
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

30

An Authentication Mechanism to prevent SQL

Injection Attacks

Indrani Balasundaram
Department of Computer Science

Madurai Kamaraj University
Tamil Nadu, India

 E. Ramaraj
Department of Communication

Madurai Kamaraj University
Tamil Nadu, India

ABSTRACT

SQL Injection attacks target databases that are accessible

through a web front-end, and take advantage of flaws in the

input validation logic of Web components such as CGI scripts.In

the last few months application-level vulnerabilities have been

exploited with serious consequences by the hackers have tricked

e-commerce sites into shipping goods for no charge, usernames

and passwords have been harvested and confidential information

such as addresses and credit-card numbers has been leaked. The

reason for this occurrence is that web applications and detection

systems do not know the attacks thoroughly and use limited sets

of attack patterns during evaluation. SQL Injection attacks can

be easily prevented by applying more secure authentication

schemes in login phase itself. To address this problem, this

paper presents an authentication scheme for preventing SQL

Injection attack using Advance Encryption Standard (AES).

Encrypted user name and password are used to improve the

authentication process with minimum overhead. The server has

to maintain three parameters of every user: user name,

password, and user‟s secret key. This paper proposed a protocol

model for preventing SQL Injection attack using AES (PSQLIA-

AES).

General Terms

Protocols, authentication scheme

Keywords

SQL Injection attack, Web security, authentication, AES, Secret

Key, password security.

1. INTRODUCTION
SQL injection attacks have become the most widely exploited

security attacks on the Internet as they can usually bypass layers

of security such as firewalls and any other network detection

sensors. They are used most often to attack databases and for

extracting any confidential information such as Social Security

Numbers, Credit Card information etc. SQL injection is an

attack in which malicious code is inserted into strings that are

later passed to an instance of SQL Server for parsing and

execution. The primary form of SQL injection consists of direct

insertion of code into user-input variables that are concatenated

with SQL commands and executed. A less direct attack injects

malicious code into strings that are destined for storage in a

table or as metadata. When the stored strings are subsequently

concatenated into a dynamic SQL command, the malicious code

is executed. A study conducted in 2005 by the Gartner Group

found that on over 300 tested web sites, 97% were vulnerable to

SQL injection attacks (W. R. Cook and S. Rai (2005), C. Anley

(2002)). Through SQL injection attacks, an attacker may extract

undisclosed data, bypass authentication, escalate privileges,

modify the content of the database, execute a denial-of-service

attack (C. Anley (2002), D. Aucsmith, (2004) , F. Bouma,

(2003)). These kinds of attacks are happened only if they can

able to introduce forged characters on SQL queries. A

sophisticated attacker can able to compromise the user name and

password by lunching on-line and off-line guessing attack. Web

based applications are normally has three tire model,

Application (Front End), Middle tire (Protocol), and backend

(Data base), given in figure 1. If a user wants to access the data

base form remote place then he has to logon to the system

through web site using the user name and password. In the

middle tire, SQL query is generated with the given input data.

The server verifies the user name and password, if it matches

then the user will be allowed to access the data base. Login page

is the most complicated in the web application which allows

users to access database after the completion of authentication

process. In this page, the user provides his identity like

username and password. There might be some invalid input

validations which can bypass the authentication process using

some mechanism like SQL injection.

If username and password are defined by the user, the method

embeds the submitted credentials in the query. For instance, if a

user submits username and Password as “Alice” and “Bob,” the

servlet dynamically builds the query:

Query_result=”SELECT info FROM users_account WHERE

username =‟Alice‟ AND password =‟Bob‟”

A web site that uses this servlet would be vulnerable to SQLIAs.

: For example, if a user enters “‟ OR 1=1 --” and “”, instead of

“Alice” and “Bob”, the resulting query is:

Query_result=”SELECT info FROM user_account WHERE

username =‟‟ OR 1=1 --‟ AND password =‟‟ “

The database interprets everything after the WHERE token as a

conditional statement, and the inclusion of the “OR 1=1” clause

turns this conditional into a tautology. (The characters “--” mark

the beginning of a comment, so everything after them is

ignored.)

Figure 1: Basic Model for Web Applications

As a result, the database would return information about all

users. An attacker could insert a wide range of SQL commands

via this exploit.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

31

2. RELATED WORK
Many techniques have been proposed to prevent SQL injection

Attacks for example, dynamic monitoring tools (Pietraszek, T.

and C. V. Berghe (2005), Halfond, W. G. J. and A. Orso (2008),

Su, Z. and G. Wassermann (2006)). Each of these techniques has

some advantages and disadvantages. Major problems with these

techniques are either high code modifications or it takes large

extra time overhead. E. G. Barrantes, D. H. Ackley (2003) is

related to Randomized instruction set emulation to disrupt

binary code injection attacks, which applies a randomization

technique similar to our Instruction-Set Randomization (G. S.

Kc, A. D. Keromytis, and V. Prevelakis, (2003)) for binary code

only, and uses an emulator attached to specific processes.

Kemalis et al (2008) proposed Specification based approach in

this technique they build a model for SQL statements. It is based

on set of rules lexical analysis and syntactical verification is

used to valid the SQL statement of the query either declares it

legitimate or malicious. It maintains the log file for the system

process which will facilitate the administrator. More recent

approaches (J. Foster, M. Fa¨hndrich, and A. Aiken (1999), D.

Larochelle and D. Evans (2001), N. Dor, M. Rodeh, and M.

Sagiv (2003)) have focused on detecting specific types of

problems, rather than try to solve the general “bad code” issue,

with considerable success, while such tools can greatly help

programmers ensure the safety of their code. Dynamic analysis

tools such as (E. Larson and T. Austin (2003)) offer incomplete

protection, as they cannot prevent modern class of attacks and

vulnerabilities. They intercept system calls inside the kernel, and

use policy engines to decide whether to permit the call or not.

The main problem with all these is that the attack is not

prevented: rather, the system tries to limit the damage such code

can do, such as obtain super-user privileges. In the context of a

web server, this means that a web server may only be able to

issue queries to particular databases or access a limited set of

files. T. Garfinkel (2003) scheme identifies several common

security-related problems with such systems, such as their

susceptibility to various types of race conditions. A number of

techniques are in use for securing the web applications. The

most common way is the authentication process through the

username and password. One of the major problems in the

authentication process is the input validation checking (S. W.

Boyd and A. D. Keromytis, (2004)). SQL rand is a practical

defense mechanism against SQL injection attacks. Such attacks

target databases that are accessible through a web front end, and

take advantage of flaws in the input validation. These works

apply the concept of instruction-set randomization to SQL.

Queries injected by the attacker will be caught and terminated

by the database parser. This mechanism imposes negligible

performance overhead to query processing and can be easily

retrofitted to existing systems. Injecting SQL code into a web

application requires little effort by those who understand both

the semantics of the SQL language and CGI scripts (S. W. Boyd

and A. D. Keromytis, (2004)). Unless developers properly

design their application code to protect against unexpected data

input by users, alteration to the database structure, corruption of

data or evaluation of private and confidential information may

be granted inadvertently.

3. PROPOSED MODEL
This section proposed an authentication scheme using AES for

preventing SQL Injection attack. This method has three phases,

1) Registration Phase, 2) Login Phase and 3) Verification Phase.

1) Registration Phase

The following steps are executed, when ever a new user

is enter into server for register as a new user,

a. Every user must select a unique user name
NameU

and password
PasswordU and send it to the server

along with registration request.

b. Server receives the request from the user and

register as a new user. Server maintains a user

account table with three field‟s user name, user

password, and user secrete key (unique key value)

as shown in the table1. The user secrete key

NameUK is generated by the server and this key is

unique for all the users.

c. Server sent a registration conformation to the user

along with user secrete key
NameUK

Table1: User Account Table

User Name User Password User Secret Key

Murugesh Uthaandakalai MurugeshSecretKey

Amuthan Sethubai AmuthaSecretKey

2) Login Phase

Through Login phase user can access the data base from

the server so, the following steps are executed.

a. The user name and password is encrypted by using

Advance Encryption Standard algorithm by

applying user secrete key.

b. SQL query generator generates the query by using

the encrypted user name and password as shown in

figure 2.

c. The query will be send to server.

Query_result=SELECT * FROM user_account WHERE

username = „abc‟ AND password = „xyz‟ AND

encrypted_username = „ESecretKey (abc)‟ AND

encrypted_password = „E SecretKey (xyz)‟

Figure 2: Sample query generation in the proposed model

System Model for Login and Verification Phase

Figure 3: Login and Verification Phase

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

32

3) Verification Phase

In the verification phase, server receives the query result

send by the user and performs the following steps,

a. The server receives the login query and verifies the

corresponding users secrete key. If the username

and password matches the user name and

password can be decrypted from the query by using

this key.

b. Check the decrypted user name and password from

the user account table. If it match then accept the

user, otherwise reject as malicious attacker.

The detailed system model of login and verification

phase is given in figure3. In the proposed scheme,

verification phase first verifies the user name from the

query and corresponding secrete key of the user is taken

from user account table. So, SQL injection attack is

avoided if there is given a query like username= „a‟ or

„1‟= „1‟;--.

4. IMPLEMENTATION RESULTS AND

DISCUSSIONS
The proposed scheme is implemented and tests are tested in

windows machine having configuration Intel® Pentium®

Core™ 2 Duo CPU E4500 @ 2.20GHz, 2.19GHz, 0.99GB of

RAM. The proposed scheme is compare with two existing

schemes, first scheme SQLIPA (Shaukat Ali, Azhar Rauf, and

Huma Javed (2009))is based on hash functions and the second

scheme is based on Elgamal cryptosystem. We have developed

the code by using Core Java jdk1.6. We have compared the

proposed in three different ways,

1. The proposed scheme is evaluated with different key

sizes (128, 256, and 512) as shown in table 2 and the

corresponding chat is given in figure 4.

2. Compared the processing overhead (time needed for

encryption of user name and password) of proposed

scheme with existing related schemes PSQLIA and

AQE-PSQLIA as shown in table 3 and figure 5.

3. Compared the processing overhead of the proposed

scheme by using different number of users (10, 20, 30,

40, and 50) as shown in table 4 and figure 6.

The proposed scheme is very secure with minimum

computation overhead. An experiment was designed to measure

the additional processing time required by different sets of

concurrent users. The worst-case scenario adds approximately

5.2 milliseconds to the processing time of each query. We used a

stand alone computer with the SQL Server with approximately

1,000 tuples in relevant tables and created views. Next we run a

transaction that included Select statement directly on the table

and on the view with encrypted user name and password using

AES. To average the processing time we repeated this for 10 and

100 serial transactions for a single user.

Table 2: Execution Time comparison with different Key size

Cryptosystem Execution Time in Millisecond

AES-128 ≈0.315

AES-256 ≈0.572

AES-512 ≈0.785

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AES-128 AES-256 AES-512

AES with different Key Sizes

M
il
li
s
e
c
o

n
d

Figure 4: Execution Time comparison of user input

Table 3: Comparison of processing overhead with existing

schemes in Millisecond

Techniques Processing Overhead in Millisecond

Proposed Scheme ≈0.785

SQLIPA ≈1.472

AQE-PSQLIA ≈0.125

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Techniques

Techniques

M
il
li
s
e
c
o

n
d

Proposed Scheme

PSQLIA

AQE-PSQLIA

Figure 5: Comparison of Processing Overhead

Processing Overhead Chart

0

1

2

3

4

5

6

7

8

10 20 30 40 50

Number of Users

M
il

li
s
e
c
o

n
d

Proposed Scheme

PSQLIA

AQE-PSQLIA

Figure 6: Processing Overhead Chart for different number of

users

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

33

5. CONCLUSION
This paper presents an authentication scheme for preventing

SQL Injection attack using Advance Encryption Standard

(PSQLIA-AES). Encrypted user name and password are used to

improve the authentication process with minimum overhead. We

have implemented and tested the proposed scheme with three

different ways, 1) evaluated with different key sizes (128, 256,

and 512), 2) compared the processing overhead (time needed for

encryption of user name and password) of proposed scheme

with existing related schemes SQLIPA (Shaukat Ali, Azhar

Rauf, and Huma Javed (2009)) and AQE-PSQLIA, and 3)

compared the processing overhead of the proposed scheme by

using different number of users (10, 20, 30, 40, and 50). The

proposed scheme is more efficient, it needs 3.144ms for

encryption or decryption and this can be negligible.

6. REFERENCES
[1] C. Anley, 2002, “Advanced SQL Injection In SQL Server

Applications,” White paper, Next Generation Security

Software Ltd.

[2] D. Aucsmith, 2004 “Creating and Maintaining Software

that Resists Malicious Attack,”

http://www.gtisc.gatech.edu/bioaucsmith.html, September

2004. Distinguished Lecture Series.

[3] F. Bouma, 2003. Stored Procedures are Bad, O‟kay

Technical report, Asp.Net Weblogs, November

http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.a

spx.

[4] S. W. Boyd and A. D. Keromytis, 2004. “SQLrand:

Preventing SQL Injection Attacks,” In Proceedings of the

2nd Applied Cryptography and Network Security (ACNS)

Conference, pages 292–302.

[5] Kemalis, K. and T. Tzouramanis 2008. “SQL-IDS: a

specification-based approach for SQLinjection detection,”

SAC‟08. Fortaleza, Ceará, Brazil, ACM: pp. 2153-2158.

[6] W. R. Cook and S. Rai, 2005, “Safe Query Objects:

Statically Typed Objects as Remotely Executable Queries,”

In Proceedings of the 27th International Conference on

Software Engineering (ICSE 2005).

[7] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D.

Stefanovic, and D. D. Zovi, 2003. “Randomized Instruction

Set Emulation to Disrupt Binary Code Injection Attacks,”

In Proceedings of the 10th ACM Conference on Computer

and Communications Security (CCS), pp 281–289.

[8] Shaukat Ali, Azhar Rauf, and Huma Javed, 2009.

 “SQLIPA: An Authentication Mechanism Against SQL

Injection,” European Journal of Scientific Research, ISSN

1450-216X Vol.38 No.4, pp 604-611.

[9] E. Larson and T. Austin, 2003. “High Coverage Detection

of Input-Related Security Faults,” In Proceedings of the

12th USENIX Security Symposium, pages 121–136

[10] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, 2003.

“PointGuard: Protecting Pointers From Buffer Overflow

Vulnerabilities,” In Proceedings of the 12th USENIX

Security Symposium, pages 91–104.

[11] G. S. Kc, A. D. Keromytis, and V. Prevelakis, 2003.

“Countering Code-Injection Attacks With Instruction-Set

Randomization,” In Proceedings of the ACM Computer

and Communications Security (CCS) Conference, pages

272–280.

[12] D. Larochelle and D. Evans, 2001. “Statically Detecting

Likely Buffer Overflow Vulnerabilities,” In Proceedings of

the 10th USENIX Security Symposium, pages 177–190.

[13] T. Garfinkel, 2003. “Traps and Pitfalls: Practical Problems

in System Call Interposition Based Security Tools,” In

Proceedings of the Symposium on Network and Distributed

Systems Security (SNDSS), pages 163–176.

[14] N. Dor, M. Rodeh, and M. Sagiv, 2003. “CSSV: Towards a

realistic tool for statically detecting all buffer overflows in

C,” In Proceedings of the ACM Conference on

Programming Language Design and Implementation

(PLDI).

[15] J. Foster, M. Fa¨hndrich, and A. Aiken, 1999. “A theory of

type qualifiers,” In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI)

[16] Pietraszek, T. and C. V. Berghe 2005. “Defending against

Injection Attacks through Context- Sensitive String

Evaluation,” Recent Advances in Intrusion Detection

(RAID2005).

[17] Halfond, W. G. J. and A. Orso 2008. "WASP: Protecting

Web Applications Using Positive Tainting and Syntax-

Aware Evaluation." IEEE 34(01): pp. 65-81.

[18] Su, Z. and G. Wassermann 2006. “The Essence of

Command Injection Attacks in Web Applications,” POPL.

Charleston, South Carolina, USA, ACM: pp. 372 – 382

