY,USA,2006

[71 N. Anbarasan, Software localisation process and issues,"
Tamil Internet, 2003. .J. Cardenosa, C. Gallardo, and A.
Martin, Internationalization and localisation after system
development: A practical case, International Journal of
Information Technologies and Knowledge, vol. Vol.1,
pp. 121-127, 2007.

International Journal of Computer Applications (0975 — 8887)

Volume 18— No.4, March 2011

[8] Cardenosa, J., Gallardo, C., and Martin, A.
Internationalization and localisation after system
development : A practical case. International Journal of
Information Technologies and knowledge. Vol 1, 121-
127, 2007

[91 D. Chakrabarti, D. Narayan, P. Pandey, P.
Bhattacharyya, “Experiences in building the Indo
Wordnet- A wordnet for Hindi”, In, Proceedings of the
First Global Word Net Conference. Central Institute of
Indian Languages, Mysore, 2002, pp. 57-64.

[10] S. Dave, J. Parikh, P. Bhattacharyya, “Interlingua-based
English-Hindi Machine Translation and Language
Divergence”, Journal of Machine Translation, Volume
17, September, 2002.

[11] The Apache HTTP Server Project Fielding, R.T; Kaiser,
G: Volume 1, Issue 4, July-Aug 1997 pp: 88-90.

[12] Apache HTTP Server Documentation
httpd.apache.org/docs, httpd.apache.org/docs-
2.0/modules

[13] www.onlamp.com (Writing Filters in Apache, Writing
Output Filters in Apache, Writing Input Filters in
Apache)

[14] Design considerations for the Apache Server API, Robert
Thau, Fifth International World Wide Web Conference,
1996, Paris.

[15] M L Dhore, Jayshri Khachane ,M.R. Dube, A. M.
Kulkarni , “Web Page Localisation for Sites Hosted on
Linux”, IAENG International Conference on Internet
Computing & Web Services, Hong Kong, March 2007

[16] M. L. Dhore,A. K. Dhote, “Automating the HTML
Localisation Process: An Implementation Using a Java
Internalisation Approach,”, 11th Annual Localisation and
Internationalisation Conference organized by LRC, 2006
http://www.localisation.ie.

10

