
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

6

Web Page Interface Localisation in Devanagari for
Commercial Interactive Applications by Enhancing basic

Functionality of Apache Server

M. L. Dhore

Vishwakarma Institute of
Technology, Pune, India

S. K. Dixit
Walchand Institute of

Technology, Solapur, India.

J. B. Karande
Vishwakarma Institute of
Technology, Pune, India.

ABSTRACT

The Internet is a global medium of communication and

information sharing with the evolution of e-Commerce and e-

Governance applications along with enterprise architecture

evolution. It provides vast opportunities for existing

marketing professionals to establish business dimensions and

capture benefits with software resources. The serviceability

factors of the Internet have proven to be beneficial to society,

by and large, with the only limitation being the linguistic

barrier, since English has been the predominant language for

the World Wide Web since its inception and hence it‟s usage

is confined to a specific community of people have a good

grasp of the English language.. The solution to this problem is

web page interface localisation. Web Page interface

localisation of commercial web based interactive applications

is the path-breaking solution which provides efficient and

effective user-friendly interface by translating the Web page

interface stored on the Web Server to the target native

language on the fly. Authors focused on how to provide local

language access for Indian National Language Hindi and

Marathi Language of Maharashtra state for the interface of

commercial web based application (domain specific

application) by using controlled language.

General Terms

Localisation and Internationalisation.

Keywords

 Localisation, Bi-lingual dictionary, Web Interface. Interactive

Application.

1. INTRODUCTION
As the Internet continues to grow globally, Websites are

providing businesses around the globe by means of viewing

products & services. Over 100 million people access the

Internet in a language other than English. Over 50% of Web

Users speak a native language other than English. Research

have shown time and time again that Web users are up to four

times more likely to purchase from site that communicates in

customer‟s language. In this paper, we have developed secure,

cost-effective method for language localisation of the Web

pages, which provides effective user-friendly interface by

translating the Web pages stored on the Web Server to the

target language on the fly. It is an attempt to provide local

language access for Indian National Language Hindi and

Marathi, the language of Maharashtra state for the interface of

commercial web based application (domain specific

application) by using controlled language [1][2][3]. It is

evident that computer usage in India can only reach the

masses if the human – computer interface is in Indian

languages [1][3].

For translating the Web page interface in target language in

Hindi or Marathi in the Web Page Translation, users type the

URL of Web page. After this user selects target language and

gets translated version of Web page in target language. In

traditional Web Page Translation technique, Web page

interface is translated into target language and then translated

target language Web page is stored on the Web Server. So

whenever the Client requests the Server for Web page in

target language like Hindi or Marathi, corresponding

translated Web page is selected & sent back in response to

Client. The original English Web pages are translated into

languages in which Website is providing access to Clients.

But if some change has made in any original Web page then

change should be performed in all translated Web pages. If

change performed in original Web page is not updated

properly in all corresponding translated Web pages then

incorrect information gets displayed to Client.

The proposed solution is based on translating the interfaces of

commercial Web pages stored on the Web Server in the target

language on the fly. Proposed method solves the problem of

Web Page Translation since only original English Web pages

are stored on the Web Server. If Client requests Web page in

target language Hindi or Marathi, then original Web page is

dynamically translated into corresponding target language.

The developed Web Page Localisation software has several

characteristics. First, it provides safe, quick and cost effective

method for converting the existing Web pages. Second, The

Web pages can be localised into any language –Indian

languages Hindi and Marathi. The “translation on the fly”

methodology used by Web Page Localisation results in

significant reduction of the space required for storing the

translated Web pages in different languages on the Web

Server and continuing the stability of the original Web pages

and reducing complexity for updating.

2. RELATED WORK
The major contributors in the area of localisation in India are

C-DAC (Center for Development of Advanced Computing),

NCST (National Center for Software Technology) and

Indictrans Team. The applications they have localised are

Indian Railways Reservation Charts, Mahanagar Telephone

Nigams and Bilingual Telephone Directories. The C-DAC has

developed the localised Unicode version of the existing online

„Web based Railway Enquiry System‟ hosted at

www.trainenquiry.com and its related application modules.

Indictrans has done the conversion of live data and file-

journey-management database from nonunicode to Unicode

standard as well as localised the voter list search engine for

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

7

Chief Electoral Officer of Maharashtra. FACT Financial

accounting package is available in Hindi from Vedika

Software. Yudit is the localised editor for Hindi, Marathi and

Gujarati. Inputbhaaratii has developed several applications

for inputting indic scripts for web based applications[4].

Multilingual User Interface software is developed by IIT,

Chennai. Starvos Kokkotos has proposed architecture for

development of internationalized software called ISDA-i [5],

which is highly modular design and costly for implementation

as it requires to built up different libraries and configuration

files. Terence Parr [6] had proposed XML based string

template for localisation of strings and other data types like

currency, date, time etc. using locale. N. Anbarasan [7]

detailed on localisation process for web in Indian languages

and several issues related with localisation process. Cardenosa

J [8] proposed approach for localisation of software. Our

method describes how to modify Apache http core module to

support on the fly localisation for better response time of the

system.

3. SYSTEM ARCHITECTURE AND

IMPLEMENTATION
Following figure (Figure 1.) shows the overall architecture of

system.

Figure 1. System Architecture

3.1 Configuration of Apache Server
To develop Web Page Localisation it is necessary to first

configure Apache 2.0 HTTP Server. The Apache Web Server

is currently the most popular Web Server, according to a Net

Craft Survey. Since Apache is an "open source" project, so

any one can have access to Apache code source, and anyone

can write its own modules to suits one needs. For translating

the Web pages into target language on the fly, writing &

loading own module is required in Web page interface

Localisation[11][12]. Since Apache is open source project so

writing own module & loading it is possible. For that purpose,

first Apache needs to be configured [13][14].

The configuration for Apache Server is located in a file called

httpd.conf, which is usually located in conf directory. The

httpd.conf file contains the main Server configuration

information. The basic behavior of the Server is contained in

this file, such as how it runs, what port it listens to, and

information on how to find other configuration files. This file

consists of configuration directives, which allows developers

to configure Apache Web Server according to needs. The

httpd core is responsible for reading and parsing the

httpd.conf configuration file.

We have configured DocumentRoot, ServerRoot and

DirectoryIndex configuration directives in configuration file.

DocumentRoot sets the directory from which httpd will serve

files to the application. It provides the path where the Web

pages of Website are stored on the Apache Web Server.

ServerRoot sets the absolute path to Server directory. This

directive tells the Server where to find all the resources and

configuration files. Directory Index provides Web pages to

which users can view[13][4].

3.2 Loading of Additional Module to

Extend the Functionality of Apache Server
At the high level, the Apache Server architecture is composed

of a core set of services that implement the most basic

functionality of a Web Server and a set of standard modules

that actually service the phases of handling an HTTP request.

The Server core accepts a HTTP request and implicitly

invokes the appropriate handlers, sequentially, in the

appropriate order, to service the request. Apache modules

actually implement the different phases of handling the

request. The role of the modules is to extend the functionality

of the Apache Web Server.

Apache permits loading of modules when they are needed. A

handler is for Apache the action that must be performed in

some phase of servicing a request. Modules define handlers

and a module might specify handlers for one, many or none of

the phases of a request. Handlers are the part of the module

that is called when the processing of the request enters the

phase for which the handler is defined. Handler generates the

response sent back to Client. Apache's modular structure has

simplified the way that functionality is added to the Server. Its

generalized Application Programmer's Interface greatly

simplifies the process of adding new or enhancing existing

functionality. Many of these modules are so useful that they

are included on a default Server configuration.

In Web page interface Localisation, we have developed our

own module for accessing response data posted by Server as

well as checking for target language. The module that is

coded by developers is dynamically loaded into the Apache

Web Server by using configuration directive “LoadModule”.

The LoadModule directive links in the object file or library

filename and adds the module structure named module to the

list of active modules. We have loaded our own

replace_module as “LoadModule replace_module

modules/mod_replace.so” [14].

3.3 Access Response Data Posted by

Server
In Web page interface Localisation for translating Web pages

into target language on the fly, it is required to access

response data, which Server sent as response to Client for

request. We have accessed response data with the help of

output filters. A filter is process that is applied to data that is

sent or received by the Server. Data sent by Clients to the

Server is processed by input filter and data sent by Server to

Clients is processed by output filter.

When the Apache developers first began talking about Apache

2.0, one of the major goals was for one module to be able to

modify the output of another. This is possible with the help of

filters. Filters operate using a "chaining" mechanism. The

filters are chained together into a sequence. When output is

generated, it is passed through each of the filters on this chain,

until it reaches the end (or "bottom") and is placed onto the

network.

The top of the chain, the code generating the output, is

typically called a "content generator." The content generator's

output is fed into the filter chain using the standard Apache

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

8

output mechanisms: ap_rputs(), ap_rprintf(), ap_rwrite(), etc.

Each filter is defined by a callback. This callback takes the

output from the previous filter (or the content generator if

there is no previous filter), operates on it, and passes the result

to the next filter in the chain. This pass-off is performed using

the ap_fc_* functions, such as ap_fc_puts(), ap_fc_printf(),

ap_fc_write(), etc . When content generation is complete, the

system will pass an "end of stream" marker into the filter

chain. The filters will use this to flush out any internal state.

In Apache filter terminology; each chunk is stored in a bucket,

and lists of buckets form brigades. Lists of brigades can then

create a Web document. Filters operate on one brigade at a

time, and are called upon repeatedly until the entire document

has been processed. This allows the Server to stream

information to the Client. With the output filters, the content

generator started with nothing, generated the base content, and

passed that content down the filter stack to be modified; at the

bottom of the filter stack, the data is sent to the network and

an empty brigade is returned back up the stack. Apache filters

are called as many times as necessary to process all of the data

produced by the handler. An output filter is given a bucket

brigade, does whatever it does, and hands a new brigade (or

brigades) down to the next filter in the output filter stack. To

be used at all, a filter must first be registered. Before a filter

can be enabled for a given request, it must be registered with

the Server. This is done using the ap_register_output_filter

function. This function is invoked with four arguments: the

filter name, the filter function pointer and the filter type, such

as ap_register_output_filter (const char* name,

ap_out_filter_func filter_func, ap_init_filter_func filter_init,

ap_filter_type ftype) where name is the name to attach to filter

function filter_func is the filter function to name filter_init is

the function to call before the filter handlers are invoked

ftype is the type of filter function either

 AP_FTYPE_RESOURCE, AP_FTYPE_CONTET_SET()

This function type is used for filter callbacks. It will be passed

a pointer to "this" filter, and a "bucket" containing the content

to be filtered. In filter→ ctx, the callback will find its context.

This context is provided, so that it installed multiple times,

each receiving its own per-install context pointer

[11].Callbacks are associated with a filter definition, which is

specified by name. If the initialization function argument

passed to the registration functions is non-NULL, it will be

called if and only if the filter is in the input or output filter

chains and before any data is generated to allow the filter to

prepare for processing.

The *bucket structure (and all those referenced by →next and

→prev) should be considered "const". The filter is allowed to

modify the next/prev to insert/remove/replace elements in the

bucket list, but the types and values of the individual buckets

should not be altered [5].

After this registration is performed, then a filter may be added

into the filter chain by using ap_add_output_filter(). The filter

may beap_add_output_filter (const char* name, void *ctx,

request_rec *r, conn_rec *c) where name is the name of filter

to add, ctx is the context data to add in filter , r is the request

data to add filter for configuration file, c is the connection to

add this filter. Filters are added in a FIFO manner. The first

filter added would be the first filter called. Associating a

request with a filter is done when adding the filter to the filter

stack. It is also possible to insert the filter automatically by

using the AddOutputFilter or SetOutputFilter directives.

AddOutputFilter Directive maps filename extensions to the

filters that will process responses from the Server as

 AddOutputFilter filter [; filter...] extension [extension]

If more than one filter is specified, semicolons in the order in

which they should process the content must separate them.

Both the filter and extension arguments are case-insensitive,

and the extension may be specified with or without a leading

dot. The AddOutputFilter directive maps the filename

extension to the filters, which will process responses from the

Server before they are sent to the Client. We have added

AddOutputFilter REPLACE .html. After registration &

addition of output filter, we have accessed data by calling

apr_bucket_read() function. The brigade serves to enable

flexible and efficient manipulation of data, and is the unit that

gets passed to and from your filter. In Apache filter

terminology; each chunk is stored in a bucket, and lists of

buckets form brigades. So for each brigade, read bucket data

by using apr_bucket_read(). Implementation has shown in the

following flowchart figure.2.

Figure 2. Implementation Flowchart

3.4 Checking Target Language
In Web page interface Localisation for translating Web pages

into target language on the fly, it is required to access

“Accept- Language” header, which Client sent as target

language for request. The request_rec structure is used to hold

information about a current request between the Web Server

and a Client. The request_rec structure is key to Apache's

processing of Client requests. A pointer to a request_req

structure is passed to all phase handlers and many API

routines[14].

The request_rec structure describes a particular output filter

by using “AddOutputFilter” directive in behalf of a Client. In

most cases, each connection to the Client generates only one

request_rec structure. The request_rec contains pointers to a

resource pool, which will be cleared when the Server is

finished handling the request; to structures containing per-

Server and per-connection information, and most importantly,

information on the request itself.

The most important such information is a small set of

character strings describing attributes of the object being

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

9

requested, including its URI, filename, content-type and

content-encoding (these being filled in by the translation and

type-check handlers which handle the request, respectively).

Other commonly used data items are tables giving the MIME

headers on the Client's original request, MIME headers to be

sent back with the response. These tables are manipulated

using the table_get and table_set routines.

The request_rec structure contains information about

incoming HTTP headers in the form of table as table

*headers_in. This table contains a key/value pair for every

field in the request header. Some of the fields are also

represented in other ways, such as the Range field, but all of

the original request header fields are stored in this table in

their raw form [13]. We have accessed “Accept-Language”

header with the help of apr_table_get() function from

request_rec structure for this table.

3.5 Parsing and Translating Response Data
The response from the Web Server to an HTTP request

contains a header and usually the actual response. The header

contains status information and information on the resource.

We have first accessed actual response data and then we

parsed text strings that need replacing in the response data

[16]. The text strings are then replaced with corresponding

target language strings if available in dictionary otherwise

only original strings are sent in response data. We have

created a dictionary of 300 multilingual (English-Hindi-

Marathi) labels of commercial web based interactive

applications.

4. EXPERIMENTATION
We have developed Web page interface Localisation for

translating existing Web pages into Devanagari language on

the fly. This software have been tested and verified for some

Web pages for target language Devanagari.

Following are the details of modules incorporated for

translation into target language.

apr_bucket_read(): To obtain response data in string from

bucket in order to parse and translate data into corresponding

target language.

APR_BRIGADE_FOREACH(): To obtain each bucket from

brigade in order to perform operations on each bucket.

apr_get_table(): To obtain the value of “Accept-Language”

header i.e. to obtain target language.

StoreDict(): To store corresponding target language strings to

English strings in dictionary.

ParseHtml(): To parse response HTML data in order to

retrieve strings that are required to be converted. These strings

are then passed to StringConvert (). Thus response data is

translated into corresponding target language.

StringConvert(): To search target language string for English

string in order to return target language string to ParseHtml().

During experimentation, we simultaneously observed

translation of Web pages for target languages Hindi and

Marathi.

5. RESULTS AND FINDINGS
Our implementation is for the domain specific applications. It

is found that there are about 300 hundred labels which are

commonly used. We have preferred memory based translation

using translation memory. The database is created by using

the XML. Firstly, the dictionary is prepared for these labels

using hash function with chaining where the labels hashed to

the same location are chained with the link list. Then it is

converted into XML database. As the dictionary size is too

small and hash functions provide direct mapping the recall is

100 percent [15]. Web page interface localisation is the path-

breaking solution for language localisation of the web pages,

which provides effective user-friendly interface by translating

the web pages stored on the web server to the target language

on the fly. Here we have shown the output of web page

interface into Hindi and Marathi. We have carried out our

experimentation for seven interactive websites related with

the banking and job search portals. One example from

experimentation is shown in figure 3.

Figure 3. Web Page Interface in Marathi

6. CONCLUSION
We proposed efficient Web page interface localisation method

for translating existing Web pages into any target language on

the fly. Web page interface localisation is the proposed

solution for the growing demand of non-English language

interface for the Web pages. If someone has existing Web

pages, or is developing a separate site for a target market,

Web page interface Localisation is essential to preserve and

convey the right message to target audience e.g. online

banking, online shopping organizations. The results of

experimentation show that the software works well in the

sense that the existing Web pages are dynamically translated

into target languages like Hindi and Marathi.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.4, March 2011

10

7. ACKNOWLEDGMENTS
We express our gratitude to Prof. Abhyankar H K Former

Director of Vishwakarma Institute of Technology, for his

continuous encouragement to carry out the research in the

area of localisation. We also thank to Jayshree, Sanjesh,

Vaishali and Viren for contributing the research work in the

area of localisation at our institute. We also thank Disha,

Ruchi, and Jyoti Dhore for their help in creating the

multilingual dictionary. Special thanks to M R Dube,

Assistant Professor who has strengthened the linguistic of this

paper.

8. REFERENCES
[1] Frost & Sullivan, Local Language Information

Technology Market in India, TDIL, Department of IT,

Ministry of Communications and Information

Technology, India, 2003.

[2] John Hutchins, University of East Anglia, Norwich ,

“Current commercial machine translation systems and

computer-based translation tools: system types and their

uses” http://ourworld.compuserve/homepages

[3] R. Sharma, “Development of a bilingual electronic

glossary for automated assistance in user interface

localisation”, TIDL,2002.

[4] J. Shah, S. Hajare, “Localisation for e-governance”,

Journal of Language Technology, 2004, pp. 154-160.

[5] Stavros kokkotos and constantine spyropoulos, An

architecture for designing internationalized software,"

Software Technology and Engineering Practice, pp. 13-

1,July,1997

[6] T. Parr, Web application internationalization and

localisation in action, in 6th International conference on

Web engineering, vol. 263, pp. 64 70, ACM New York,

NY,USA,2006

[7] N. Anbarasan, Software localisation process and issues,"

Tamil Internet, 2003. .J. Cardenosa, C. Gallardo, and A.

Martin, Internationalization and localisation after system

development: A practical case, International Journal of

Information Technologies and Knowledge, vol. Vol.1,

pp. 121-127, 2007.

[8] Cardenosa, J., Gallardo, C., and Martin, A.

Internationalization and localisation after system

development : A practical case. International Journal of

Information Technologies and knowledge. Vol 1, 121-

127, 2007

[9] D. Chakrabarti, D. Narayan, P. Pandey, P.

Bhattacharyya, “Experiences in building the Indo

Wordnet- A wordnet for Hindi”, In, Proceedings of the

First Global Word Net Conference. Central Institute of

Indian Languages, Mysore, 2002, pp. 57-64.

[10] S. Dave, J. Parikh, P. Bhattacharyya, “Interlingua-based

English–Hindi Machine Translation and Language

Divergence”, Journal of Machine Translation, Volume

17, September, 2002.

[11] The Apache HTTP Server Project Fielding, R.T; Kaiser,

G: Volume 1, Issue 4, July-Aug 1997 pp: 88-90.

[12] Apache HTTP Server Documentation

httpd.apache.org/docs, httpd.apache.org/docs-

2.0/modules

[13] www.onlamp.com (Writing Filters in Apache, Writing

Output Filters in Apache, Writing Input Filters in

Apache)

[14] Design considerations for the Apache Server API, Robert

Thau, Fifth International World Wide Web Conference,

1996, Paris.

[15] M L Dhore, Jayshri Khachane ,M.R. Dube, A. M.

Kulkarni , “Web Page Localisation for Sites Hosted on

Linux”, IAENG International Conference on Internet

Computing & Web Services, Hong Kong, March 2007

[16] M. L. Dhore,A. K. Dhote, “Automating the HTML

Localisation Process: An Implementation Using a Java

Internalisation Approach,”, 11th Annual Localisation and

Internationalisation Conference organized by LRC, 2006

http://www.localisation.ie.

