
International Journal of Computer Applications (0975 – 8887)
Volume 18– No.7, March 2011

1

Assessing Software Reliability using Inter Failures
Time Data

Dr. R Satya Prasad
Associate Prof,

Dept. of Computer Science &
Eng.,

Acharya Nagarjuna University

Bandla Srinivasa Rao
Associate Prof,

Dept. of Computer Science

VRS & YRN College

Dr. R.R. L Kantham
Professor,

Dept. of Statics
Acharyan Nagarjuna University

ABSTRACT

For critical business applications continuous availability is a
requirement. Software reliability is an important component
of continuous application availability. A single software
defect can cause a system failure. To avoid these failures,
reliable software is required. Due to schedule pressure,
resource limitations, and unrealistic requirements in software
development process, developing reliable software is difficult.

To monitor software process variations and to improve
reliability, the statistical Process Control (SPC) can be applied
to software development process. SPC is a methodology that
aims to provide process control in statistical terms. Control
charts are the most common tools for determining whether a
software process is under statistically control or not. In this
paper we proposed a control mechanism, based on time
between failures observations using exponential distribution,

which is based on Non Homogeneous Poisson Process
(NHPP).

General Terms

Control Chart, SQC, Probability limits, pdf, cdf, Time
between failures

Keywords

Software reliability, Statistical Process Control (SPC), NHPP,

MLE, Probability limits, Exponential Distribution

1. INTRODUCTION
Software reliability is the probability of failure free operation

of a software in a specified environment during specified
duration [Musa, 1998]. Statistical Process Control (SPC) is
known to be a powerful tool to improve process, to enhance
quality and productivity [Florac, 1999]. One of the possible
measures for software reliability is the use of mean time
between failures (MTBF) data. As a preliminary study for
applying SPC, we tried on time between failures data [Xie,
2002] to predict software reliability using some control chart
mechanism [Florac, 1999].

2. BACK GROUND THEORY
This section presents the theory that underlines Goel-
Okumoto NHPP exponential model, and Maximum
Likelihood Estimation to time domain, for ungrouped data. If

„t‟ is a continuous random variable with , ,

….) where , , …. are k unknown constant

parameters which need to be estimated, and .
Where, the mathematical relationship between the and

 is given by:

.

Let „a‟ denote the expected number of faults that would be
detected given infinite testing time in case of finite failure

NHPP Models. Then the mean value function can be written
as:

Where F(t) is a cumulative distribution function. The failure
intensity function is given by (Swapna et al.,1998):

2.1. NHPP Model
The Non Homogeneous Poisson Process (NHPP) based

software reliability growth models are proved to be quite
successful in practical software reliability engineering (Musa
et al., 1987). The main issue in the NHPP model is to
determine an appropriate mean value function to denote the
expected number of failures experienced up to a certain time
point. The parameters can be estimated by using Maximum
Likelihood Estimate (MLE) based on various assumptions.
Like each time a failure occurs, the fault that caused it can be

immediately removed and no new faults are introduced, which
is usually called perfect debugging. (Ohba, 1984, Pham,
1993). The present paper deals with Goel-Okumoto model
applied on Inter failure times data (Xie et al., 2002) which is
of time domain.

Let { be the cumulative number of software

failures by time „t‟. m(t) is the mean value function,
representing the expected number of software failures by time
„t‟. is failure intensity function, which is proportional to

the residual fault content [Goel-Okumoto, 1979]. Thus

) a>0, b>0,t>=0 (2.1.1)

 = b() (2.1.2)

Here „a’ denotes the initial fault contained in a program and

‘b’ represents the fault detection rate. In software reliability,
the initial number of faults and faults detection rate are always
unknown.

3. PARAMETER ESTIMATION USING

MAXIMUM LIKELIHOOD

ESTIMATION
Parameter estimation is of primary importance in software

reliability prediction. Once the analytical solution for is

known for a given model, the parameter in the solution needs
to be determined. Parameter estimation is achieved by
applying a technique of Maximum Likelihood Estimate
(MLE) using Goel-Okumoto model. The MLE is consistent
and asymptotically normally distributed as the sample size
increases (Zhao, 1996). To estimate „a‟ and „b‟, for a sample
of n units, first obtain the likelihood function (L):

 (3.1)

International Journal of Computer Applications (0975 – 8887)
Volume 18– No.7, March 2011

2

To solve equation (3.1), we take the logarithm of both sides

 (3.2)

In order to estimate the parameters „a’ and „b’, we can take
the derivative of the above equation (3.2) with respect to „a’
and „b’, and equating these derivatives to zero and solving the
resulting equations for „a’ and „b’, we find the estimates as

follows.

 i.e. ,

 (3.3)

 (3.4)

 (3.5)

The value of „b‟ in the above equation can be obtained using
Newton Raphson method

4. ESTIMATION BASED ON TIME

BETWEEN FAILURES DATA

Based on the time between failures data give in Table-1, we
compute the software failure process through mean value
control chart. We use cumulative time between failures data
for software reliability monitoring through SPC. The
parameters obtained for Goel-Okumoto model applied on the
given time domain data are as follows:

a = 31.698171, b = 0.003962

„ a ‟ and „b ‟ are Maximum Likelihood Estimates (MLEs) of

parameters and the values can be computed using numerical
iterative method for the given time between failures data
shown in Table 1. Using values of „a‟ and „b‟ we can
compute . Now equate the pdf of m(t) to 0.00135,

0.99865, and 0.5 and the respective control limits are given by

These limits are convert at and are

given by

, ,

They are used to find whether the software process is in
control or not by placing the points in Mean value chart
shown in figure-1. A point below the control limit

indicates an alarming signal. A point above the control

limit indicates better quality. If the points are falling

within the control limits it indicates the software process is in
stable (MacGregor and Kourti). The values of control limits
are as shown in Table-2.

Table-1: Time between failures data (Xie et al., 2002)

Failure
No.

Time between
 failures

Failure
No.

Time between
failures

Failure
No.

Time between
 failures

Failure
No.

Time between
 failures

Failure
No.

Time between
 failures

1 30.02 7 5.15 13 3.39 19 1.92 25 81.07

2 1.44 8 3.83 14 9.11 20 4.13 26 2.27

3 22.47 9 21 15 2.18 21 70.47 27 15.63

4 1.36 10 12.97 16 15.53 22 17.07 28 120.78

5 3.43 11 0.47 17 25.72 23 3.99 29 30.81

6 13.2 12 6.23 18 2.79 24 176.06 30 34.19

Table-2: Successive Difference of mean value function

Failure
No

Cumulative
failures

m(t)

m(t)

Successive
Difference

Failure
No

Cumulative
failures

m(t)

m(t)

Successive
Difference

1 30.02 3.554577564 0.160109911 16 151.78 14.32535611 1.683122175

2 31.46 3.714687474 2.383586679 17 177.5 16.00847828 0.172478506

3 53.93 6.098274153 0.137569469 18 180.29 13.18095679 0.117592238

4 55.29 6.235843622 0.34368381 19 182.21 16.298549.2 0.249934515

5 58.72 6.579527432 1.2799.4674 20 186.34 16.54848354 3.690660937

6 71.92 7.859432106 0.481483904 21 256.81 20.23914448 0.74936348

7 77.07 8.34091601 0.351758112 22 273.88 20.98850796 0.167971248

8 80.9 8.692674122 1.836637975 23 277.87 21.15647921 5.293999998

9 101.9 10.5293121 1.060330131 24 453.93 26.4504792 1.441652925

10 114.87 11.58964223 0.037410054 25 535 27.89213213 0.034077054

11 115.34 11.62705223 0.489356342 26 537.27 27.92620918 0.226497314

12 121.57 12.11640862 0.261247815 27 552.9 28.1527065 1.348363376

13 124.96 12.37765644 0.684916199 28 673.68 29.50106987 0.252475261

14 134.07 13.06257264 0.160265529 29 704.49 29.75354513 0.246358013

15 136.25 13.22283817 1.10251794 30 738.68 29.99990315 ---------

5. CONTROL CHART
Control charts are sophisticated statistical data analysis tools,
which include upper and lower limits to detect any outliers.

They are frequently used in SPC analysis [Koutras et.al,
2007]. We used control chart mechanism to identify the

International Journal of Computer Applications (0975 – 8887)
Volume 18– No.7, March 2011

3

process variation by placing the successive difference of
cumulative mean values shown in table 2 on y axis and failure
number on x axis and the values of control limits at mean
value function are placed on Mean Value Chart, we obtained
Figure 1. The Mean Value Chart shows that the successive

differences of m(t) at 10th and 25th failure data has fallen
below which indicates the failure process is identified.

It is significantly early detection of failures using Mean Value
Chart. The software quality is determined by detecting
failures at an early stage. The remaining failure data shown in
Figure-1 is stable. No failure data fall outside . It does

not indicate any alarm signal.

Fig-1: Mean Value Chart

6. CONCLUSION
This mean value chart exemplifies that, the first out – of –
control situation is noticed at the 10th failure and the second at
25th failure with the corresponding successive difference of
mean values falling below the LCL. The assignable cause for
this is to be investigated and promoted. In comparison, the
time control chart for the same data given in Xie et a1 (2002)
reveal that an out - of - control for the first time above the
UCL occurred at 23rd failure. Since the data of the time-

control chart are inter-failure times, a point above UCL for
time-control chart is also a preferable criterion for the product.
The time control chart gives the first out - of - control signal
in a positive way, but at the 23rd failure. Hence, it is claimed
that the Mean Value Chart proposed by us detects out - of -
control in a positive way much earlier than the time-control
chart. Therefore, earlier detections are possible in failures
control chart

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support of Department of
Computer Science and Engineering, Acharya Nagarjuna
University for providing necessary facilities to carry out the
research work.

8. REFERENCES
[1] Florac, W.A., Carleton, A.D., “Measuring The Software

Process:” Addison-wesley Professional, Jul 1999

[2] Goel, A.L., Okumoto, K., 1979. Time-dependent error-

detection rate model for software reliability and other
performance measures. IEEE Trans. Reliab. R-28, 206-
211.

[3] Kimura, M., Yamada, S., Osaki, S., 1995. ”Statistical
Software reliability prediction and its applicability based
on mean time between failures”. Mathematical and

Computer Modelling,Volume 22, Issues 10-12, Pages
149-155.

[4] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007.
“Statistical process control using shewart control charts

with supplementary Runs rules” Springer Science
Business media 9:207-224.

[5] MacGregor, J.F., Kourti, T., 1995. “Statistical process
control of multivariate processes”. Control Engineering
Practice Volume 3, Issue 3, March 1995, Pages 403-414 .

[6] Musa, J.D, Software Reliability Engineering McGraw-
Hill, 1998

[7] Musa, J.D., Iannino, A., Okumoto, k., 1987. “Software

Reliability: Measurement Prediction Application”.
McGraw-Hill, New York.

[8] M.Xie, T.N. Goh, P.Ranjan, “Some effective control
chart procedures for reliability monitoring” , Elsevier,
Reliability engineering and System safety (2002).

[9] Ohba, M., 1984. “Software reliability analysis model”.
IBM J. Res. Develop. 28, 428-443.

[10] Pham. H., 2003. “Handbook of Reliability Engineering”,
Springer.

[11]Pham. H., 2006. “System software reliability”, Springer.

[12]Swapna S. Gokhale and Kishore S.Trivedi, 1998. “Log-

Logistic Software Reliability Growth Model”. The 3rd
IEEE International Symposium on High-Assurance
Systems Engineering. IEEE Computer Society.

UCL 31.676760282

CL 21.132114004

LCL 0.085469689

0.01000

0.04000

0.16000

0.64000

2.56000

10.24000

40.96000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Su
cc

es
iv

e
D

if
fe

re
n

ce
 o

f
m

(t
)

Failure Number

Mean Value Chart

