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ABSTRACT 
An assignment of integer numbers to the vertices of a given 

graph under certain conditions is referred to as a graph 

labeling. The assignment of labels from the set 

{0,1,2,...,2 1}q to the vertices of G  (with 

 ( )Gn V vertices and  ( )q E G  edges) such that, when 

each edge has assigned a label defined by the absolute 

difference of its end-points, the resulting edge labels are 

1,3 ,2 1q is referred to as an odd graceful labeling of the 

graph. In 2000, Kathiresan [13] used the notation ; n mP to 

denote the graph (spider graph) obtained by identifying the 

end points of m paths each one has length n , we use the 

notation mnC ; to denote the graph (closed spider) obtained 

by identifying the other end points of the graph ; n mP . In 

this article, we present three algorithms to show how to odd 

gracefully label the vertices and the edges of the following 

graphs;  2 1; ,  1 5,  2r mP r m , the closed spider mnC ; , 

and the graphs obtained by joining one or two paths mP to 

each vertex of the path nP .  

Keywords 
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1. INTRODUCTION 
Let G  is a finite simple graph, whose vertex set 

denoted  ( )GV , and the edge set denoted  ( )E G . The order of 

G  is the cardinality  ( )n V G  and the size of G is the 

cardinality  ( )q E G . We write  ( )uv E G   if there is an 

edge connecting the vertices  u and v  in G . A path graph 

nP ),...,,,( 321 nvvvv simply denotes the graph that 

consists of a single line. In other words, it is a sequence of 

n vertices such that from each of its vertices there is an 

edge to the next vertex in the sequence. The first vertex is 

called the start vertex and the last vertex is called the end 

vertex. Both of them are called end or terminal vertices of 

the path. The other vertices in the path are internal vertices.  

A cycle is a graph with an equal number of vertices and 

edges whose vertices can be placed around a circle so that 

two vertices are adjacent if and only if they appear 

consecutively along the circle. The cycle graph has 

m vertex is denoted mC . The graph ( , )G V E
 
consists of a 

set of vertices and a set of edges. If a nonnegative 

integer  ( )f u is assigned to each vertex u , then the vertices 

are said to be “labeled.” ( , )G V E  is itself a labeled graph 

if each edge e  is given the value ( ) ( ) ( )f e f u f v  where 

u and v are the endpoints of e . Clearly, in the absence of 

additional constraints, every graph can be labeled in 

infinitely many ways. Thus utilization of labeled graph 

models requires imposition of additional constraints which 

characterize the problem being investigated. 

Gnanajothi [11] introduced a certain labeled graph model 

known as the odd-graceful labeling. An odd graceful 

labeling of the graph G  with  ( )n V G vertices and 

 ( )q E G  edges is a one-to-one function  f of the vertex 

set  ( )V G into the set {0,1,2,...,2 1}q  with this property: 

if we define, for any edge  uv the function 

( ) ( ) ( )f uv f u f v  the resulting edge label 

are 1,3 ,2 1q .A graph is called odd graceful if it has an 

odd graceful labeling. When studying odd graceful labeling, 

we need only consider simple graphs without loops or 

parallel edges. A loop in a labeled graph would assume an 

edge label of 0. Parallel edges between a particular pair of 

vertices in labeled graph would always assume the same 

edge label, the edge labels be distinct in a graceful labeling. 

The odd graceful labeling problem is to find out whether a 

given graph is odd graceful, and if it is odd graceful, how to 

label the vertices. The common approach in proving the odd 

gracefulness of special classes of graphs is to either provide 

formulas for odd gracefully labeling the given graph, or 

construct desired labeling from combining the famous 

classes of odd graceful graphs.  

It is known that not every graph is odd graceful, for instance 

J. Gallian in his dynamic survey [17], he have collected 

everything on graph labeling, he observed that over 

thousand papers have been studied. In 1991, Gnanajothi 

[11] proved the following graphs are odd graceful:  ;n mP C if 

and only if m is even. In 2000, Kathiresan [13] used the 

notation ; n mP to denote the graph (spider graph) obtained by 

identifying the end points of m  paths each one has length 

n . The spider graph is a tree with one vertex of degree at 

least three called the center of spider and all others with 

degree at most two (see Fig. 1A). Thus, a star with m legs is 

a spider of m  legs. The length of a leg spider equals the 

number of vertices from the center to a vertex of degree one. 

The spider graph ; n mP consisted of one central vertex 

0v connected with m  number of paths 1nP of the same 

length.  In 1997 Eldergill [12] generalized Gnanajothi [11] 

result on stars by showing that the graph obtained by joining 

one end point from each of any odd number of paths of 

equal length is odd graceful graph. In 2002 Sekar [15] 

proved that the  graphs; ; n mP when 2n and m is odd, 

2; mP and 4; mP such that m ≥2, ; n mP  when n and m are 

even and n , m ≥4, 4 1;4 2 4 1;4,  ,  1r r r rP P r and all n-

polygonal snakes with n even are odd graceful. Sekar’s 

study have produced estimates of ; n mP but there are still 

http://en.wikipedia.org/wiki/Edge_%28graph_theory%29


 

 

36 

 

some graphs in the form of ; n mP  did not prove to be odd 

graceful up to date, this graphs are 3;mP for all 2,m

4 1;4 4 1;4 2 4 1;4 2, ,r r r r r rP P P and 4 1;4 2, 1r rP r   

In other words, Sekar proved the odd gracefulness of the 

graph ; n mP  if and only if, both of n and m are odd 

numbers, or both of n and m are even number or n is an 

even number and m is an odd number, but the unproved 

case appears when n is an odd number and m is an even 

number, which we tried to prove it in this paper. In 2009 

Moussa and Bader [16] have presented the algorithms that 

showed the graphs obtained by joining n pendant edges to 

each vertex of mC are odd graceful if and only if m is even. 

In 2010 Moussa [18] have presented the algorithms that 

showed the graph m nC P  is odd graceful if m is even.  

In this paper, we defined a new representation called the 

cycle representation denoted C -representation; it is similar 

to the -representation made by Kotzig [8]. Secondly, we 

introduced algorithms that show how to label the vertices 

and the edges odd gracefully in some graphs viz.: the graphs 

obtained by joining one or two paths mP  

),...,,,( 321 mvvvv  to each vertex of the path nP , the 

graphs 3; 5; 7; 9; 11;, , ,  and m m m m mP P P P P  for all m ≥2 and 

the closed spider graph mnC ; . Finally, the correctness of 

these algorithms was proved. The remainder of this paper is 

organized as follows. In section 2, we mentioned a nice set 

of applications related with the odd graceful labeling. In 

section 3, we gave some assumptions and definitions related 

with the odd graceful labeling and graphs.  Section 4 shows 

the assignment algorithms and contains the proofs of their 

correctness. Finally, section  is the conclusion of this 

research.  

2. THE APPLICATION RANGES 
The odd graceful labeling is one of the most widely used 

labeling methods of graphs. While the labeling of graphs is 

perceived to be a primarily theoretical subject in the field of 

graph theory and discrete mathematics, it serves as models 

in a wide range of applications.  

 The coding theory: The design of certain important 

classes of good non periodic codes for pulse radar and 

missile guidance is equivalent to labeling the complete 

graph in such a way that all the edge labels are distinct. The 

node labels then determine the time positions at which 

pulses are transmitted.  

 The x-ray crystallography: X-ray diffraction is one of 

the most powerful techniques for characterizing the 

structural properties of crystalline solids, in which a beam 

of X-rays strikes a crystal and diffracts into many specific 

directions. In some cases more than one structure has the 

same diffraction information. This problem is 

mathematically equivalent to determining all labeling of the 

appropriate graphs which produce a prespecified set of edge 

labels.  

 The communications network addressing: It might 

be useful to assign each user terminal a “node label,” 

subject to the constrait that all connecting “edges” 

(communication links) receive distinct labels. In this way, 

the numbers of any two communicating terminals 

automatically specify (by simple subtraction) the link label 

of the connecting path; and conversely, the path label 

uniquely specifies the pair of user terminals which it 

interconnects. 

The fields of graph labeling have a wide range of 

applications as we mentioned above; these applications are 

especially pervasive in channel assignment wireless 

networks and mobile computing [14]. For further 

information about other applications of labeled graphs, such 

applications include radar, circuit design, astronomy, data

base management, on automatic drilling machine, 

determining configurations of simple resistor networks,  and 

models for constraint programming over finite domains (see 

e.g., [1, 4, 5, 9 and 10]). Labeled graph also apply to other 

areas of mathematics (see e.g., [2, 6]).   

3. ASSUMPTIONS AND DEFINITIONS 

Definition 1 

A closed spider graph is a graph mnC ; with two vertices 0v  

and w of degree at least three called the end points of the 

closed spider and all others vertices with degree two (see 

Fig.1 B). The closed spider graph obtained from spider 

graph ; n mP has the center vertex 0v  by connecting all the 

vertices of degree one to an addition vertex w . The vertex 

set )( ;mnCV of the closed spider graph is the union of 

three sets, the set of the most left vertex 0 v , the set of the 

most right vertex w , and the set of all intermediate vertices 

in the paths 1 2
2 2 2 , ,..., m

n n nP P P . The total number of edges 

in mnC ;  is ( 1) q n m .  

Definition 2 

 : 1,2,3,4... 1,3,5,7.... .  The 

expression ( ) 2 -1i i describes the function of a 

variable  i , which is an integer, then this function relates 

each input,  i , with a single output, 2 -1.i   

                   (A)                        (B)   

                                                           Figure 1: The graph ; n mP and the graph mnC ;  

http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Diffraction
http://en.wikipedia.org/wiki/Integer
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Figure 2: The C-representation of the graphs ; n mP and mnC ;  

 

Definition 3 

We define C-representation of ; n mP and mnC ; as the 

following; the central vertex 0v is surrounded by 1n  

nonrealistic cycles  Cm , these mean that, for any two 

vertices  ( )
j

iiv V P  and  ( )j
s sv V P  in different legs iP  and

sP respectively are nonadjacent vertices. In other words, 

each cycle  jC , 1,2..., 1j n  has a vertex set 

1 2 { , ,..., }m
j j j jV v v v and has an empty edge set. Let the 

vertex set of the path iP  is demonstrated by listing them in 

the order 0 1 2 1 { } { , ,..., }i i i i
nV v v v v , and 

j
iv  be the 

intersection point between the path iP  and the cycle  jC  

where 1,2...i m  and 1,2..., 1j n  respectively (see Figure 

2). C-representation of mnC ; is defined similarly; there are

1n  nonrealistic cycles  mC draw between the two 

vertices 0 v an w . Let the vertex set of the path iP is 

demonstrated by listing them in the order 

0 1 2 1 { } { , ,..., } { }i i i i
j nV v v v v w , and 

j
iv  be the 

intersection point between the path iP and the cycle  jC

where 1,2...i m  and 1,2..., 1j n , (see Figure 2). For all 

1,2..., 1j n , we call the cycle  jC  is odd cycle if j  is odd 

and  jC is even cycle if j  is even.  

Definition 5  
We use the notation n mP P  to denote the graph obtained by 

joining one end point of n internally disjoint path mP  each 

of length m to each vertex of the path nP , see figure7A. 

The graph n mP P  has a vertex set with cardinality ( 1)n m  

and an edge set with cardinality  2 ( 1)q nm n . The 

graph obtained by adding two leaves to each vertex of the 

path nP  then adding a path mP  to each leaf, denoted 

mn PKP  )( 2 , see figure 8A. The graph 

mn PKP  )( 2 has a vertex set with cardinality

2 3mn n  and an edge set with cardinality 2 3 1q nm n . 

4. VARIATION OF ODD GRACEFUL 

LABELING OF ; n mP GRAPHS  

4.1  The graph 4 1;m, 1,2,3rP r (See Figure3) 

The graph 4 1;mrP has a vertex set 4 1;m ( )rV P with 

cardinality equals (4 2) 1m r and an edge set

4 1;( )r mE P with cardinality equals  (4 2)q m r . For 

any  j , let the cycle jC is demonstrated by listing the 

vertices in the order 1 2 1 , ,..., ,m
j j j jv v v v . The algorithm 

alternatively labels the vertices on the odd cycles jC for 

all  1,3,5 ,4 3j r , and the vertices on the even cycles jC  

for all  2,4, ,4 2j r , as illustrated in Algorithm2. The 

edge’s labeling induced by the absolute value of the 

difference of the vertex’s labeling, as illustrated in 

Algorithm3.  At the beginning, the algorithm starts with the 

initial procedure; 

1. Put the graph 4 1;P r m in the C -representation which 

consists of the central vertex and the cycles 

1 2 4 2 , ...C rC C . 

2. Number the central vertex 0 v with the value 0 ( ) 0f v    

Algorithm 1: Procedure Initialization 

 Beginning by the odd cycles jC , performing an 

action on the cycles (referred to as "numbering" the 

vertices) , if 1r or 2;  there are at most six cycles in 

the graph 4 1;mP r , number the vertices on the cycle 

1C  according the function 1( ) (8 4) i ,if v r m  

traversing to the cycle 3  C and number its vertices 

according the function 3( ) (8 6) i ,if v r m  

and traversing to the cycle 5 C  and number its vertices 

according the function 5( ) (8 10) i .if v r m

The vertices on the even cycles would be numbered 

consecutively: 2,6,10...,4 (2 1) 4) 2.m r  If  3r   in 

this case, the graph 4 1;mP r has ten cycles 

1 2 10, ,...,C C C . The vertices on the even cycles 

2 4 6 8 10, , , ,C C C C C  would be numbered 

according to step 2.2, and the vertices on the odd 

cycles 1 3 5 7 9, , , ,C C C C C  would be numbered using 

step 1.2. 

1.  is odd j  
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1.1. If 1r or 2;  number the vertices on the induced 

cycles 51 3, ,C C C respectively as 

follows: 

1( ) (8 4) i ,if v r m

3( ) (8 6) i ,if v r m

5( ) (8 10) i .if v r m  

1.2. If 3r ; number the vertices on the induced 

cycles 1 3 5 7 9, , , ,C C C C C  respectively as 

follows: 

1( ) 20 i ,if v m 3( ) 2 i ,if v m

5( ) 2 i ,if v m 7( ) 12 i ,if v m

9( ) 18 i .if v m  

2.  is evenj  

2.1 .If   1r or 2;       

( ) 2 2     1,2,  ,  i
jf v jm i i m

. 

2.2  If 3r ; number the vertices on the induced cycle 

2 4 6 8 10, , , ,C C C C C respectively as 

follows: 

2 4( ) 20 2 ( ), ( ) 16 2 ( ),i if v m i f v m i

6 8( ) 8 2 ( ), ( ) 4 2 ( ),i if v m i f v m i

10and  ( ) 12 2 ( )if v m i . 

Algorithm 2 

Algorithm for Edge Labelings 
The label’s distribution of the edges between the central 

vertex 0 v and the cycle 1,C and the label’s distribution of 

the edges between the cycles 1 2 4 2, ...C rC C  is induced 

by the absolute value of the difference of their end-

vertices’s labeling, the following algorithm gives the odd 

edge labelings. 

1. The edge’s labels between the central vertex 0 v and 

the cycle 1,C  induced by 

0 1( ) (8 4) i ,if v v r m  for all 

 1,2,  ,i m ,  1,2,3.r   

2. The label’s distribution of the edge between the cycles 

1 2 4 2, ...C rC C  is defined consecutively by:  

2.1.    If   1r ; i   for all  1,2,  ,i m . 

2.2.   If  2r ; 8 i ,m  6 i ,m  2 i ,m  

2 i ,m  and   6 im   for all   1,2,  ,i m . 

2.3.  If   3r ; i ,  18 i ,m  14 i ,m  

12 i ,m  4 i ,m  4 i ,m  8 i ,m  

14 i ,m  and 6 im   for all  1,2,  ,i m . 

3. The resulting labeling is odd graceful. 

Algorithm 3 

Theorem 1       The graphs 4 1;mrP are odd graceful for 

all  2m  and  1,2,3.r  

Proof 

The graphs 4 1;mrP are trees, so they can be drawn as 

bipartite graphs, in two partite sets denoted as ODD-SET 

(O) and EVEN-SET (E), with edges only between the 

vertices in O and E. Any two vertices have only one edge 

between any two vertices in the partite sets O and E or only 

one path. All vertices in the two sets O and E can be thought 

of as the vertices on the odd cycles and the vertices on the 

even cycles plus the central vertex 0 v respectively. All the 

vertices of the set O are labeled consecutively with odd 

values from the set{1, 3, 5... 2 (4 2) 1}m r , and all the 

vertices in the set E are labeled consecutively with even 

values from the set{2 4, ,  2 (4 2) 2}.m r  Thus, the 

reader can find out easily that the vertex labels are assigned 

uniquely as shown in the above algorithms, and the absolute 

values of the difference of the vertex’s labelings are odd 

value. This guarantees that the edge labelings are odd 

values. The result is the edge labels being the 

set 1,3 2 (4 2) 1m r . To prove that all edges’ labels are 

different we have to consider the following cases: 

(i) If  1r  (case 2.1 Algorithm 3), the edges’ labels are 

odd, distinct and they are  1,3,5, ,2 1q . 

(ii) If  2r  (case 2.2 Algorithm 3), the edges have the 

labels; 8 i ,m  6 i ,m  2 i ,m  2 i ,m  

and 6 im  are clearly distinct odd values. Because 

the maximum value of the function i  

is 2 1m which implies that the difference between the 

minimum value of 6 i ,m and the maximum 

value of 2 im  equals  4 2 i 2,m  thus the 

induced edge labels will never be the same  

(iii)  If  3r (case 2.3 Algorithm 3), the proof in this case  

go by the same way as in case (ii) 

Therefore, the above algorithm proves that the graph 

4 1;mrP is odd graceful for all  2m and  1,2,3.r .■ 

0

71 35465922 70

69 33425718 66

67 31385514 62

65 29345310 58

63 2730516 54

61 2526492 50

Figure 3: shows the graph 7;6P is odd graceful 

4.2 The graph 4 1;m,  1,2rP r (See Figure4) 

 The labeling behaves of the graph 4 1;m,  1,2rP r  totally 

similarly and is less structured than the algorithms in section 

3.1. Put the graph in the C-representation and number the 
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central vertex with the value 0 ( ) 0f v . The following 

algorithm gives the labeling of 4 1;m ,  1,2rP r . 

1. Put the graph 4 1;mrP in the C -representation which 

consists of the central vertex and the 

cycles 1 2 4, ...C rC C . 

2. Number the central vertex 0 v  with the value 0 ( ) 0f v                                  

3. If j is odd  value less than or equal to 4 1r and 

1 or 2r  

3.1 Number the vertices on the odd cycles 

1 3 5 7, , ,C C C C  respectively as follows: 

1 3( ) 8 i , ( ) (8 2) i ,i if v rm f v r m

5 7( ) (8 8) i , ( ) (8 14) i .i if v r m f v r m    

4. If j is even value less than or equal to 4r and 

1 or 2r

( ) 2 2    1,2,  ,i
jf v jm i i m

 

5. The edge labels induced by taking the absolute value of 

the difference of incident vertex labels. 

6. The resulting labeling is odd graceful. 

Algorithm 4 

Theorem 2            
 The graphs 4 1;mrP is odd graceful for all  2m  and  1,2.r  

Proof     

 The proof has the same steps as in Theorem 1. 

38291839

0

2131

34271437

30251035

2623633

222

 

Figure 4: shows the graph 5;5P  is odd graceful 

4.3 Variation of odd graceful labeling mnC ;   

The odd graceful labeling behaves partially differently is 

less structured than the algorithms in sections 3.1 and 3.2 

hence the algorithm has to be flexible to handle that. The 

following algorithm gives the odd graceful labeling for a 

closed spider. 

1. Put the graph mnC ; in the C-representation which 

consists of the two end points 0 v , w  and the cycles 

1 2,...., nC C . The cycle C j is demonstrated by listing the 

vertices in the order 1 2 1 , ,..., ,m
j j j jv v v v  where 

1,2 , 2j n . 

2. Number the most right vertex 0 v with the 

value 0( ) 0f v . 

3. If the total number of edges ( 1)q n m  is odd, number 

the vertex w  with the value ( 2) 1f w n m ,  

4. If the total number of edges ( 1)q n m  is even, and both 

of n  and m   are even, number the vertex w  with the 

value 1f w nm ; otherwise number the vertex w  

with the value ( 1)f w n m . 

5. Consecutively number the vertices on the odd cycles C j  

as (2 1) ( )n j m i ,and consecutively number the 

vertices on the even cycles C j  as ( 2) 2 ( )j m i  

6. The edges’ labels between the vertex 0 v  and the cycle

1C induced by 0 1( ) 2( 1) i ,if v v n m  for 

all  1,2,  ,i m . 

7.    For 1,2,..., 3 j n     

1( ) 2 ( ( 2)) i  1,2, ,i i
j jf v v m n j i m

 

8.   If the total number of edges ( 1)q n m   is odd 

2( ) 2( ( ) ) 1i
nf wv i m , for  

all   1,2,  ,i m . 

9.   If  q   is even and  both of n  and m   are even numbers 

     ( ) 2 ( ) 12f wv i
i
n ,  for all 

 1,2,  ,i m . 

10. If q    is even and n   is odd, and m   is odd or even 

number. 2( ) ( )i
nf wv i ,for all 

 1,2,  ,i m . 

11. The resulting labeling is odd graceful 

Algorithm 5 

Theorem 3        The closed spider graph is odd graceful. 

Proof 

The graph ;n mC can be drawn as bipartite graphs, in two 

partite sets denoted as ODD-SET (O) and EVEN-SET (E), 

with edges only between the vertices in O and E. Any two 

vertices have only one edge between any two vertices in the 

partite sets O and E or only 1m paths. If n  is even, all the 

vertices in the two sets O and E can be thought of as the 

vertices on the odd cycles with the vertex w and the vertices 

on the even cycles with the central vertex 0 v  respectively, 

If n  is odd, all the vertices in the set O can be thought of as 

the vertices on the odd cycles with the vertex w and the 

central vertex 0 v , and all the vertices in the set E can be 

thought of as the vertices on the even cycles. If n  is odd, the 

vertices of the set O are labeled consecutively with odd 

values from the set { 2 ( 1) 1,2 ( 1) 3,2 ( 1) 5,.....}.m n m n m n  

The vertices in the set E are labeled consecutively with even 

values from the set {2 4, , 2}.mn  Thus, the absolute 

values of the difference of the vertices’ labelings are odd 

value. This guarantees that the edge labelings are odd 

values. The result is the edge labels being the 

set 1,3 ,2 1q . The vertices’ labels are assigned 

uniquely as given in algorithm 5. To show that all edge 

labels are different we have to consider the following cases. 

(i)  The edges  0 1,  1,2,  ,iv v i m (step 6, Algorithm 5) are 

numbered uniquely from{2 - 2 -1,...,2 - 4 -1}nm m nm m . 
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(ii) The edges 1, 1,2, ,i i
j jv v i m and  1,2, , 2j n  

(step 7, Algorithm 5) are numbered uniquely from the 

set {2 -6 1,...,4 -1}.nm m m  

(iii) The edges 2,  1,2,  ,i
nwv i m (steps 8, 9, 

10 Algorithm 5) are numbered uniquely from 

{2 -1,...,1}.m  

Therefore the edges’ labels are odd, distinct and 

numbered consecutive form {1,...,2 1}.q ■ 

 

4.4 Odd gracefulness of mn PP   

Algorithm for odd graceful Labeling of 

the graph mn PP   

We used an injection from ( )n mV P P to the order 

set 1 2 ( 1) , ,..., n mv v v . The injection can be 

defined formally as; start from the most bottom-right vertex 

mv of a path  nth
mP  rename it as 1( )mv v  then move up 

on the path nth mP and rename its vertices consecutively 

as 2 3, ,..., mv v v till the most top-right vertex nv and

rename it as 1( )n mv v , traversing to the left adjacent 

vertex 1nv and rename it as 1 2( )n mv v , then move 

down through the (n-1)th path mP and  rename its vertices 

consecutively as 3 4 2( 1), ,...,m m mv v v  

traversing to the left non-adjacent vertex mv on the path (n-

2)th path mP and repeat the previous processes on the rest 

paths until reach the most top-left (bottom-left) vertex of 

path 1P .  In the end the vertex set of the graph mn PP   is 

demonstrated by listing the vertices in the order 

1 2 ( 1), ,..., n mv v v . The odd graceful labeling 

function )( ivf defines as follows: 

 

( 1)              
( )

4 2 1      
i

i iodd
f v

nm n i ieven
 

The edge labels induced by taking the absolute value of the 

difference of incident vertex labels, the edge labelling 

function  

 

12,..,5,3,1)(:* qPPEf mn   

defined by 

 

 1224)( 1

* inmnvvf ii
. Therefore 

the edges’ labels are odd, distinct and numbered consecutive 

form 

12,..,5,3,1}324,...,5,3,1{ qnmn . 

48 59 38 69 28 79 18 89

32 51 22 61 12 71 2 81

44
57 34 67 24 77 14 87

40 55 30 65 20 75 10 85

36 53 26 63 16 73
6 83

41
0

49 38 59 28 69 18 79

41 22 51 12 61 2 71

47
34 57 24 67 14 77

45 30 55 20 65 10 75

43 26 53 16 63 6
73

50
0

 

Figure 5: The graph 5;10C  and the graph 5;9C  

(A) 

    

18 25 10 33 2

21 14 29 6 37

16 23 8 31 0

19 12 27 4 35

 (B)

Start point 

             

end point 

             

 

Figure 6: (A) The labeled graph 35 PP    (B) The path track we follow to label the graph 35 PP  . 



 

 

41 

 

(A)

    

          

          

          

        

  

  

  

    

          

          

          

        

  

  

  

58 75 40 493 22 111

65 67
               

50 48 83 85 32 30 101 103 14 12 119 121

60 56 73 77 42 38 91 95 24 20 109 113 6 2

63 69 52 46 81 87 34 28 99 105 16 10 117 123

62 54 71 79 44 36 89 97 26 18 107 115 8 0

 

 

end point 

             
Start point 

               

Figure 7: (A) The labeled graph 327 )( PKP  , (B) The path track we follow to label the graph 327 )( PKP 

4.5 The graph mn PKP  )( 2 is odd graceful 

Algorithm for odd graceful Labeling of 

the graph mn PKP  )( 2  

The injection can be defined formally as; start from the 

most bottom-right vertex 2 3nm nv  of a path   2nth mP  

rename it as 2 3 1( )nm nv v  then move up on the path 2nth 

mP  till the right adjacent leaf to the most top- right vertex 

and rename these vertices consecutively 

as 2 3 1, ,..., ,m mv v v v till the most top- right vertex and 

rename it as 2mv , traversing to the left adjacent leaf to the 

most top- right vertex and rename it as 3mv , then move 

down through (2n-1)th path and  rename its vertices 

consecutively as 4 5, ,...m mv v , traversing to the left 

non-adjacent vertex on the (2n-2)th path and repeat the 

previous processes on the rest paths until reach the bottom-

left vertex of the first path mP . In the end, the vertex set of 

the graph mn PKP  )( 2 is demonstrated by listing the 

vertices in the order 1 2 2 3 , ,..., nm nv v v . The 

graph mn PKP  )( 2  labeled in a similar way as 

mn PP  , the vertex labeling function )( ivf defines as 

follows: 

( 1)             

4 6 1   
( )i

i i odd

nm n i i even
f v  

 

The edge labels induced by taking the absolute value of the 

difference of incident vertex labels. The edge labeling 

function  

12,..,5,3,1))((: 2

* qPKPEf mn   

 defined by 

nmniinmnvvf ii 32,...,3,2,1,1264)( 1

*

Therefore the edges’ labels are odd, distinct and numbered 

consecutive form {1,...,2 1}.q   

5. CONCLUSION 
The following conclusions can be drawn from the present 

study: a graph model can be used for the channel 

assignment problem, the nodes of the graph correspond to 

cells or their base stations and the edges represent cell 

adjacency, channel assignment algorithms are often built on 

a basic assignment of one channel per node, known as a 

graph labelling. A major contribution of these study was 

that, three algorithms were developed to generate all 

possible odd graceful labelings of the vertices and the edges 

of spider graph, closed spider graph and the graphs obtained 

by joining one or two paths mP to each vertex of the path nP . 

These algorithms traversed exactly once each vertex and 

each edge  in the graphs mentioned above, since the number 

of vertices in the given graph G equals  ( )Gn V  and the 

number of edges in G equals  ( )q E G  , then at most 

)( qnO time is spent in total labeling of the vertices and 

edges, thus the total running time of the developed 

algorithms is )( qnO .  
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