
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

15

Improvement in Capacity and Efficiency of Network Storage
by Configuring Hard Disk Drives on Nodes of a LAN

 K.N.Honwadkar Dr.T.R.Sontakke
 Asst.Prof. (IT) Principal
 D.Y.Patil College of Engineering Siddhant College of Engineering
 Sector 29, PCNTDC, Akurdi Sudumbare
 Pune 411 044, Maharashtra, India Pune 412 109, Maharashtra, India

ABSTRACT
Storage on Network has, always, been a key feature of the success

of the network design. Various methods are in practice. Two

techniques are suggested in this paper. Disk Clustering and a

technique to have Uniform namespace KINDFS is a distributed

file storage system designed to provide cost-effective storage

service utilizing idle disk space on workstation clusters. The

system responsibilities are evenly distributed across a group of

collaborating workstations; the proposed architecture provides

improved performance, reliability and scalability. Workstation

uptime data varies from system to system. KINDFS prototype

implementation and measurement of its performance is suggested.

Preliminary results indicate that KINDFS performance is

comparable to that of commonly used distributed file systems,

such as NFS, Samba and Windows 2000 Server.

General Terms
 Algorithms, Measurement, Performance, Design, Reliability.

Keywords
Distributed file system, metadata, SAN, NAS, NFS.

1. INTRODUCTION

Advancements in Computer Technology focus on the fulfillment

of end users‟ needs. Increasing demands from the users have

motivated the researchers to come up with excellent systems and

components. Processor speed, Memory requirements, Storage etc.

are few of the major concerns while developing computer systems.

Data storage is one such area where pressing requirements have

lead to very efficient storage devices and systems. We will focus

on this very interesting aspect of any computer system.

During early days of computer system evolvement users had

limited resources for data storage. Devices like punched cards,

magnetic tapes and drums were a few popular system components.

The bulky nature and complex working of these devices forced the

developers to think about handy, faster and simpler schemes for

data storage and handling. Floppy, Hard Disk, Compact Disk

came to existence which served the purpose for long time. Up to

2000 few Gigabyte storage disks were in use.

Nowadays, storage capacity of 300+ GB is a common feature of

latest desk- top as well as laptop computers. Data up to 700MB or

4GB can be stored on CDs and DVDs. Latest introduction of

memory sticks or Pen drives and portable hard disks and Zip

drives of capacity of the order of few Tens of Giga Bytes made it

possible for the users to carry the data wherever and whenever

needed.

The need of sharing of the information generated by users,

perhaps the most important aspect of resource sharing,

motivated the development of network systems.

Client-Server, Peer-to-Peer, Internet, VPNs exhibit different

degrees of data handling capabilities, storage capacities and

efficiency. New schemes were deployed to achieve large

storage space with efficient access. Use of Redundant Array of

Inexpensive Disks (RAID), Storage Area Networks (SANs)

and Network Attached Storage (NAS) are the examples.

1.1 RAID:
A RAID [9] partitions a stripe of data into N-1 data blocks and

parity block — the exclusive-OR of the corresponding bits of

the data blocks. It stores each data and parity block on a

different disk. The parallelism of a RAID‟s multiple disks

provides high bandwidth, while its parity storage provides

fault tolerance it can reconstruct the contents of a failed disk

by taking the exclusive-OR of the remaining data blocks and

the parity block [Patt88, Chen94]. RAIDs suffer from two

limitations.

 Performance for small writes can be degraded by the

overhead of parity management; if the system does

not simultaneously overwrite all N-1 blocks of a

stripe. Unfortunately, small writes are common in

many environments [Bake91], and larger caches

increase the percentage of writes in disk workload.

 Commercially available hardware RAID systems are

significantly more expensive than non-RAID

commodity disks because the commercial RAIDs

add special-purpose hardware to compute parity.

1.2 SAN (Storage Area Network):
 SANs are networked infrastructures designed to cater for the

needs of an organization where large amount of data is to be

stored and accessed from different locations within the

organization. These infrastructures provide a flexible, high-

performance and highly scalable storage environment. This is

accomplished by enabling many direct connections between

servers and storage devices such as disk storage systems.

High-performance Fiber Channel switches and Fiber Channel

network protocols ensure reliability and higher efficiency. One

or more Fiber Channel switches provide the interconnectivity

for the host servers and storage devices in a meshed topology

referred to as a “SAN fabric”. Sample SAN network is

shown in the figure 1. Variety of networks based on various

operating environments can share information through these

implementations.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

16

 Fig 1 Example Storage Area Network

SANs are ideal for a wide variety of applications because they are

optimized to transfer large blocks of data between servers and

storage devices. Huge data storage requirements with considerably

faster access demand these kinds of solutions. Organizations

should strike a tradeoff between expenditure in implementation

and availability and capacity of the data storage

1.3 NAS (Network Attached Storage):

Fig 2 Example Network Attached Storage system

NAS [3] solutions are typically configured as file-serving

appliances accessed by workstations and servers through a

network protocol such as TCP/IP and applications such as

Network File System (NFS) or Common Internet File System

(CIFS) [10]for file access. Most NAS implementations mainly

based around connections between workstation clients and the

NAS file-sharing facility. NAS enables organizations to quickly

and easily add file storage capacity to their technology

infrastructure. NAS focuses specifically on serving files while

hiding many of the details of the actual file system

implementation, Small LAN/WAN network packet sizes force

large transfers to be split into many small pieces. As the number of

packets involved in the transfer increases the processor gets

additional burden of splitting and reassembling of the data

packets. This further degrades the overall system throughput as the

processors cannot provide sufficient time for execution of

multiple processes, already, running.

These implementations have advantages as well as some

inherent disadvantages. On one side they are capable of

storing huge data and allow the users to access the data in

efficient way at the same time they are expensive and require

additional hardware. Therefore, researchers started finding

ways to make use of the hardware available with the

computers / workstations connected in a network.

Development of software solutions began with this motive.

Software system developers also helped in efficiently

accessing the data on a network. Depending the type of

network, secure data handling is, looked upon as, the key to

success of any new system introduced. This lead to what is

known as „File System‟ advancements and efforts were

directed to handling of network distributed data.

Two different approaches were, primarily, thought over;

Server Centric Storage (File Data) System and Server

Intensive Computing. In the first way of implementations,

Clusters of Servers are developed to cater for one or a few

services to the network users and in the second, Server/s with

sufficiently large storage are used for the execution of users‟

applications. Linux Beowulf Cluster and LTSP or Ether boot

programs are best examples of the two approaches

respectively.

Table 1 SAN vs. NAS

Feature SAN NAS

Protocol -Fiber Channel

-Fiber Channel-to-SCSI

TCP / IP

Application

s

-Mission-Critical

transaction based

database application

processing

-Centralized data backup

-Disaster Memory

Operations

-Storage consolidation

-File sharing in

NFS and CIFS

-Small block data

transfer over long

distances

-Limited read-

only database

access

Advantages -High availability

-Data transfer reliability

-Traffic on primary

network reduced

-Configuration

flexibility

-High performance

-High scalability

-Centralized

management

-Multiple vendor

offerings

-Few distance

limitations

-Simplified

addition of file

storage capacity

-Easy deployment

and maintenance

Information sharing is largely achieved on Internet, primarily

by the use of web servers; but the requirements for sharing

within local networks and intranets lead to different type of

system. Recent design advances for distributed file systems

have exploited the higher bandwidth connectivity of switched

local networks and new modes of data organization on disk to

achieve very high-performance, fault-tolerant and highly

scalable file systems. The primary goal of these systems is to

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

17

emulate the functionality of a non-distributed file system for client

programs and data on a persistent storage scheme.

In many computer labs, there is large number of computers,

connected in high bandwidth (e.g. 100Mbps) network, with

unused drive space [1,2]. There may also be relatively large

quantities of data to be stored. The users of the network system

may have to store the data generated by their applications either on

a portable storage device and carry it with them or use the same

computer till the development is complete or the unused area on

every hard drive may be used for storage of common required

files. Sharing of these files can be achieved using some of the file

system solutions discussed earlier. It is very much possible that

the solution implemented may become an overhead expensive in

execution time, availability, security of the data of individual user

as well as performance against stand alone system, with respect to

the user application. Therefore, it is necessary to have some

system which will allow the users to make use of the unused space

on every hard disk of the networked computer to store the data and

be made available on any of the member computer of the local

network.

It is, therefore, proposed to develop algorithms to improve the

efficiency of existing system to achieve better performance as well

as the capacity of the network storage. These algorithms should

work concurrently with the system functions and implementation

of any solution or environment. The currently available algorithms

may also be modified to meet the requirements. One more way of

achieving the same is by developing light weight system (set of

algorithms). This system must also be compatible to any version

of the operating system. The goal of this system for storing data

distributed over many computers, with enough redundancy so that

data can still be recovered if several of the machines are

unavailable (due to inevitable hardware failure).A new approach

of building a high performance file system is presented. The

system is aimed at providing a simple and convenient way to

achieve high aggregate I/O bandwidth. The system uses a hyper

structure to integrate multiple file system services. It provides

multiple data layouts to effectively distribute file data among

network nodes. Performance evaluations demonstrate that the

system has very good data access bandwidth with near perfect

scalability, while still maintains an acceptable Meta data

throughput.

Research is still on for finding solutions for the short comings of

the currently available implementations of systems for sharing of

network distributed data. Clusters are built for large data,

normally, involved in database systems; distributed file systems

are developed to take care of data handling in distributed

environments. Internet has become a common place for storage of

personal data which need not be carried everywhere one goes.

2. THE CONCEPT

It is proposed to develop a system (a set of algorithms) and to

configure the Hard Disk Drives of client machines in a network

into a cluster to enhance the capacity and efficiency of the network

storage. Great amount of work has also been done for systems

where data is distributed on a local network. Here, one such

scheme is suggested for the data available on local network.

2.1 Disk Clustering :
 The System provides a simple form of redundancy for data

through a process called mirroring. This form typically

requires two individual drives of similar capacity. One drive is

the active drive and the secondary drive is the mirror. The

local area network configured in disk clustering may be

represented as shown in the fig 3 below. It is clear from the

figure that the clustering and mirroring can be achieved with

„even‟ number of nodes in the network; although a few

member nodes may be down at run time, due to any avoidable

problem like hardware failure.

Fig 3 Disk Clustering Configuration

When data is written to the active drive, the same data is

written to the mirror drive. The following is an example of

how the data is written in a Disk Clustering implementation.

Each row in the chart represents a physical block on the drive

and each column is the individual drive. The numbers in the

table represent the data blocks. Duplicate numbers indicate a

duplicated data block.

 Drive 1 Drive 2

Block 1 Data1 Data1

Block 2 Data2 Data2

Block 3 Data3 Data3

This provides a full level of redundancy for the data on the

system. If one of the drives fails, the other drive still has all

the data that existed in the system. The big drawback of course

is that the capacity of the RAID will only be as big as the

smaller of the two drives, effectively halving the amount of

storage capacity if the two drives were used independently. If

stripping and mirroring is used, it then combines the methods

of mirroring and striping to provide the performance and

redundancy. The first set of drives will be active and have the

data striped across them while the second set of drives will be

a mirror of the data on the first two.

For example let us see how data is written in the

implementation. Each row in the chart represents a physical

block on the drive and each column is the individual drive.

The numbers in the table represent the data blocks. Duplicate

numbers indicate a duplicated data block.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

18

 Drive 1 Drive 2 Drive 3 Drive 4

Block 1 Data1 Data2 Data 1 Data 2

Block 2 Data 3 Data 4 Data 3 Data 4

Block 3 Data 5 Data 6 Data 5 Data 6

In this case, the data blocks will be striped across the drives within

each of the two sets while it is mirrors between the sets. This gives

the increased performance of because it takes the drive half the

time to write the data compared to a single drive and it provides

redundancy. The major drawback of course is the cost. This

implementation requires a minimum of 4 hard drives.

The main objective is to provide users with a comprehensive Data

Management Service tool that fulfils the needs for Data network

and Load management as well as a monitoring tool for prompting

Crash system. With this objective in mind, the user is provided

with a full featured package which includes RAID service, Service

Analyzer as well as Load Management and shedding load through

Clustering of Disk.

Table2: Upload and Download Time Measurement

Sr.

No

.

No. of Client

Nodes on

Cluster

File Size/

Type

Upload

Time of file

on Cluster

Download

Time of file

from Cluster

1. 4 1 MB

(.dat file)

21 sec 2 sec

2. 3 5 MB

(.mp3 file)

1 min,

45 sec

12 sec

3. 3 10 MB

(.zip file)

3 min,

30 sec

25 sec

4. 3 20 MB

(.exe file)

7min,

46sec

51sec

Advantages:

1. It requires no special storage devices it make use of disk

space of client

2. Highly compatible with variety of file system

(Linux/Windows)

3. Greater overall capacity and flexibility of a unified

storage system and more efficient management of

storage

4. Enhanced speed of data Access.

5. Greater efficiency in recovering from a disk failure

(Disaster level recovery).

6. Redundancy of data Increases.

7. Providing Lower Cost Solution.

8. Increased Performance of the System

Disadvantages:

1. Suitable for small size networks

2. Database handling becomes tedious as number of files

stored on the cluster increases

3. Files having smaller size also are split; increasing the

overhead

4. Storage of Audio and Graphics files takes considerable

time

5. Mirroring is very difficult in case variable size disk

space is available on member nodes

There are instances where network storage is not required on

regular basis. For example, small organizations may have a

few stand alone computers connected in a network. The users

store their data on local storage system. In case, some

additional space is required a user may free some space from

the storage system by moving some files to portable storage

device or may delete some files. Disk Clustering would be

very heavy solution. Therefore, some facility should be

provided to have some additional space as and when required.

The files can be stored and retrieved from this area. This space

must be restored if the need be. This may be thought of as

“storage space on demand”.

2.2 KINDFS:(K(c)luster IntegratedNetwork

Distributed File Storage (System)) :

2.2.1 Introduction to KINDFS
Many organizations have deployed desk top personal

computers connected in a network for their regular operations

and sharing of resources. Similarly, with the Internet

exploding in size and reaching into every walk of life, digital

data stored on-line are growing at an unprecedented rate. As a

result, many organizations are under continuous pressure to

expand their storage systems as demands for their services

grow and their data sets swell relentlessly. Recent

technological innovations ranging from faster peripheral

channel, to dedicated storage area networks (SAN), finally to

aggressively specialized storage systems using specialized

hardware and software have provided solution to the problem

of providing large storage space. Higher costs of these highly

specialized storage systems, more often than not, makes it

difficult for many organizations to adjust budget on storage

systems. At the same time, the computer industry has made

significant advances in magnetic recording technology, with

the cost of disk drives reduced due to mass production of disk

drives. The standard disk capacity on mainstream computers is

about 20-30GB as of mid-2001 and is growing continuously

over time. However, most users prefer the network storage for

various reasons:

a) Mobility - the users want to access the data through

consistent interface from any place;

b) Quality of Service - normally the network storage is

provided by high-performance highly-available storage

systems with built-in redundancy and regular backup

schedules;

c) Security - system security is much easier to maintain on a

centralized storage system managed by professional

administrators than on a decentralized system managed by

individual users.

As a result of this, most of the local disk space on client

workstations is only used for operating systems, application

programs and temporary files, which in total take up only 2 to

4GB disk space. Douceur and Bolosky measured and analyzed

a large set of client machines in a large commercial

environment with more than 60,000 desktop personal

computers. The measurement includes disk usage and content.

The result shows that about 53% and 50% of the overall disk

space of the studied environment is in use in September 1998

and August 1999, respectively. The disparity of space

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

19

utilization ratios on storage servers and local machines is expected

to deteriorate further over the time as the average disk size grows

rapidly. This led to a design and deployment process of various

implementations of utilizing idle disk space on workstation

clusters. Using network attached storage (NAS) approach [3], NFS

[4] by Sun Microsystems provide some way of sharing files on

networked work stations.

The Network File System NFS can‟t provide enough bandwidth as

it is based on single server functionality. In the applications like

implementations on LAN the complexity of deployment and

maintenance of Parallel file systems like GPFS or Lustre is too

high. In such cases, a simple, yet powerful enough distributed file

system is needed. A simple way of integrating several standard

services together to build a high performance distributed file

system with single namespace and aggregated data read and write

bandwidth is presented.

This is K(c) luster Integrated Network Distributed File Storage

(System) and KINDFS for short.

The KINDFS is a kind of hyper file system. It stores its metadata

and file data as files on the standard server and operates upon

them on member nodes. Here the unused storage capacity of the

member nodes is configured to add to the total storage space of the

file system. This may lead to virtual storage volume available for

file storage and redundancy of the storage over entire network.

The system will be best suited for intranet applications on highly

available data.

Fig. 4 : Global View of KINDFS

Fig. 4 shows a global view of server and clients. The configuration

shown in the figure uses only one server and number of client

nodes. Every member node has its mirrored counterpart in the

same network. File data written to both the nodes is the same with

the same attributes. When a node boots up and joins the network,

it compares its KINDFS space with the mirror node and modifies

the contents, if required. This leads to consistency in both the

images of the file data. Since, a pair of nodes stores every user file

on the common uniform namespace; at least, two copies of any

file are available in the system at any working instance.

 KINDFS architecture is designed to offer a file interface with

built-in fault-tolerance to achieve reliability and high availability.

All the members of the network share responsibilities evenly

distributed to them. KINDFS can sustain balanced and scalable

performance.

The scheme presents the following contributions:

� KINDFS is one of the better approaches to integration of

multiple services to achieve file system which enables the access

of data distributed over the local network.

� It proposes some techniques for improvement in the storage

efficiency and capacity of the uniform storage space.

� It also proposes processes for evaluation of the performance

of KINDFS.

� The resultant KINDFS will, certainly, have good

performance and scalability.

� The development and deployment of the KINDFS is easier

and simpler for use with other such services.

2.2.2 KINDFS Architecture
Fig. 5 shows a general structure of the KINDFS. The KINDFS

is a kind of hyper file system, which is built upon single NFS

server. The KINDFS store its meta-data on every member

node and file data on respective node/s. The KINDFS on the

client node follows the VFS interface. It can be mounted to a

directory like ordinary file systems. Virtualization in File

storage can be realized by dynamically mounting the users

network storage at the time of „login‟. This will enable the

user to access the files stored by the user only. The files

owned by other users can only be read. This will add to the

security to the files stored on the network storage .

 Server Client 1 Client 2 Client 3

Fig 5. General structure of the Integrated Network

Distributed File Storage -- KINDFS –

Both the KINDFS and its underlying meta file system have the

identical directory and file name structure. As Figure shown

below describes, for example if we have a file named file1

under the directory /subdir3, then we also have a file named

file1 under the same position in the meta file system where the

subdir3 is mounted as shown at /subdir3. The „subdir3‟ in this

example will be available on every member node and will

have the same file system „KINDFS‟ mounted on it. This will

make the path for „file1‟ as „/subdir3/file1‟ anywhere in the

entire network. The file, if moved, from its location at the time

of creation, to any member node of the KINDFS network to

the same directory ‟subdir3‟, the path remains the same. Here,

„subdir3‟ is the KINDFS area available on every member node

and it is globally readable as well as writable. This is depicted

in fig 6. The network administrator has to configure this space

 Client n

VFS

KINDFS

Meta Data

Services

 +

 Cache

Meta Data

Services

 +

 Storage

Meta Data

Services

 +

 Storage

Meta Data

Services

 +

 Storage

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

20

at the installation time. Every node in the network becomes client

and server for this specific storage space.

Since the metadata is stored on the meta File server, and the meta

File server hands over the same to the user at login time. When a

file is uploaded the meta data of the file is decided at the node

where the user has logged on and copied to the node where the file

is stored. An entry is made in the meta file which is moved to the

meta server at the time when the user logs out.

Fig 6: KINDFS has similar directory structure

Thus the single global namespace of KINDFS is maintained. The

attributes of files in the KINDFS are stored as the attributes of the

files in meta file system, including file name, creation and

modification time, uid, gid etc. Here, we present a typical

metadata operation by the example of file creation. When a file in

the KINDFS is created and stored on the KINDFS space following

process is used.

1. Create a file on the client node.

2. The file attributes and access rights are set.

3. Copy all the attributes from the inode of the meta file to the

inode of KINDFS file, and associate these two inode structures by

a pointer in KINDFS‟s meta file.

4. The file is stored on the local KINDFS space and to a node

which is a pair node of it.

5. Finish other housekeeping work that a normal file system must

do on creating a file.

From the previous process, we can see that the inode and dentry

structure of the KINDFS is simply a wrapper of the according data

structure of the meta file. This makes it easier for the server to

move any file from any location to other location keeping the path

same, when it is trying to balance the load or any other

housekeeping operation. This clearly indicates that the KINDFS

storage space on the network uses flat storage system i.e. no sub

directory is supported. The virtualization is achieved by the meta

file which maps the path of the file to correct KINDFS space on

the respective node.

2.2.3 Bandwidth and capacity integration:
The KINDFS is designed to integrate both the bandwidth and

capacity of its member nodes. This is done by distributing data

among member nodes. Since the KINDFS is using the specific

disk space of its member nodes to store the file data, it provides

the user a file system with the summary capacity of all the

member nodes. When data is distributed on multiple KINDFS

servers the concurrent accesses to these data are also

distributed on multiple KINDFS servers, so by this way, the

network and disk bandwidth of all the KINDFS servers can be

integrated.

2.2.4 Observations:
Following are the observations of the time taken by KINDFS

to upload and download variety of file types. The network

used has the specifications as follows…

1. Four nodes having different processor and hardware

specification are connected in a switched network.

2. Network bandwidth is 100 Mbps

3 Linux operating system with different distributions but

same version of kernel are installed on these member

nodes with same „/data‟ as the KINDFS storage space

name

4 Capacity of the uniform namespace viz. /data is different

on every member node.

5 The system is implemented as an application running on

the member nodes

6 Same users are created on all nodes; although different

users login at the time of testing

7 Every member node acts as a server as well as client, so

far as the network storage is concerned

8 Write operation (upload) takes longer time since two

copies of the same file are stored on two different nodes

9 Read operation (download) requires less time , since the

first available copy of the file is downloaded

10 The availability of the file stored is very high provided

the failure rate of the member nodes is kept very low

Table 3 : Upload and Download Time Measurement

Sr.

No

No. of

Nodes

in the

system

Node

Status

File Size/

Type

Upload

Time of

file on

KINDFS

Download

Time of

file from

KINDFS

1. 4 Running

(2Appln)

1 MB

(.dat file)

11 sec 2 sec

2. 3 Running

(3Appln)

5 MB

(mp3file)

45 sec 12 sec

3. 4 Running

(1Appln)

10 MB

(.zip file)

2 min,

20 sec

25 sec

4. 4 Running

(2Appln)

20 MB

(.pdf file)

3min,

46sec

51sec

3. RELATED WORK

The most relevant work is Microsoft Research‟s Farsite

project [5], which builds a serverless distributed file system

with a large group of collaborative desktop computers.. Fault-

tolerance of Farsite is achieved through replication of files

assisted by Byzantine-fault-tolerant algorithm. The distributed

RAID approach used in xFS [8] and Petal [7] was applied to

KINDFS Client

 /

Subdir1

 Subdir2 Subdir3

KINDFS Server

/

Subdir1 Subdir n

 Subdir2 Subdir3

File 1

File 1

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.3, April 2011

21

build a virtual disk with block interface. On top the virtual block

devices, higher level file systems and distributed file systems were

built, like the metadata manager in xFS and Frangipani. KINDFS

evenly distributes metadata and the management across all storage

devices in the cluster. Metadata in KINDFS systems are stored at

fixed locations while data can be stored anywhere, compared to

the "Anything, Anywhere" file layout in xFS. KINDFS

architecture bears close resemblance to Network-Attached Secure

Disks (NASD) [6], which targets at high performance storage

systems based on directly network-attached secure disks. The

main difference is that in KINDFS file namespace consistency is

maintained collaboratively by participating cluster members,

different from NASD whose central file manager maintains the

namespace consistency for the system.

4. CONCLUSIONS and FUTURE WORK
Efficient utilization of the free space on the nodes connected in a

LAN can be achieved. This space may have been wasted,

otherwise. Files with larger size can be stripped into as many as

the number of member nodes in the network and can be evenly

distributed over entire network where „Storage Disks of the

network will be Clustered‟ to have large storage space. This will

facilitate to have uniform utilization of the network storage space.

Splitting any file is a tedious task in itself and if we have to split

the file in variable number of fragments it becomes an overhead

for storing and handling the metadata into the database. Decision

of size of the files to be split is added task which adds to the

upload time. It cannot be implemented to have every file split

before upload; since it becomes a huge overhead in case of files

having smaller sizes. At the same time the configuration of „disk

clusters‟ allows the usage of the network drives to get a low cost

space for distributed storage.

The requirement of uniform name space is achieved by the

implementation of KINDFS. This cost effective solution provides

network distributed storage space which is sum of all the free

space available on all the member nodes (divided by two to take

care of redundant copy of the file stored). The redundancy makes

the file stored on this space highly available as the chances of both

the disks where a file and it‟s copy are stored fail at the same time.

The meta data handling shifted to the client end makes the file

access faster. The elimination of any database implementation and

handling makes the system more efficient as need of database

maintenance is entirely removed from the usage of network

distributed storage. It also extends the security features inherent to

the Operating system implementations to the user files stored on

the KINDFS storage space.

5. REFERENCES
[l] J. R. Douceur, and W. J. Bolosky. "A Large-Scale Study of

File System Contents," in Proceedings of the 1999

Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), May 1999.

[2] W. J. Bolosky, J. R. Douceur, et al., "Feasibility of a

Serverless Distributed File System Deployed on an

Existing Set of Desktop PCs," in Proceedings of the

2000 International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), June

2000.

[3] R. Gibson, and R. Van Meter, "Network Attached Storage

Architecture," in Communications of the ACM, vol. 13,

Nov. 2000.

[4] Sun Microsystems Inc., NFS: Network File System

[5] Farsite project website: http://www.research.microsoft.

com/research/sn/Farsite/

[6] G. A. Gibson, et al., "A Case for Network-Attached Secure

Disks," TR-CMU-CS-96-142, Sept. 1996.

[7] E. Lee, and C. Thekkath, "Petal: Distributed virtual disks,"

in Proceedings of the ACM 7th Intentational Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPWS), 1996.

[8] T. Anderson, M. Dahlin, et al.. "Serverless Network File

Systems," ACM Transactions on Computer Systems

(TOSC), Feb. 1995.

[9] D. A. Patterson, G. Gibson, and R. H. Katz, "A Case for

Redundant Array of Inexpensive Disks (RAID)," in

Proceedings of the I988 ACM Conference on

Management of Data (SIGMOD). Chicago, IL, June

1988.

[10] P. Leach, and D. Naik, "Common Intemet File System

(CIFS/l .O) Protocol Preliminary Draft," Intemet-Draft

Dec. 1997.

[11] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.

Roselli, R. Wang. Serverless Network File Systems. 15th

SOSP, p. 109-126, Dec 1995.

[12] Edward K. Lee and Chandrohan A. Thekkah. Petal:

Distributed virtual discs. SIGPLAN Notices, 31(9):84-

92,1-5 October 1996.

