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ABSTRACT 

The purpose of this paper is to introduce a new  form of 

generalized mapping namely fgb-continuous, fgb-irresolute 

mappings, fgb-closed maps, fgb-open and fgb*-open maps in 

fuzzy topological spaces. Some of their properties and 

characterization have been proved. As an application of  these 

generalized fuzzy sets, fuzzy  gbT1/2-space , fgb-

homeomorphism and fgb*-homeomorphism are introduced 

and discussed in detail.     
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1. INTRODUCTION 
Zadeh in [9] introduced the fundamental concept of 

fuzzy sets. Fuzzy topology was introduced by Chang [7]. The 

theory of fuzzy topological spaces was subsequently 

developed by several authors. The concept of  b-open sets in 

general topology was introduced by Andrijevic [1]. The 

concept of fuzzy b-open set  and fuzzy gb-closed sets are by 

Benchalli and Jenifer [3].  

Here the concept of fuzzy gb-neighbourhood ,fuzzy gbq-

neighbourhood, fuzzy gb-continuous, fuzzy gb-irresolute 

mappings, fuzzy gb-closed maps, fuzzy gb*-closed, fuzzy 

gbT1/2-spaces and fuzzy gb- homeomorphism maps in fuzzy 

topological spaces are introduced. Their properties and some 

characterizations are obtained.   

 

2. PRELIMNARIES 
Throughout the present paper (X, ), (Y, ) and (Z, ) (or 

simply X, Y and Z) mean fuzzy topological spaces 

(abbreviated as fts) .Let f: (X, )  (Y, ) be a mapping from a 

fts X to fts Y. The definition of fuzzy sets, fuzzy topological 

spaces and other concepts by Chang and Zadeh can be found 

in  [7, 9]. The members of  are called open fuzzy sets and 

their compliments are closed fuzzy sets.     Let A be a fuzzy 

set of fts  X. We denote the closure and interior of A by cl(A) 

and int(A) respectively. A fuzzy point [8] xt in X is a fuzzy set 

having support x X  and value t  (0,1]. No separation 

axioms are assumed unless explicitly stated.                

2.1 Definition [3] A fuzzy set A in a fts X is called  

(i) fuzzy b-open   set iff  A  (IntCl(A) ClInt(A)).                

(ii) fuzzy b-closed set iff (IntCl(A) ClInt(A)) A. 

2.2 Definition [3] Fuzzy  b-closure and fuzzy b-interior of a 

fuzzy set A is  and given by                                                           

(i)  bCl(A) = {B: B is a fuzzy b-closed set of X and B  A}.  

(ii) bInt(A) = {C: C is a fuzzy b-open set of X and A  C}. 

2.3 Definition  A fuzzy set A of a fts (X, ) is called: 

(i) a generalized closed (g – closed) fuzzy set [2] if Cl(A)  B 

whenever A  B and B is fuzzy  open set in (X, ). 

(ii) a fuzzy generalized b-closed (briefly fgb – closed) fuzzy 

set [3]  if bCl(A)  B whenever A  B and B is fuzzy open in 

(X, ). 

 

Complement of fuzzy g – closed   (resp. fuzzy gb – 

closed fuzzy set) set are called fuzzy g–open (resp. fuzzy gb – 

open) set. 

2.4 Definition Let X, Y be two fuzzy topological spaces. A 

function f: X Y is called  

(i) fuzzy continuous (f–continuous) [7] if f-1(B) is fuzzy  open 

set in X, for every fuzzy open set B of Y 

(ii) fg–continuous mapping [2]  if f-1(A) is fuzzy g – closed set 

in X, for every fuzzy closed set A of Y. 

(iii) fb – continuous   mapping [4] if f-1(A) is fuzzy b – closed 

set in X, for every fuzzy  closed set A of Y. 

(iv) fb* - continuous mapping [4] if f-1(A) is fuzzy b - closed 

set in X, for every fuzzy b-closed set A of Y. 

(v) fb-closed mapping [4] if f(A) is fuzzy b-closed in Y for 

every fuzzy closed set A in X. 

(vi) fb*-closed mapping [4]  if f(A) is fuzzy b-closed in Y for 

every fuzzy b-closed set A in X. 

2.5 Definition A fuzzy topological space (X, ) is called a  

(i) fuzzy T1/2- space [2]  if every fuzzy g – closed set in X is a 

fuzzy closed set in X. 

(ii) fbT1/2- space [4]  if every fbg– closed   set in X is a fuzzy 

b-closed set in X. 

 

2.6 Definition A fuzzy set A of a fts (X, ) is called a fuzzy 

gb-closed [4] if bCl(A) ≤ B whenever  A ≤ B and B is fuzzy 

open.  

2.7 Remark A fuzzy set A of a fts (X, ) is called a gb-open 

[4] (gb-open) fuzzy set  if its complements 1-A is fuzzy gb-

closed set.     

3. FUZZY gb-CONTINUOUS MAPS IN 

FTS  
        In this section, we introduce fuzzy gb-continuous maps, 

fuzzy gb-irresolute maps, fuzzy gb-closed maps, fuzzy gb-

open maps and fuzzy gb- homeomorphism in fuzzy 

topological spaces and study some of their properties. 

  

3.1 Definition A mapping f: (X, )  (Y, ) is said to be 

fuzzy generalized b-continuous (briefly fgb-continuous), if f -

1(A) is  fgb-closed set in X, for every fuzzy-closed set A in Y. 
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3.2 Theorem  f: (X, ) (Y, )   is fgb-continuous iff the 

inverse image of each fuzzy open set of Y is  fgb-open set of 

X.  

Proof  Let B be a  fgb-open set of Y. 1-B is  fgb-closed in Y. 

Since f : X Y  is fgb-continuous f -1(1-B)  =1- f -1(B) is  fgb-

closed set of X. Hence f -1(B) is fgb-open set of X. 

       Converse, is obvious. 

3.3 Definition A map f : (X, )  (Y, ) is said to be fuzzy gb-

continuous (briefly fgb-continuous) if the inverse image of 

every fuzzy open set in Y is fgb-open set in X.         

                                                                                                

3.4 Theorem If f: (X, )  (Y, ) is fgb-continuous then         

(a) for each fuzzy point xp of X and each A Y such that f(xp) 

qA, there exists a  fgb-open set A of X such that xp B  and 

f(B)≤A.                                                                                   

(b) for each fuzzy point xp of X and each A Y such that f(xp) 

qA, there exists a  fgb-open set B of X such that  xp q B and 

f(B)≤A.                                                                               

Proof  (a)Let xp be a fuzzy point of X,then f(xp) is a fuzzy 

point in Y.Now let A  Y be a  fgb-open set such that        

f(xp) qA. Put B= f -1(A).   Since f : X Y  is fgb-continuous B 

is fgb-open set of X and xp B, f(B)=f(f -1(A)) ≤A.                

(b) Let xp be a fuzzy point of X, and let A Y such that f(xp) 

qA. Put  B= f-1(A). Since f: X Y  is fgb-continuous  B is fgb-

open set of X, such that xp q B and f(B) = f( f -1(A)) ≤A. 

3.5 Theorem Every f-continuous function is fgb-continuous 

function  

Proof Let f: X  Y be a f-continuous function. Let A be an 

open fuzzy set in Y. Since f is f-continuous, f–1(A) is open in 

X. And so f–1(A) is fgb-open set in X. Therefore f is fgb-

continuous function 

The converse of the above theorem need not be true as  seen 

from the following example.  

3.6 Example  Let X =Y ={a, b} and the fuzzy sets A and B 

be defined as follows: A = {(a, 1), (b, 0.9)},        

B={(a,0.4),(b, 0.5)} Consider = {0,1, A} and  = {0,1, B}.               

bO(X)={0,1,A,(a, ),(b, )},where > 0 or >0.1.          

bC(X)=  {0,1,A,(a, ),(b, )}, where  = 0 or  < 0.1.       

Then (X, ) and (Y, ) are fts. Let f: X Y be the identity 

map. Then f is fgb-continuous map but not fuzzy-continuous, 

since for the fuzzy open set B in Y, f-1(B)  is not fuzzy closed 

set in X but it is fgb-closed in X.   

         

3.7 Definition A mapping  f :(X, )  (Y, )  is said to be 

fuzzy b-generalized irresolute (briefly fgb-irresolute),if f -1(A)   

is  fgb-closed set in X, for every  fgb-closed set A in Y. 

3.8 Theorem  A mapping f :(X, )  (Y, ) is fgb-irresolute 

mapping  if and only if the inverse image of every gb - open 

fuzzy set in Y is gb-open fuzzy set in X. 

3.9 Theorem Every fgb-irresolute mapping is fgb-

continuous . 

Proof Let f: X Y is fgb-irresolute . Let F be a closed fuzzy 

set in Y, Then F is fgb-closed fuzzy set in Y. Since f is fgb-

irresolute, f-1(V) is a gb-closed fuzzy set in X. Hence f is fgb-

continuous .  

        The converse of the above theorem need not be true as 

seen from the following example. 

3.10 Example Let X = Y ={a, b} and the fuzzy sets A, B, 

C, D and E be defined as follows. A={(a, 0.9), (b, 0.9)},        

B = {(a, 0.8), (b, 0.5)},  C = {(a, 0.7), (b, 0.5)}, D={(a, 0.5), 

(b, 0.2)}, E={(a, 0.5), (b, 0.6)}.  Consider T = {0, 1, A, B, C, 

D} and  = {0, 1, C}. Then (X, T) and (Y, ) are fts. Define f: 

X  Y by f(a)=c, f(b)=a and f(c)=b. Then f is fgb-continuous 

but not fgb-irresolute as the fuzzy set E is gb-closed fuzzy set 

in Y, but f -1(E) = C is not gb-closed fuzzy set in X.  

3.11 Theorem Let f :(X, )  (Y, ), g: (Y, )  (Z, ) be 

two functions. Then 

(1) g •f: X  Z is fgb-continuous, if   f is fgb-continuous and 

g are f-continuous. 

(2) g•f: X  Z is fgb- irresolute, if   f and g are fgb- 

irresolute functions.  

(3) g•f: X  Z is fgb – continuous if   f is fgb- irresolute and 

g is fgb-continuous. 

Proof (1) Let B be fuzzy closed subset of Z. Since g :Y Z 

is fuzzy continuous, by definition  g-1(B) is fuzzy closed set of 

Y.Now f : X Y  is fgb-continuous and g-1(B)  is fuzzy closed 

set of Y, so by definition 3.3, f-1 (g-1(B))= (g•f ) -1(B) is  fgb-

closed in X. Hence g • f :  X   Z  is fgb-continuous.  

(2) Let g :Y Z fgb-irresolute and let B be  fgb-closed subset 

of Z.Since g is fgb-irresolute by definition 3.7, g-1(B)   is  fgb-

closed set of Y. Also f : X Y  is fgb-irresolute, so f-1(g-1(B)) 

= (g•f)-1(B) is  fgb-closed. Thus g • f :  X   Z  is fgb-

irresolute. 

(3) Let B be fuzzy b-closed subset of Z.Since g : Y Z is fgb-

continuous, g-1(B) is  fgb-closed subset of Y. Also f : X Y  

is fgb-irresolute, so every fgb-closed set of Y is fgb-closed in 

X.Hence f-1 (g-1(B))= (g•f ) -1(B)  is  fgb-closed set of X. Thus 

g•f : X Z is fgb- continuous.  

3.12 Definition A fuzzy topological space (X, ) is fuzzy 

gbT1/2-space (in short fgbT1/2-space)  if every fgb-closed set in 

X it is fuzzy b-closed in X. 

3.13 Theorem   A fuzzy topological space X is fgbT1/2- 

space if  and  only  if  every  fuzzy  set  in  X  is  both fuzzy  

b-open and  fgb-open.                                                                      

Proof    Let X be fgbT1/2- space and let A be  fgb-open set in 

X. Then 1-A is  gb-closed. By hypothesis every  fgb-closed 

set is fuzzy b-closed, 1-A  is fuzzy  b-closed  set  and  hence  

A is fuzzy   b-open in X.                                                          

               Conversely, let A be fgb- closed. Then 1-A is fgb-

open which implies 1-A is fuzzy b-open. Hence A is fuzzy b-

closed. Every  fgb-closed set in X is fuzzy b-closed .Therefore 

X is fgbT1/2-   space. 

3.14 Theorem In a fts X every fuzzy T1/2- space is fgbT1/2- 

space.                                                              

3.15 Theorem   If f : (X, )  (Y, )  is fb*-continuous and 

g :(Y, )  (Z, )  is fgb-continuous then g • f : (X, )  (Z, ) 

is fb*-continuous if Y is fgbT1/2- space.                           

Proof Suppose A is fuzzy b-closed subset of Z. Since            

g :Y  Z is fgb-continuous by definition,every inverse image 

of fuzzy closed set of Z is  fgb-closed in Y.Hence g-1(B)  is  

fgb-closed subset of Y.Now Y is fgbT1/2- space and by 

definition , every  fgb-closed set is fuzzy b-closed in Y. Hence 

g-1(B) is fuzzy b-closed subset of Y. Also f :X Y  is fb*-

continuous so by definition, inverse image of fuzzy b-closed 
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set in Y is fuzzy b-closed in X. Hence f-1(g-1(B))=(g•f ) -1(B) is 

fuzzy b-closed. Thus g • f : X Z is fb*-continuous. 

3.16 Theorem   Let f : (X, )  (Y, )  be fgb-continuous. 

Then f is fb-continuous if X is fgbT1/2 -space.                 

Proof Let B be fuzzy closed set in Y.Since f :X Y is fgb-

continuous, f-1(B) is fgb-closed subset in X. Since X is        

fgbT1/2-space, by hypothesis , every fgb-closed set is fuzzy     

b-closed . Hence f-1(A) is fuzzy b-closed subset in X. 

Therefore f : X   Y is fb-continuous. 

3.17 Theorem  Let f :(X, )  (Y, ) be onto,fgb-irresolute 

and fb*-closed. If X is fgbT1/2 -space, then Y  is fgbT1/2- 

space.                                                                                  

Proof  Let A be a  fgb-closed set in Y. Since f : X  Y is    

fgb-irresolute, f-1(A) is  fgb-closed set in X. As X is fgbT1/2-

space, f-1(A)  is fuzzy b-closed set in X. Also f :  X  Y is 

fb*-closed, so f(f-1(A)) is fuzzy b-closed in Y. Since f  is onto, 

f(f-1(A))=A. Thus A is fuzzy  b-closed in Y. Hence Y is also 

fgbT1/2-space. 

3.18 Theorem   If the bijective map f : (X, )  (Y, )  is   

f-open and fgb-irresolute, then  f  is fgb-irresolute.                                                                 

Proof  Let A be a fgb-closed set in Y and let  f-1(A) ≤ B 

where B is a fuzzy  open set in X . Clearly, A ≤ f(B). Since     

f : X Y is  f-open map,by definition f (B) is fuzzy  open in Y 

and A is fgb-closed set in Y. Then  bCl(A) ≤  f(B), and hence  

f-1(bCl(A)) ≤ B. Also f is fgb-irresolute and bCl(A) is a fuzzy 

b-closed set in Y, then f-1 (bCl(A)) is  b-closed set in X.Thus 

bCl(f-1 (A)) ≤ bCl(f-1 (bCl(A))) ≤ B. So f-1(A) is fgb -closed set 

in X. Hence f :X Y is fgb-irresolute map. 

3.19 Theorem Let f: (X, ) (Y, ) be fgb-continuous and 

g: Y Z be fg-continuous. Then g•f  fgb-continuous if Y is   

fuzzy T1/2-space.                                                                              

Proof Let A be fuzzy closed set in Z. Since g is fg-

continuous, g-1(A) is fg-closed in Y. But Y is fuzzy T1/2-

space and so  g-1(A) is fuzzy closed in Y.Since f is fgb-

continuous  f-1(g-1(A) ) =  (g•f)-1(A) is fgb-closed in X. Hence 

g•f   fgb-continuous.                                                                                                                                                                             
                                                                     
3.20 Definition A mapping  f:(X, ) (Y, ) is said to 

be fuzzy  gb-open (briefly fgb-open ) map if the image of 

every  fuzzy open set in X, is fgb-open set in Y. 

3.21Definition A mapping  f:(X, ) (Y, ) is said to be 

fuzzy gb-closed (briefly fgb-closed) map if the image of every  

fuzzy  closed set in X is fgb-closed set in Y. 

3.22 Definition A mapping  f:(X, ) (Y, ) is said to be 

fuzzy gb*-open (briefly fgb*-open ) map if the image of every  

fgb-open set in X, is fgb-open set in Y. 

3.23 Definition A mapping  f:(X, )  (Y, ) is said to be 

fuzzy gb*-closed (briefly fgb*-closed) map if the image of 

every  fgb-closed set in X is fgb-closed set in Y. 

3.24 Remark Every fgb*-open (fgb*-closed) mapping is 

fgb-open(fgb-closed)   

    The converse of all of the above statements are not true . 

3.25 Example Let X={a,b},Y={x,y}, A={(a,0.8),(b,0.6)} , 

B={(a,0.4),(b,0.3)}  .Let ={0,1,A},  ={0,1,B}. Then the  

mapping  f:(X, )  (Y, )  defined by f(a)=x and f(b)=y is 

fb-open but not fb*-open. 

3.26 Theorem  If f : (X, ) (Y, ) is f-closed and   g:(Y, ) 

(Z, )  is fgb-closed, then g o f  is fgb-closed.                               

                                                                                                   

Proof  For a  fuzzy closed set in X, f (A) is fuzzy closed in 

Y. Since g:Y Z  is fgb-closed g(f(A)) is fgb-closed in Z. 

g(f(A)) =(gof)(A) is fgb-closed in Z. Therefore gof  is fgb-

closed. 

3.27 Theorem If f : (X, ) (Y, ) is a  fgb- open map and 

Y is fgbT1/2 -space, then f is a f- open map. 

Proof Let A be an fuzzy open set in X. Then f(A) is fgbT1/2 -

space fgb-open  set in Y since f is fgb- open map. Again since 

Y is fgbT1/2 -space, f(A) is fuzzy open set in Y. Hence f: X  

Y be a fuzzy open map. 

3.28 Theorem If f : (X, ) (Y, ) be a fgb- closed map and 

Y is fgbT1/2 - space, then f is a f-closed map. 

3.29 Theorem A map f : (X, ) (Y, ) is fgb- closed if and 

only if for each fuzzy set  A of Y and for each fuzzy open set 

B such that  f-1(A)  B, there is a fgb- open  set C of Y such 

that A  C and f -1(C)  B. 

Proof Suppose f is fgb- closed map. Let A be a fuzzy set of 

Y, and B be a fuzzy open set of X, such that f -1(A)  B. Then 

C = 1-f(1-B) is a fgb - open   in Y such that A  C and            

f -1(C)  B. 

        Conversely, suppose that F is a fuzzy closed set of X. 

Then f-1(1-f(F)) 1-F, and 1-F is fuzzy open set. By 

hypothesis, there is a fgb - open   set C of Y such that    1-f(1-

B)  C and f-1(C)  1-F. Therefore F  1-f -1(C). Hence 1-C  

f(C)  f(1- f -1(C))  1-C, which implies f(F) = 1 - C. Since 1 - 

C is fgb - closed   set, f(F) is fgb - closed   set and thus f is a 

fgb - closed   map. 

3.30 Theorem If f : (X, ) (Y, ) and g: Y Z are fgb- 

closed maps and Y is fgbT1/2 -space, then gof: X Z is fgb-

closed map. 

3.31 Theorem Let f: X  Y, g:Y Z be two maps such that 

g•f : X Z  is fgb - closed map.  

i) If f is fuzzy continuous and surjective, then g is fgb - closed 

map. 

ii) If g is fgb-irresolute and injective, then f is fgb-closed map.   

Proof  i) Let F be a fuzzy closed set of Y. Then f-1(F) is 

fuzzy closed set in  X as f is fuzzy continuous. Since g •f is 

fgb-closed map, (g•f) (f -1(F)) = g(F) is fgb-closed in Z. Hence 

g: Y Z  fgb - closed map. 

ii) Let F be a fuzzy closed set in X. Then (g•f) (F) is fgb-

closed in Z, and so     g-1(g•f)(F) =f(F) is fgb-closed in Y. 

Since g is fgb-irresolute and injective. Hence f is a fgb- closed 

map. 

3.32 Theorem  If A is fgb-closed fuzzy set in X and f: X  

Y is bijective, f-continuous and fgb-closed, then f(A) is fgb-

closed fuzzy set in Y.   

Proof Let f(A) ≤ B where B is an fuzzy open set in Y. Since 

f is f-continuous, f-1(B) is an fuzzy open set containing A. 

Hence bCl(A) ≤ f-1(B) as A is fgb-closed  set. Since f is fgb-

closed, f(bCl(A)) is fgb-closed set contained in the fuzzy open 
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set B, which implies bCl(f(bCl(A))) ≤ B and hence bCl(f(A)) 

≤ B. So f(A) is fgb-closed set in Y. 

 

3.33 Theorem If f:(X, ) (Y, ) is fgb-closed and   g:(Y, ) 

(Z, ) is fgb*-closed, then g•f  is fgb*-closed.              

Proof  For a  fuzzy closed set in X, f (A) is fgb-closed in Y. 

Since g:Y Z  is fgb*-closed g(f(A)) is fgb-closed in Z. 

g(f(A)) =(g•f)(A) is fgb-closed in Z. Therefore g•f  is fgb-

closed. 

3.34Theorem If f: X  Y and g: Y Z are fgb*- closed 

maps, then g•f: X Z is fgb*-closed map. 

3.35 Theorem Let f: X  Y, g:Y Z be two maps such that 

g•f:X Z  is fgb* - closed map.  

i) If f is fgb-continuous and surjective, then g is fgb - closed 

map. 

ii) If g is fgb-irresolute and injective, then f is fgb*-closed 

map.   

Proof  i) Let F be a fuzzy closed set of Y. Then f-1(F) is fgb-

closed in  X as f is fgb-continuous. Since g•f is fgb*-closed 

map, (g•f) (f -1(F)) = g(F) is fgb-closed set in Z. Hence g: 

Y Z  fgb - closed map. 

ii) Let F be a fgb-closed set in X. Then (g•f) (F) is fgb-closed 

fuzzy set in Z. Since g is fgb-irresolute and injective              

g-1(g•f)(F) =f(F) is fgb-closed in Y.  Hence f is a fgb*- closed 

map. 

3.36 Definition A function  f : (X, ) (Y, ) is called 

fuzzy gb - homeomorphism (briefly fgb- homeomorphism) if f 

and f-1 are  fgb- continuous.  

3.37 Theorem Every f-homeomorphism is fgb- 

homeomorphism. 

Proof   Let f: X Y be fuzzy homeomorphism. Then f and  

f-1 are f-continuous. By theorem 3.9 f and f-1 are fgb –

continuous. Hence f is fgb- homeomorphism. 

 

The converse of the above theorem need not be true as seen 

from the following example. 

3.38 Example Let X = Y ={a, b, c} and the fuzzy sets A, B 

and  C be defined as follows. A = {(a, 1), (b, 0.8), (c, 0.8)},    

B = {(a, 0.3), (b, 0.6), (c, 0.8)},C ={(a, 0.4), (b, 0.6), (c, 0.8)}. 

Consider  = {0, 1, A} and  = {0, 1, B}. Then (X, ) and 

(Y, ) are fts. Define f: X  Y by f(a)=a, f(b)=c and f(c)=b. 

Then f is f fgb-homeomorphism but not f - homeomorphism 

as A is open in X  f(A) = A is not open in Y.  f -1: Y  X is 

not  f-continuous. 

3.39 Theorem Let f : (X, ) (Y, )be a bijective function. 

Then the following are equivalent:  

a)  f is fgb - homeomorphism. 

b)  f is fgb - continuous and fgb- open maps. 

c)  f is fgb-continuous and fgb-closed maps. 

Proof  (a)  (b): Let f be fgb - homeomorphism. Then f and 

f -1 are fgb - continuous. To prove that f is fgb- open map. Let 

A be an fuzzy open set in X. Since f-1:Y X is                     

fgb-continuous, (f-1)–1(A) =f (A)  is fgb - open in Y. Therefore 

f(A) is fgb - open in Y. Hence fgb- open map. 

(b) (a)  Let f be fgb- open and fgb- continuous map. To 

prove that f -1:Y X is fgb - continuous. Let A be an fuzzy 

open set in X. Then f (A) is fgb - open set in Y since f is    fgb 

- open map.  Now (f -1)–1(A) = f (A) is  fgb - open set in Y. 

Therefore f -1: Y   X is fgb - continuous. Hence f is           

fgb - homeomorphism. 

(b) (c)  Let f be fgb - continuous and fgb - open map. To 

prove that f is fgb - closed map. Let B be a closed fuzzy set in 

X. Then 1 - B is fuzzy open set in X. Since f is fgb - open 

map, f(1-B) is fgb - open fuzzy set in Y. Now f(1-B)=1 - f(B).  

Therefore f(B) is fgb-closed in Y. Hence f is a fgb - closed 

map. 

(c)  (b)  Let f be fgb - continuous and fgb-closed map. To 

prove that f is fgb-open map. Let A be an fuzzy open set in X. 

Then 1-A is a fuzzy closed set in X. Since f is fgb - closed 

map, f(1–A) is fgb-closed in Y. Now f(1-A)=1-f(A). 

Therefore f(A) is fgb - open in Y. Hence f is fgb - open map. 

3.40 Theorem If f : (X, ) (Y, ) fgb-homeomorphism and           

g: Y Z is fgb- homeomorphism and Y is fgbT1/2 -space, then 

gof: X Z is fgb- homeomorphism.  

Proof  To show that g•f and (g•f) –1 are fgb- continuous. Let 

A be an open fuzzy set in Z. Since g: Y Z is                      

fgb - continuous, g-1(A) is fgb -open in Y. Then g-1(A) is open 

fuzzy set in Y as Y is fgbT1/2 -space. Also since f : X Y is 

fgb- continuous,  f -1(g -1(A))=(g•f) –1(A) is fgb - open in X. 

Therefore g•f is fgb - continuous.  

     Again, let A be an fuzzy open set in X. Since f–1: Y X  is 

fgb - continuous, (f –1)-1(A)) = f(A) is fgb-open   set in Y. And 

so f(A) is fuzzy open   set in Y as Y is fgbT1/2 -space. Also 

since g–1:Z Y is fgb - continuous, (g–1)-1(f(A)) = g(f(A)) = 

(g•f)(A) is fgb-open set in Z. Therefore ((g•f)–1)-1(A) = 

(g•f)(A) is fgb-open fuzzy set in Z.Hence (g•f) –1 is fgb - 

continuous. Thus g •f is fgb - homeomorphism.           

 3.41 Definition A function f : (X, ) (Y, ) is called 

fuzzy gb* - homeomorphism (briefly fgb*- homeomorphism) 

if f and f-1 are  fgb- irresolute.  

3.42 Theorem Every fgb*- homeomorphism is fgb- 

homeomorphism. 

Proof Let f : (X, ) (Y, ) be fgb*- homeomorphism. Then 

f and f-1 are  fgb- irresolute mappings. By theorem 3.9 f and f-1 

are  fgb- continuous. Hence f : X Y is fgb- 

homeomorphism. 

3.43 Theorem If  f : (X, ) (Y, ), g: Y Z be fgb*- 

homeomorphism then their composition g•f: X  Z is fgb*- 

homeomorphism. 

Proof Let A be a fgb-open set in Z. Then since g: Y Z is  

f:X  Y, g-1(A) is fgb-open in Y. Also since f: X  Y is fgb- 

irresolute, (f–1(g-1(A)) = (g•f ) -1 (A) is fgb-open in X. 

Therefore g•f : X  Z is fgb- irresolute. Again, let A be a fgb-

open set in X. Then since f-1 : Y  X is fgb-irresolute,          

(f–1)-1(A) = f(A) is fgb-open in Y. Also g-1: Z  Y is fgb-

irresolute, (g-1)-1(f(A) = g(f(A) = (g•f) (A) is fgb-open in Z. 

Therefore (g•f)-1:Z  X is fgb-irresolute. Hence  g•f : X  Z 

is fgb*- homeomorphism. 

3.44 Theorem Let f : (X, ) (Y, )be a bijective function. 

Then the following are equivalent:  

a)  f is fgb* - homeomorphism. 

b)  f is fgb - irresolute and fgb*- open maps. 

c)  f is fgb-irresolute and fgb*-closed maps. 

Proof  (a)  (b): Let f be fgb* - homeomorphism. Then f 

and f -1 are fgb - irresolute. To prove that f is fgb*- open map. 

Let A be fgb-open set in X. Since f-1 : Y  X is                     
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fgb-irresolute, (f-1)–1(A) =f (A)  is fgb - open in Y. Therefore 

f(A) is fgb* - open in Y. Hence fgb*- open map. 

(b) (a)  Let f be fgb*- open and fgb- irresolute map. To 

prove that f -1:Y X is fgb -irresolute. Let A be fgb-open 

fuzzy set in X. Then f (A) is fgb - open set in Y since f is    

fgb* - open map.  Now (f -1)–1(A) = f (A) is  fgb - open set in 

Y. Therefore f -1: Y   X is fgb - irresolute. Hence f is           

fgb* - homeomorphism. 

(b) (c)  Let f be fgb - irresolute and fgb*- open map. To 

prove that f is fgb* - closed map. Let B be a closed fuzzy set 

in X. Then 1 - B is fuzzy open set in X. Since f is fgb - open 

map, f(1-B) is fgb - open  in Y. Now f(1-B)=1 - f(B).  

Therefore f(B) is fgb-closed in Y. Hence f is a fgb*- closed 

map. 

(c)  (b)  Let f be fgb - irresolute and fgb*-closed map. To 

prove that f is fgb*-open map. Let A be an fgb-open   set in X. 

Then 1-A is a fgb-closed   in X. Since f is fgb* - closed map, 

f(1–A) is fgb-closed in Y. Now f(1-A)=1-f(A). Therefore f(A) 

is fgb - open in Y. Hence f is fgb* - open map.  

 

Definition 3.45 Let A be a fuzzy set in fts X and xp is a 

fuzzy point of X, then A is called fuzzy generalized b-

neighborhood ( briefly fgb-neighbourhood) of xp if and only if 

there exists a fgb-open set B of X such that xp  B  A.                                                                            

 

Definition 3.46 Let A be a fuzzy set in fts X and xp is a 

fuzzy point of X, then A is called fuzzy generalized  b-q-

neighbourhood ( briefly fgbq-neighbourhood)  of xp if and 

only if there exist a fb-open set B such that   xp q B ≤ A. 

 

Theorem 3.47 A is fgb-open set in X if and only if for each 

fuzzy point xp  A, A is a fgb-neighbourhood of xp.       

Proof  Let A be fgb-open set X. For each  xp  A, A ≤ A. 

Therefore A is a fgb-neighborhood of xp..                                  

           Conversely, let A be a fgb-neighbourhood of xp. That 

implies, there exist a fgb-open set B such that xp  B ≤ A. 

Therefore A is fgb-open set in X. 

Theorem 3.48 If A and B are fgb-neighborhood of xp then 

A Λ B is also a fgb-neighbourhood of xp. 

Theorem 3.49 Let A be a fuzzy set of a fts X. Then           a 

fuzzy point xp  bCl (A) if and only if every                  fgbq-

neighbourhood of xp is quasi-coincident with A. 

Theorem 3.51 Let f: (X, )  (Y, ). Then the following 

statements are equivalent.                                                         

(a) f is fgb-irresolute.                                                          (b) 

for every fgb-closed set A in Y,f-1(A) is fgb-closed in X. (c) 

for every fuzzy point xp of X and every fgb-open set A of Y 

such that f(xp)  A, there  exist a fgb-open set such that xp   

B and f(B)  ≤ A. 

(d) for every fuzzy point  xp
 of X and every fgb-

neighbourhood A of f(x), f-1(A) is a fgb-neighbourhood of xp. 

(e) for every fuzzy point  xp
 of X and every fgb-

neighbourhood A of f(xp), there is a  fgb-neighbourhood B of 

xp such that f(B) ≤ A. 

(f) for every fuzzy point  xp
 of X and every fgb-open set A of 

Y such that f(xp) q A, there exists a fgb-open set B of X such 

that  xp q B and  f(B)  ≤ A. 

(g) for every fuzzy point  xp
 of X and every fgbq-

neighbourhood A of f(xp), f
-1(A) is a fgbq-neighbourhood of 

xp. 

(h) for every fuzzy point  xp
 of X and every fgbq-

neighbourhood A of f(xp), there exists a  fgbq-neighbourhood 

B of xp such that f(B)  ≤ A. 

Proof  (a)  (b) Obvious.                                                     

(b)  (a) A is a fgb-closed set in Y implies 1–A  is fgb-open 

in Y.f-1(1-A) is fgb-open  in X implies  f-1(A) is fgb-closed in 

X. Hence f is fb-irresolute.                                                     

(a)  (c) Obvious.                                                                  

(c)  (a) Let A be a fgb-open set in Y and xp  f-1(A) implies 

f(xp) A. Then there exist a fgb-open set B in X such that xp  
B and f(B) ≤ A. Hence xp   B  ≤ f-1(A).       f-1(A) is fgb-

open in X. Hence f is fgb-irresolute.                                       

(a)  (d) Obvious.                                                                   

(d)  (a) Obvious.                                                                  

(d)  (e) Let xp be a fuzzy point of X and A be a fgb-

neighbourhood of f(xp). Then  B = f-1(A) is a fgb-

neighbourhood of xp and f(B) = f(f-1(A)) ≤A.                         

(e)  (c) Let xp be a fuzzy point of X and A be a fgb-open set 

such that f(xp)   A. Then A is a fgb -neighbourhood of f(xp). 

Hence there is fgb-neighbourhood B of xp 
 in X such that       

xp B and f(B) ≤ A. Hence there is fgb-open set C in X such 

that xp  C ≤ B and f (C) ≤ f(B) ≤ A.                                     

(a)  (f) Let xp be a fuzzy point of X and A be a fgb-open set 

in Y such that f(xp) q A. Let  B = f-1(A). B is a fgb-open set in 

X, such that xp q B and f(B)= f(f-1(A)) ≤A.                             

(f)  (a)  Let A be a fuzzy open set in Y and xp  f-1(A). 

Clearly f(xp) A.[ xp(x)]  =1- xp(x).Then f(1-xp) q A .Hence 

there exists a fgb-open set B of X such that (1-xp
 ) q B and 

f(B) ≤A. Now (1- xp ) q B  (1-xp )(x) +B(x) = 1-p + B(x) > 

1  B(x) > p  xp B. Thus  xp B  ≤  f-1(A). Hence   f-1(A) 

is fgb-open in X.                                                                      

(f)  (g) Let  xp be a fuzzy point of X and A be fgbq-

neighbourhood  of f(xp). Then there is fgb-open set C in Y 

such that xp q  C ≤A. By hypothesis there is a fgb-open set B 

of X such that xpq B  and f(B) ≤ C. Thus xp q B≤  f-1(C) ≤  f-

1(A). Hence  f-1(A) is a fgbq-neighbourhood of xp.                         

(h)  (f) ) Let  xp be a fuzzy point of X and A be fgb-open in 

Y such that f( xp ) q A. Then A is fgbq-neighbourhood of f(xp-

).So there is a fgbq-neighbourhood C of xp  such that f(C) ≤ A. 

Since C  is a fgbq-neighbourhood of xp  there exists a fgb-

open set B   of X such that  xp  q B ≤ C. Hence   xp q B and  

f(B)  ≤ A.                                                       .             
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5. CONCLUSION 
It is interesting to work on the compositions of weaker and 

stronger forms of mappings and various properties of fgb-

closed sets. Compositions of mappings can be tried with other 

forms of generalized closed fuzzy sets.   
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