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ABSTRACT 

Local Tangent Space Alignment (LTSA) algorithm is a classic 

local nonlinear manifold learning algorithm based on the 

information about local neighborhood space, i.e., local tangent 

space with respect to each point in dataset, which aims at 

finding the low-dimension intrinsic structure lie in high 

dimensional data space for the purpose of dimensionality 

reduction. In this paper, we present a novel learning algorithm, 

called 3N-LTSA which needs no free parameter in contrast to 

LTSA by using an adaptive nearest neighborhood graph. 

Experimental results show that 3N-LTSA algorithm without 

free parameter performs more practical and simple algorithm 

than LTSA. 
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1. INTRODUCTION 
Recently years, many efficient manifold learning algorithms 

with respect to dimensionality reduction have been received 

widely attentions for discovering the low dimension intrinsic 

structure hidden in high dimensional input space and trying to 

preserve some invariant properties as accurately as possible 

between the low and high dimensional spaces, these nonlinear 

learning algorithms fall into two class, one is of global and the 

other is of local. The global learning algorithms include 

Isomap [1,2], C-Isomap[3] and L-Isomap[3]. The local 

learning algorithms include LLE[4,5], Lapacian 

Eigenmap(LE)[6], LTSA[7], LLTSA[8], NPE[9], SNE[10], 

LPP [11], RML[12], etc.. Basically, almost all of nonlinear 

dimensionality reduction algorithms usually concerns a 

foundational concept of neighborhood, because it is of central 

importance not only in studies of bijective map between high 

and low dimensional space, due to every point in low 

dimension embedding space has a neighborhood 

homeomorphic to an open set of high dimensional real space 

from viewpoint of topology, but also in the analysis of 

algorithm’s robustness related to the problem of topological 

stability [13,14]. Indeed, all learning algorithm mentioned 

above, except SNE, are closely related to the information 

about the representation of local neighborhood structure, i.e., 

the choice of nearest neighbors that may be used naturally to 

results in a corresponding neighborhood in each data points. 

The first step involved in the procedures of manifold learning 

algorithms is always to extract and construct an efficient 

representation about neighborhood in high-dimensional input 

space that can be viewed as an infrastructure corresponding to 

data space, and then describing certain geometric or algebraic 

properties upon this local structure, for example, LTSA [7] 

and LLTSA [8] algorithms require information about the local 

tangent space based on every neighborhood in each data point. 

However, in the case of learning intrinsic structure, 

neighborhood in each data point used in various 

state-of-the-art approaches are determined by the common 

used concept of k-nn or -nn neighbors, but the k or  appears 

in a form of parameter within algorithms which must be 

specified by user. In some toolboxes related to dimensionality 

reduction, the value of parameter k is selected to equal a fixed 

number with respect to variant testing data set. But as 

suggested in [7] that k should be chosen to match the 

sampling density, noise level and the curvature at each data 

points so as to extract an accurate local representations, and 

that it’s worthy of considering variable number of neighbors 

that are adaptively chosen at each data point. In [15,16], an 

adaptive neighborhood graph is proposed for learning the 

infrastructure of dataset which can be easily applied to the 

LLE and Isomap algorithms, and resulted in two novel and no 

free- parameter algorithm: 3N-LLE and 3N-Isomap. The key 

ideal is motivated from a comprehensive conception of natural 

nearest neighbor selection that is irrelevant to the parameter k. 

Following this routine, we will apply this adaptive mechanism 

of choosing natural nearest neighbor to the local tangent space 

alignment (LTSA) algorithm to handle the problem of 

nonlinear dimensionality reduction. Solutions presented by 

original LTSA can also be interpreted as an invariant 

subspaces spanned by true low-dimensional representations of 

the observations [17], which aims at the performance analysis 

related to the worst-case upper bound on the angle between 

the estimated linear invariant subspace and the true linear 

invariant subspace. For the problem of face recognition, two 

variant versions of LTSA-based algorithms are presented 

recently, one is the linear local tangent space alignment 

(LLTSA) [8], and the other is the orthogonal discriminant 

linear local tangent space alignment (ODLLTSA) [18].  

In this paper, we present a novel LTSA-based algorithm, 

called 3N-LTSA, which depends on the concept of natural 

nearest neighbor (3N) instead of k-nn neighbors used in 

original LTSA. 3N-LTSA is also an adaptive and unsupervised 

learning algorithm, like 3N-LLE, that does not need to specify 

free parameter k. It implies that the use of 3N-LTSA for the 

dimensionality reduction does not need any priori information 

about the intrinsic structure. Experimental results show that 

3N-LTSA algorithm without free parameter performs more 

practical and simple algorithm than LTSA. 

2. ADAPTIVE NEIGHBORHOOD 

GRAPH 

2.1 Natural Nearest Neighbor  
Natural nearest neighbor [15, 16] can be viewed as an 
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extended version to the k-nn neighbor, but it has a significant 

implication with respect to the true distribution of data in real 

world. For example, even under the assumption of uniformly 

distribution, there affirmatively exist a few data objects may 

be taken into consideration as outliers which are far from the 

main data objects from the distance and statistic perspectives. 

The key idea is originated from the real world observations 

that the neighbors should be accepted each other, similar to 

the “friendship” relations between individuals, naturally, some 

person have more friends whereas some person have few 

friends, the number of one’s friends is determined by the 

number of how many people are taken him or her as a friends. 

For general data objects, an object y is one of the neighbors of 

object x if and only if object x is considered as a neighbor of 

object y. The more the objects like object y, the more the 

neighbors of x should have. In particular, data points lying in 

sparse region should have small number of neighbors, 

whereas data points lying in dense region should have large 

number of neighbors. The relationship between neighbors 

should not only represent the information of the distribution 

of data objects, but also reveal certain mechanism of 

generating data, such as Poisson random process. 

Finding natural nearest neighbor (3N) can be formalized as 

following formula, an indicator that defines a possible and 

compact super-bound of k [15,16]: 

sup sup { | ( )( (( )(( )

( )( ( )))))}

k r N

r

r r r N x x S

y y S y x x NN y
      (1) 

where NNr(y) denotes the r-th nearest neighborhood in sense 

of k-nn,  N the set of non-zero nature numbers, and S the 

data set. Clearly, the supremum in the right hand of formula (1) 

does exist, and the fact that the supremum can be taken 

automatically with respect to all possible r is important 

because one does not need to have any priori information on r 

according to a process of searching r-nn in step by step way 

(Table 1) for all data points. In fact, supk indicates a situation 

in which all data objects within data set may be in a well state 

of connectivity, so we call supk as an indicator of saturation 

connection. For the sake of description simplicity, we also call 

NNr(y) as r-nearest neighbor path (r-NNP) of point y. 

Algorithm 1 provides a process of calculating the number of 

neighbors for every data points that conforms to the 

implications given in (1). 

Table 1. Finding 3N and constructing 3NG or SNG for a 

data set S 

Algorithm 1: Definition of 3NG or SNG. Input data set S. 

Output the indicator of saturation connectivity, the number 

of neighbors at each point and the neighbors within 

corresponding neighborhood. 

1. r=1; for all i S, nb(i)=0，ratio_nb(i)=0, NNr(i)= . 

2. For every point i S, calculates the r-th nearest neighbor 

of i: nnr(i); NNr(i) = NNr(i)  { nnr(i)}. 

3. For every point i S, counts the number of i occurred in all 

NNr(j): nb(i), (j=1,…,N); if  there exist some nb(i) =0 then  

r=r+1 and goto step 2; 

4. supk =r;  

5.For all i, output: nb(i) ， ratio_nb(i)=nb(i)/(N  supk ), 

NNnb(i)(i) or NNsup_k(i). 

6. Define 3NG: connecting each point i to its nb(i) nearest 

neighbors for all data points or SNG: connecting each point 

to the supk or multi- supk nearest neighbors if the 

connectivity of graph is not satisfied the requirements. 

Computing supk implies a new strategy of how to 

automatically finding the value of k, i.e. the processes of 

searching k-nn at each point should be completed when points 

such as outliers which keep away from the main data set at 

least belong to one k-nearest neighborhood. The value of supk 

is considerable stable (Fig.1) for Swiss roll data with different 

size. In fact, supk is a constant for a specialized data set and 

equals the mean value of all nb(i). It shows that the value of 

supk presents a relatively invariant quantity for the data 

generating model. 

 

 

 
Fig.3 3NG with 400 random sampled points 

generated from Matlab function randn(2,400), in 

which the connectivity indicator is of 10. 

 
Fig.1 the averaged values of supk with different size 

for Swiss roll data in which six group’s data at each 

size N are sampled randomly. 

 
Fig.2 3NG with 500 random sampled points 

generated by Matlab function rand(2,500), the 

connected indicator supk = 6. 
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2.2 Constructing Adaptive Neighborhood 

Graph 

Two main ways may be taken into consideration to construct 

the nearest neighbor graph according to the amount of 

observations. One way is to use a same number of neighbors 

for all points in the graph for the requirement of connectivity 

when the amount of sample data is too small, we dub this 

nearest neighbor graph the saturation nearest neighbor graph 

(SNG). Another way is to use a variant number at each point 

which follows from the new concept of 3N and induces a 

natural nearest neighbor graph (3NG) corresponding to the 

distribution of a sampled data. Given data set, the procedure 

of constructing an adaptive neighborhood graph is very simple. 

As described in algorithm (Table 1), there are two kinds of 

infrastructure representations relevant to any given data set, 

one is 3NG which can be constructed by connecting each 

point i to its nb(i) nearest neighbors (Fig.2, Fig.3, Fig.4, Fig.5), 

the other is SNG which can be comprised by connecting each 

point i to its supk nearest neighbors, in such case, all points 

have the same number of neighbors similar to k-nn graph but 

k is of the value of supk. For two standard distributions, one is 

of uniformly distribution (Fig.2), one is of normal distribution 

(Fig.3) and for the two mixed distributions (Fig.4, Fig.5), 

natural nearest neighbor graphs (3NG) can reveal the true 

information about the densities. In particular, Fig.4 (right) and 

Fig.5 (right) preserve the best clustering structures related to 

the raw data used in testing the efficiency of promising 

approaches, such as spectral graph clustering and normalized 

cuts for image segmentation ([19,20]). It shows that 3NG may 

be able to use to improving the performance of clustering 

methods. 

3. ALGORITHM 

3.1 Manifold Learning via Local Tangent 

Space Alignment (LTSA) 
Consider a data set X=[x1, …, xN] sampled from Md which is 

an underlying nonlinear low-dimension manifold of 

dimension d. Furthermore, suppose Md is embedded in the 

real Euclidean space RD, where d<D. LTSA algorithm 

attempts to find a nonlinear mapping that maps the set X of N 

points to the low-dimensional coordinates Y=[y1, …, yN] in Rd 

in a way of preserving local neighborhood structure through 

aligning local tangent space to a Jacobi matrix at each points. 

The fundamental model based on first order Taylor expansion 

is taken as following [7]: 

( ) ( ) ( )( ) (|| ||)ff f J O    

where f :   Rd RD is assumed smooth enough, and f( ) is a 

parameterized manifold. Jf ( ) denotes the Jacobi matrix of f at 

point . 

3.2 3N-LTSA Algorithm 
Given the data set X=[x1, …, xN] in RD, for each point xi, we 

denote the set of its nb(i) natural nearest neighbors 

(3N-neighbor) or supk nearest neighbors by a matrix 

Xi=[xi1, …, xinb(i)] (for the second case, nb(i)=supk i=1, …, N). 

Note that nb(i) (i=1, …, N)  and the connectivity indicator 

supk can be automatically calculated according to the 

algorithm 1 described above. To preserve the local structure of 

each neighborhood Xi, like original LTSA [7] and LLTSA [8], 

the local linear approximation for the data points in Xi by 

using tangent space should be given as 
( )

2

2
, ,

1

2

( ) 2
,

arg min || ( ) ||

arg min || ||

j

nb i

i j
x Q

j

i nb i
Q

x x Q

X H Q

                (2) 

where Hnb(i) = Inb(i) - eeT/nb(i), Inb(i) denotes the 

nb(i)-dimension identity matrix, e the nb(i)-dimension vector 

of all ones, Q is an orthonormal basis matrix of the tangent 

space and has d columns,  = [ 1, .., nb(i)], where j is the 

local coordinate corresponding to the basis Q. The optimal 

solution x in the above optimization is given by 
ix , the mean 

of all the 
jix s and the optimal Q is given by Qi, the matrix of 

d left singular vectors of XiHnb(i) corresponding to its d largest 

singular values, and  is given by i defined as 

  
(a) 

 
(b) 

Fig.4 (a) Artificial data set, consist of 200 points 

include one circular plus two gaussian blobs, one 

inside, one outside (Jianbo Shi, 1997). (b) 3NG 

corresponding to the data (right), in which supk=9. 

 
(a) 

 
(b) 

Fig.5 (a) Artificial data set, consist of 260 points 

include one circular plus three gaussian blobs, one 

inside, two outside (Jianbo Shi, 1997). (b) 3NG 

corresponding to the data in (a), in which supk=12. 
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( ) ( )

( ) 1 ( )

( )

[ , , ],

( ).
j

T i i

i i i nb i nb i

i T

j i i i

Q X H

Q x x


                 (3) 

Also similar to the calculations taken out in the original LTSA 

[7] or LLTSA [8], we can construct the global coordinates yi , 

i=1,…,N, in Rd as following 

( ) ( ) , 1, , ( ), 1, , .
j

i i

i i i j jy y L j nb i i N         (4) 

where 
iy  denotes the mean value of 

jiy , Li a local affine 

transformation matrix that needs to be determined, and 
( )i

j
the local reconstruction error. Formula (4) can be 

represented in matrix form 

( )i nb i i i iY H L E                             (5) 

where 
1 ( )

( ) ( )

1 ( )[ , , ], [ , , ]
nb i

i i

i i i i nb iY y y E  . 

In order to preserve as much local structure information as 

possible in embedding space, minimizing the total local 

reconstruction errors Ei is required  
2 2

2 ( ) 2
, ,

arg min || || arg min || || .
i i i i

i i nb i i i
Y L Y L

i i

E Y H L     (6) 

So, the optimal alignment matrix Li that minimizes the local 

reconstruction error has the form (similar to [7]) 

( ) ( ) ( ), ( ),i i nb i i i i nb i nb i i iL Y H and E Y H I   

where 
i

 is the Moore-Penrose generalized inverse of i . 

Let Y=[y1, …, yN] and Si be 0-1selection matrix such that YSi = 

Yi . The objective function can be converted into the form [7, 

8] 
2 2arg min || || arg min || ||

arg min ( ).

i F F
Y Y

i

T T T

Y

E YSW

tr YSWW S Y

           (7) 

where S = [S1, …, SN], and W = diag (W1,…,WN) with 

( ) ( )( )i nb i nb i i iW H I . According to the numerical 

analysis in [7], Wi can also be written as 

( ) ( )( )T

i nb i nb i i iW H I VV , where Vi presents the matrix of d 

right singular vectors of XiHnb(i) corresponding to its d largest 

singular values. To uniquely determine Y, we impose the 

constraint YYT = Id. it turns out that the vector e of all ones is 

an eigenvector of  

B = SWWTST                             (8) 

corresponding to a zero eigenvalue. Therefore the optimal Y is 

obtained through the d eigenvectors of B corresponding to the 

2nd to d+1st smallest eigenvalues. We call this algorithm 

3N-LTSA. 

Comparison to the original LTSA algorithm, here an adaptive 

neighborhood based on 3N neighbor is adopted that making 

the data set into an automatically state in which local 

neighborhood structure information can be easily extracted 

without any assumptions and priori knowledge about the data. 

The rest of steps are strictly confirmed with the steps in 

original LTSA except the size of neighborhood may be 

different at each point and the dimension of tangent space 

upon each neighborhood. 

As discussed above, 3N-LTSA algorithm can be summarized 

as following steps. Given a data set X = [x1, …, xN]. 

Step 1: Constructing an adaptive neighborhood 3NG upon the 

data set X. For each xi, i=1, …, N, select nb(i) or supk 

nearest neighbors automatically. Indeed nb(i) may be 

other formats, such as max{nb(i)} if the amount of 

sampled points is relevant small. 

Step 2: Extracting neighborhood feature spaces information. 

Compute Vi, the matrix of d singular vectors of XiHnb(i) 

corresponding to its d largest singular values, and set 

( ) ( )( )T

i nb i nb i i iW H I VV . 

Step 3: Constructing alignment matrix. Form the matrix B by 

locally summing as follows: 

( , ) ( , ) , 1,...,T

i i i i i iB I I B I I WW i N  

    with the initialization B = 0, where Ii = {i1, …, inb(i)} 

denotes the set of indices for the nb(i) nearest neighbors 

of xi. 

Step 4: Aligning global coordinates. Compute the d+1 

smallest eigenvectors of B and pick up the eigenvectors 

matrix corresponding to the 2nd to d+1st smallest 

eigenvalues in non-descending order. Set the low 

dimensional coordinates as Y = [Y1,…,YN]. 

4. EXPRIMENTAL RESULTS 
In is section, several experiments are carried out to evaluate 

the efficiency of the 3N-LTSA algorithm presented in this 

paper, and several data sets include synthetic data and real 

face data are used in these experiments. Three schemes based 

on the natural nearest neighbor are formulated to select the 

number of neighbors. First, the number of original 3N 

neighbors nb(i) obtained from algorithm 1 is used directly to 

each points, second, the number of neighbors at each point is 

based both on the values of supk and nb(i), i.e. nb(i) is 

designed to be the value of supk+|supk-nb(i)|. Third , for every 

point i, the number of neighbors is selected to be nb(i) – 

std(nb) if nb(i) is great than supk, otherwise, the nb(i) + std(nb) 

is adopted. For example, Fig.9 shows the results of 3N-LTSA 

by using three different schemes.  

4.1 Synthetic Data Sets 
Five sets of synthetic data obtained from the MANI demo are 

used to illustrate the low-dimensional intrinsic representations 

induced by 3N-LTSA (Fig.6, Fig.7, Fig.8, Fig.9, Fig.10), in 

which 3NG or variant SNG are used for representing the 

infrastructures corresponding to the several data respectively. 

Another three parameterized curve are also used to 

demonstrate the effectiveness of the 3N-LTSA (Fig.11, Fig.12, 

Fig.13). 

 
(a) 

 
(b) 

Fig.6. Swiss Roll data with 1000 points (top),The 

embedding (bottom) of 3N-LTSA corresponding to the 

left, in which, the number of neighbors at each point i 

is formulated to nb(i),  and supk=8. 
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(a) 

 
(b) 

Fig.7. (a) Swiss Roll/ hole data (Donoho & Grimes) with 

1000 points. (b) The embedding of 3N-LTSA 

corresponding to the data in (a), in which, the number of 

neighbors at each point i is formulated to supk+abs( nb(i) 

–supk),  and supk=5. 

 
(a) 

 
(b) 

Fig.8 (a) Punctured sphere data (Saul & Roweis) with 

2000 points. (b) The embedding of 3N-LTSA 

corresponding to the data in (a), in which, the number of 

neighbors at each point i is formulated to nb(i), and 

supk=5. 

 
(a)                     (b) 

Fig.9. (a) Gaussian randomly sampled 1000 points. (b) 

The embedding of 3N-LTSA corresponding to the data, 

the number of neighbors at each point i equals nb(i) , the 

indicator supk=49. 

 
(a)                    (b) 

 
(c)                      (d) 

Fig.10. (a) Horoidal Helix (Coifman & Lafon) data with 

1800 points. Three embeddings of 3N-LTSA 

corresponding to the data in (a) are illustrated in (b), (c) 

and (d) ,which corresponding to the number of neighbors 

at each point i , nb(i) , supk+abs(nb(i)-supk)  and if 

nb(i)>supk then nb(i)=nb(i)-std(nb) else 

nb(i)=nb(i)+std(nb) respectively, the indicator supk=11. 

 
(a) 

 
(b) 

Fig.11. S-surface with 2000 points (left). The embedding 

of 3N-LTSA corresponding to the data (right), the number 

of neighbors at each point i equal nb(i) , the indicator 

supk=6. 
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4.2 Face data 
Isomap face data used in [1] is selected to illustrate the 

performance of 3N-LTSA algorithm, which contains 698 

images represented as a set of 4096-dimensional vectors. Each 

vector represents the bright values of 64 pixels by 64 pixels 

image of a face in a way of rendering with different pose and 

lighting directions. In this experiment, a variant 3NG is used 

with 3N-LTSA algorithm, in which, the third scheme of 

selecting neighbors is applied, and the 2-D embedding is 

shown in Fig.14. 

 

 

5. CONCLUSIONS AND FUTURE 

WORKS 
Here we propose a novel algorithm 3N-LTSA that applies a 

very simple and general adaptive neighborhood graph 3NG or 

SNG to the local manifold learning algorithm LTSA based on 

a novel strategy of choosing nearest neighbors, it provides a 

suitable and compactable representation about the various 

kind of data set, which is closely related to the data 

distributions whatever for the high or low dimensional data as 

shown above. Meanwhile, it is an adaptive unsupervised 

learning algorithm which extends the original LTSA algorithm 

to more broad applications, because it does not need any other 

information about the intrinsic structure with respect to the 

selection of free parameter. Many experiments show that it is 

a more practical and simple algorithm than LTSA. 

Indeed, there are some other strategies about choosing 

adaptive neighborhood based on the statistics properties of 

nb(i) and the indicator supk that also closely relates to the 

problem of learning similarity matrix in machine learning and 

 
(a) 

 
(b) 

Fig.12. (a) Fish Bowl data with 2000 points. (b) The 

embedding of 3N-LTSA corresponding to the data, 

the number of neighbors at each point i equal nb(i) , 

the indicator supk=7. 

   
(a) 

 
(b) 

Fig.13. (a) Parameterized surface with 2000 points. (b) 

The embedding of 3N-LTSA corresponding to the data in 

(a), the number of neighbors at each point i equals to 

nb(i)=supk+abs(nb(i)-supk) , the indicator supk=6. 

 
(a) 

 
(b) 

Fig.14. Isomap Face data contain 698 images. (a) The result 

of embedding generated by 3N-LTSA corresponding to this 

data, the number of neighbors at each point i are determined 

by following strategy: if nb(i)>supk then nb(i)=nb(i)-std(nb) 

else nb(i) = nb(i) + std(nb) , the indicator supk=8. (b) 

Visualization of all images in 2D space with respect to the 

embedding in (a). 
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pattern recognition fields for the task of clustering and 

classification, this is a future work for us. 
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