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ABSTRACT

The objective of this work is to compare performances of
three training functions (TRAINBR, TRAINCGB and
TRAINCGF) used for training neural network for predicting
the value of the specific heat capacity of working fluid, LiBr-
H,0, used in vapour absorption refrigeration system. The
comparison is shown on the basis of percentage relative error,
coefficient of multiple determination R-square, root mean
square error and sum of the square due to error.

Keywords: ANN (Artificial Neural Network), VAR
(Vapour Absorption Refrigeration System),R? (Coefficient of
multiple determination), LiBr-H,0.

1. INTRODUCTION

Effective utilization of energy is very necessary in this decade
due to rapidly increasing demand of energy [1-4]. Therefore,
it is necessary that computation should be up to the highest
accuracy for appropriate analysis of the performance of
thermodynamic system [5-7]. But in modern technology era,
computational intelligence is attracting researchers in
engineering for solving various engineering calculation of non
linear nature. Artificial neural network is vital tool for
analyzing computational intelligence [9-17]. The success of
modeling a neural network depends on the selection of the
training function. In this work, authors are comparing the
performance of three training functions TRAINBR,
TRAINCGB and TRAINCGF on the basis of percentage
relative error and coefficient of multiple determination R-
square.

2. ARCHITECTURE OF
NETWORK

Among many types of neural networks, authors have designed
the neural network as shown in the figure 1. In the neural
network the simple processing element is called neuron. The
neural network is structured with 10 neurons in input and 1
neuron in output layer. Our designed network is the feed
forward type network which is powered by back propagation
algorithm [9-17]. This algorithm is used by many researchers
because of its successful applicability in much complex
engineering problems. The activation function, log sigmoid, is

NEURAL

used in the hidden layer mentioned in equation (1) and tansig
function is used in output layer mentioned in equation (2).

2.1 Methodology

The two inputs parameters are vapor quality (X in percentage
fraction) and temperature (t in °C) and one output parameter is
specific heat capacity. The pattern set of training data and
testing data is mentioned in table 1 [8].These analyses are
performed in the MATLAB2008a educational environment.
The range of temperature is 10-190 °C and the range of
vapour quality is 5-75 %. Selected data is given to the
network during the training session with one particular
training function. After completion of the training, some set of
data of experimental results is used to test the network for
validating the network. Test data is not used in training
session. The normalization is important due to the nature of
log sigmoid training function [9-17]. Range of the data after
normalization is [0.15 1].

3. RESULTS AND ANALYSIS

Firstly, the authors have trained the neural network using
three training functions named TRAINBR, TRAINCBG and
TRAINCGF and this training is continued up till the least
value of mse (mean square error) at definite value of epochs
which has been represented in figure 1, 2 and 3 respectively
are attained. Table 2 shows the comparison between the
values from the experiment [8] to the values obtained from the
networks using three different training functions. In table 3,
authors have calculated the percentage relative error of the
values obtained from the neural network test data session, for
validating the training functions [9-17]. The validation of the
training function is also based on the value of coefficient of
multiple determinations R-square [9-17]. Function TRAINBR
has achieved the value of R? almost closest to unity as shown
in figure 4, while TRAINCBG and TRAINCGF have
achieved the values 0.9937 and 0.9626 respectively with
inferior performance than TRAINBR as shown in Figure 5
and 6. Moreover, the values of SSME, Adjusted R? and
RSME are presented in Table 4. After analyzing all results
TRAINBR function has shown better performance as
compared to other two training functions which have been
taken in this modeling.
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Table 1: Experimental data used for modeling of artficial neural network.

X% Vapour Quality

t(°C)
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3.845

3.563

3.304

3.065

2.844

2.640

2.455

2.291

2.123

1.961

1.797

20

3.852

3.579

3.329

3.097

2.882

2.685

2.506

2.347

2.208

2.077

1.925

1.764

30

3.865

3.602

3.360

3.135

2.926

2.734

2.559

2.404

2.267

2.140

2.01

1.860

40

3.873

3.616

3.379

3.158

2.952

2.762

2.589

2.434

2.297

2.170

2.040

1.896

50 [3.881[3.628(3.396 [3.179[2.976

2.788]2.616(2.462[2.324 [2.196[2.065[1.923|1.768

60 |3.8873.6383.408 3.1932.993

2.803[2.632[2.4772.341 [2.208[2.077[1.936|1.782

70 |3.8923.64313.412 3.1942.991

2.801[2.6272.4682.325 [2.190[2.055]1.908|1.751

80 [3.904[3.659(3.432 |3.218/3.018

2.831]2.659(2.502[2.360 [2.223[2.089(1.948(1.790

90 [3.914[3.6673.438 |3.221|3.019

2.829]2.653(2.4932.348 [2.212[2.074[1.927(1.769

100 [3.9283.682(3.452 3.236|3.032

2.842]2.666|2.5062.358 [2.221[2.084]1.936|1.780

110 [3.9453.696(3.466 3.2493.051

2.856(2.678[2.519[2.370 [2.233[2.095[1.9491.792|1.629

120 [3.9643.717(3.487 3.272[3.066

2.879[2.7032.543[2.396 [2.261[2.120(1.9751.8241.660

130 [3.982/3.731[3.508 |3.280(3.087

2.897]2.720|2.556 2.405 [2.256[2.115]1.968|1.8171.654

140 14.000/3.750(3.515 [3.294/3.086

2.8932.714|2.5522.403 [2.263[2.124]1.980(1.829|1.668

150 14.023[3.770(3.533 3.3093.101

2.905[2.7262.5622.412 [2.273[2.135]1.991|1.8411.684

160 [4.0513.792(3.554 [3.329]3.119

2.92412.74312.5792.431 [2.294[2.1582.016(1.867|1.717

170 14.077[3.817|3.572 3.341]3.128

2.930[2.747|2.5832.432 [2.292[2.1562.015|1.8681.715

180 }4.1113.842|3.595 3.3593.143

2.94212.758|2.5922.442 [2.303[2.168[2.027|1.883|1.732

190 14.14913.876|3.619 3.3813.158

2.955[2.770(2.603[2.452 [2.314[2.179]2.040]1.8981.749
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Figure 1 : Architecture of Neural Network
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Figure 3: Training behavior of function
TRAINCBG during training
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Figure 2: Training behavior of function TRAINBR during training.

Best Validation Performance is 0.0019457 at epoch 18
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Figure 4: Training behavior of function
TRAINCGF during training
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Table 2: Comparative values of specific heat capacity by two ANN training functions with the experimental values.

X Temperature Values from Values from Values from Values from
wt%) | (°C) Experiment[8] TRAINBR TRAINCBG TRAINCGF
5 80 3.904 3.9066 3.8492 3.7573

10 130 3.731 3.7341 3.7716 3.7455

15 140 3.515 3.51 3.5277 3.5329

20 150 3.309 3.3101 3.2403 3.406

25 170 3.128 3.1335 3.0457 2.9141

30 90 2.829 2.8331 2.8523 2.6109

35 20 2.506 2.5193 2.6162 2.4191

40 100 2.468 2.4843 2.4697 2.5466

45 60 2.341 2.3316 2.2338 2.4948

50 100 2.221 2.2205 2.1832 2.4601

55 90 2.074 2.0796 2.1081 2.2757

60 110 1.949 1.9495 2.0274 1.9508

65 120 1.824 1.8058 1.8257 1.6069

70 150 1.684 1.6823 1.6339 1.5166

75 160 1.563 1.5641 1.543 1.511

Table 3: Comparative % relative error of specific heat capacity by two ANN training functions with the experimental values.

X Temperature | Values from % Relative Error | % Relative Error | % Relative Error
wt%) | (°C) Experiment[8] (TRAINBR) (TRAINCBG) (TRAINCGF)
5 80 3.904 -0.0666 +1.4037 +3.7577
10 130 3.731 -0.0831 -1.0881 -0.0389
15 140 3.515 +0.1422 -0.3613 -0.5093
20 150 3.309 -0.0332 +2.0761 -2.9314
25 170 3.128 -0.1758 +2.6310 +6.8382
30 90 2.829 -0.1449 -0.8236 +7.7094
35 20 2.506 -0.5307 -4.3975 +3.4677
40 100 2.468 -0.6604 -0.0689 -3.1847
45 60 2.341 +0.4015 +4.5792 -6.5698
50 100 2.221 +0.0225 +1.7019 -10.7694
55 90 2.074 -0.2700 -1.6441 -9.7252
60 110 1.949 -0.0257 -4.0226 -0.0924
65 120 1.824 +0.9978 -0.0932 +11.9024
70 150 1.684 +0.1010 +2.9751 +9.9406
75 160 1.563 -0.07038 +1.2795 +3.3269
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Figure 5: Regression Analysis for TRAINBR. Figure 6: Regression Analysis for TRAINCBG.
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Figure 7: Regression Analysis for TRAINCGF.

Table 4: List of various errors obtained from training function test with the trained network.

Training Function SSME Adjusted R RMSE
TRAINBR 0.0008295 0.9999 0.008314
TRAINCBG 0.05015 0.9927 0.06465

TRAINCGF 0.3067 0.9564 0.1599

4. CONCLUSION & FUTURE SCOPE

The training function TRAINBR is the most suitable training
function with the experimental data of specific heat capacity
among the three functions which has been chosen for the
analyses. This work can help researchers in the selection of
training function during the modeling of the neural network
for any other energy or exergy analyses.
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