
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

8

A Novel Approach for Analysis of CLR & JVM by

Performance Metrics – A Survey

P.Ananda Sekar
Assistant Professor

Department of Computer
Application

Sri Sankara Arts and Science
College, Kanchipuram

S.Hariharan
Assistant Professor

Department of Computer
Application

Sri Sankara Arts and Science
College, Kanchipuram

P.Raguraman
Assistant Professor

Department of Computer
Science

Sri Sankara Arts and Science
College, Kanchipuram

ABSTRACT

This paper is mainly designed to show the evidence to prove

difference between the Java Virtual Machine (JVM) and

Common Language Runtime (CLR). The performance is

measured with Execution time, Memory Management and

Garbage Collection while executing the programs.

General Terms

Java Virtual Machine, Common Language Runtime.

Keywords

Execution time, Memory Allocations and Garbage Collection.

1. INTRODUCTION
Java Virtual Machine (JVM) was introduced by Sun Micro

System and Common Language Runtime (CLR) was introduced

by Microsoft for their Java and .Net respectively. Though these

two have similar architectures the differences occurs on their

performances. In this paper we implemented the performance

comparison of Microsoft’s CLR and Sun’s JVM on the

Windows platform.

[All the experiments in this paper done on the standard personal

computer of configuration 40GB hard disk, 1GB Ram, Intel

processor of 1.88 GHZ Speed and the Software configuration of

JDK1.6 and Microsoft visual studio 2010.]

1.1 Java Virtual Machine (JVM):
Java is an object oriented language. Java codes are converted

into Java byte code with the help of Java compliers. Java class

files contain these Java byte codes and these are independent of

different platforms. JVM is used to handle that class file at run

time. Class file is not directly run on the host machine it needs to

be converted to the host machine's language. This conversion is

done by the JVM. JVM has the ability to handle automatic

memory management. It performs Noncontiguous memory

allocation.

1.2 Common Language Runtime (CLR):
In .Net the source code is written in the languages such as C# or

VB.NET. At compile time, .Net compiler converts source code

into CIL code or Common Intermediate Language code (also

called as MSIL—Microsoft Intermediate Language) which is in

the form of byte code. At run time just-in-time (JIT) compiler

converts the CIL code into native code to the operating system.

The .NET Common Language Runtime (CLR) is designed to be

a language-neutral architecture. It handles memory allocation,

error trapping, and interacting with the operating-system. It has

characteristics of JVM like automatic memory management. But

it performs contiguous memory allocation.

1.3 Execution Time:
Byte code commonly known as class files in Java and

executable files in .Net. Size of the byte code depends on the

complier. Generally smaller in byte code leads to quick

transmission of code on the networks.

Performance also lies on execution time of programs. But

execution time not depends on size of the code. It is because

sometimes larger programs run in quicker time and smaller

programs takes longer time to execute.

Let us consider an example for the performance of CLR and

JVM. The execution time of similar programs is calculated.

In Java,

public class Performance{

public static void main(String args[]){

long startTime;

long endTime;

int x;

startTime=System.currentTimeMillis();

for(int i=1;i<10000000;i++){

x=i*234;}

endTime=System.currentTimeMillis();

System.out.print("Execution Time:");

System.out.println(endTime-startTime);

}}

The output is,

In C#,

using System;

static class Program{

http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/Compile_time
http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://en.wikipedia.org/wiki/Run_time_(computing)
http://en.wikipedia.org/wiki/Just-in-time_compilation

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

9

static void Main(){

long startTime;

long endTime;

int x;

startTime=DateTime.Now.Millisecond;

for(int i=1;i<10000000;i++){

x=i*234;}

endTime = DateTime.Now.Millisecond;

Console.WriteLine("Execution Time:" + (endTime -

startTime).ToString());}}

The output is,

The following graph explains the things better to understand.

The attributes of the graph taken from values of the output at

seven different times.

The Performance Graph,

[Note: Smaller in value, better in efficiency]

According to the performance in the execution time of similar

programs as shown, The CLR performance was always better

than the JVM’s performance.

1.5 Memory Allocations:

Both the CLR and the JVM manage an internal heap of memory

that is used for allocations (heap-a memory area used by the

JVM and CLR for Dynamic Memory Allocation).

In JVM, it places a fixed upper limit on the heap size (by default

64Mb). If the JVM tries to satisfy an allocation that would result

in the heap growing beyond that limit, and no garbage can be

collected, then an OutOfMemoryError is thrown and the

allocation fails.

But in CLR, it has no such artificial upper limit on the heap size.

The CLR heap maximum size will be dependent on how much

memory can be allocated from the operating system.

A similar program shows how the memory allotted to objects

and other things in JVM and CLR.

In JVM,

import java.util.*;

public class OOM {

public static void main(String args[]) throws Exception{

long total=500000;

long used=0;

List<byte []> l=new ArrayList<byte[]>();

long times=100000;

try{

for(int i=1;i<total;i++){

byte []t=new byte[1024];

l.add(t);

if(i %times==0)

System.out.println("AllocatedMemory:"+getMemoryUsed());}

System.out.println("Memory Allocated");}

catch(OutOfMemoryError e){

System.out.println(e);}}

public static void getMemoryInfo(){{

Runtime runtime=Runtime.getRuntime();}}

public static long getMemoryUsed(){Runtime

runtime=Runtime.getRuntime();

Long used=runtime.totalMemory()-runtime.freeMemory();

return used;}}

The Output,

In C#,

using System;

using System.Collections.Generic;

using System.Diagnostics;

namespace ConsoleApplication{

class Program{

static void Main(string[] args){

long total = 500000;

long times=100000;

long used;

List<byte[]> l = new List<byte[]>();

try{

for (int i = 1; i < total; i++){

byte[] t = new byte[1024];

l.Add(t);

if(i %times==0)

Console.WriteLine

("Allocated Memory:"+GetMemoryUsed());}

Console.WriteLine("Memory Allocated");}

catch (OutOfMemoryException ex) {

Console.WriteLine(ex);}}

public static long GetMemoryUsed(){

Process process=Process.GetCurrentProcess();

return process.PrivateMemorySize64;

}}}

0

10

20

30

1 2 3 4 5 6 7

CLR

JVM

http://en.wikipedia.org/wiki/Dynamic_memory_allocation

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

10

The Output,

According to the output due to the upper limit condition JVM

fails to allocate but CLR doesn’t. The performance Graph

clearly shows how JVM lagging to allot the memory and CLR

memory allocation.

The Performance Graph,

In memory allocations also CLR performance will be higher

than the JVM’s performance.

2. MEMORY RELEASING:
There are two types of memories used while executing the

programs. Heap memory and Operating System memory. Heap

memory stores all the objects created by executing a program.

Objects which are created by new operator and memory for new

objects are allocated on the heap at run time. Operating System

memory is used to store the programs and Execution process

details in it.

2.1 Garbage Collection:
Garbage collection is the process of automatically freeing

objects and its memory space in the Heap which are no longer

needed by the program. When an object is no longer referenced

by the program, the heap space it occupies must be recycled so

that the space is available for subsequent new objects. The

garbage collector determines which objects are no longer

referenced by the program and make available the heap space

occupied by such unreferenced objects.

The following Programs illustrated how Garbage Collector

recovers the Heap Memory which is no longer needed by the

program,

In CLR,

using System;

using System.Collections.Generic;

using System.Diagnostics;

namespace ConsoleApplication{

class Program{

static void Main(string[] args){

List<String[]> list=new List<String[]>();

double before,after;

String []t;

for(int i=0;i<10;i++){

t=new String[10000];

list.Add(t);}

Console.WriteLine();

before=ByteToMB(GC.GetTotalMemory(false));

Console.WriteLine("MemoryUsed[KB]:"+

before.ToString("0"));

list=null;

GC.Collect();

after=ByteToMB(GC.GetTotalMemory(true));

Console.WriteLine("After GC");

Console.WriteLine("Memory Used[KB]:"+after.ToString("0"));

double pert=((before-after)/before)*100;

Console.WriteLine("Percentage

ofDeAllocation:"+pert.ToString("0.00"));

Console.WriteLine();}

public static long ByteToMB(long inBytes){

return inBytes/ 1024;}}}

The output,

Initially the heap as the memory of 437KB, after Garbage

collection works finishes it memory pull down to 41KB. Nearly

it deallocated 91% of memory.

In JVM,

import java.util.*;

public class JVMGC{

public static void main(String args[]) throws Exception{

double before,after;

List<String[]> list=new ArrayList<String[]>();

String []t;

for(int i=0;i<10;i++){

t=new String[10000];

list.add(t);}

before=ByteToMB(getUsedMemory());

System.out.printf("\nMemory Used [KB]:%.0f",before);

list=null;

System.gc();

after=ByteToMB(getUsedMemory());

System.out.print("\nAfter GC");

System.out.printf("\nMemory Used[KB]:%.0f",after);

double pert=((before-after)/before)*100;

System.out.printf("\nPercentage of De Allocation: %.2f",pert);

System.out.println();}

public static long getUsedMemory(){

Runtime runtime=Runtime.getRuntime();

return runtime.totalMemory()-runtime.freeMemory();}

public static long ByteToMB(long inBytes){

return inBytes/1024;}}

The output,

Initially the heap as the memory of 583KB, after Garbage

collection works finishes it memory pull down to 128KB.

Nearly it deallocated 78% of memory. This is considerably less

than the CLR performance.

0

10000000

20000000

30000000

40000000

50000000

1 2 3 4

JVM

CLR

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.1, April 2011

11

The Performance Graph,

Here also the performance of CLR is considerably higher than

the performance of JVM.

2.2 Releasing OS Memory:
Apart from the Heap memory other important memory which is

used to execute the program is operating system memory. In

JVM, in Garbage Collection it Releases only the memory of

heap but it release the memory of operating system. In fact it

never releases the operating system memory even though it no

longer needed. On the other hand, In CLR it will release

allocated memory back to the operating system if it is no longer

needed.

3. CONCLUSION
In this paper we experiment the things like execution time,

memory management and Garbage collection in Windows

Platform. Though both JVM and CLR have these features but on

the performance wise CLR is better on all the occasions then the

JVM.

4. ACKNOWLEDGMENTS
Our thanks to the R.Sathish Babu, Software Developer,

Syncfusion Software Pvt ltd for his valuable contribution

towards this paper.

5. REFERENCES
[1] Sam Shiel and Ian Bayley, March 5, 2005. A

Translation-Facilitated Comparison between the

Common Language Runtime and the Java Virtual

Machine

[2] Jeremy Singer, University of Cambridge Computer

Laboratory. JVM versus CLR: A Comparative Study

[3] Herbert schildt 2002.Java 2, Fifth edition. McGraw Hill

publications.

[4] Bruce Eckel 2000.Thinking in Java, Second Edition.

Prentice Hall, New Jersey.

[5] Matthew MacDonald and Mario Szpuszta, Pro ASP.NET

in C# 2005, Apress 2005.

[6] Robin A. Reynolds-Haertle,OOP with Microsoft Visual

Basic .NET and Microsoft Visual C# Step by Step by

Microsoft Press 2002

[7] K. Arnold and J. Gosling. The Java Programming

Language. Addison Wesley, second edition, 1997.

[8] N. Benton, A. Kennedy, and C. Russo. SML .NET,

2002. http://www.cl.cam.ac.uk/Research/TSG/SMLNE

[9] J. Bull, L. Smith, L. Pottage, and R. Freeman.

Benchmarking Java against C and Fortran for scientific

applications. In Proceedings of the 2001 joint ACM-

ISCOPE conference on Java Grande, pages97–105,

2001.

[10] J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey.

A Benchmark Suite for High Performance Java.

Concurrency: Practice and Experience, 12(6): 375–388,

2000. http://www.epcc.ed.ac.uk/javagrande/publications.

htm

[11] C. Cifuentes, M. V. Emmerik, and N. Ramsey. The

Design of a Resourceable and Retargetable Binary

Translator. In Proceedings of the Sixth Working

Conference on Reverse Engineering, pages 280–291,

Atlanta, USA, Oct 1999. IEEE, CS Press.

[12] GCC Benchmarks, 1999.

http://savannah.gnu.org/cgibin/viewcvs/gcc/benchmarks/

[13] J. Gough. Compiling for the .NET Common Language

Runtime. Prentice Hall, 2002.

[14] K. J. Gough. Stacking them up: A Comparison of Virtual

Machines, 2001. http://sky.fit.qut.edu.au/~gough/Virtual

Machines.ps

90.62

78.08
70

75

80

85

90

95

CLR JVM

Series1

