
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.4, April 2011

19

A Buffer Cache Management for Locality with Prefetching

 S.Subha

SITE, VIT, Vellore

TamilNadu, India

ABSTRACT

This paper proposes buffer cache architecture. The proposed

model consists of three units – main buffer cache unit, pre-fetch

unit and LRU Evict Unit. An algorithm is proposed to retain the

evicted entry from main buffer cache unit in the LRU Evict Unit

thereby giving it a second chance of access. On subsequent

access in the LRU Evict Unit, the entry is promoted to the pre-

fetch unit to accommodate more entries in the main buffer cache

unit. On access in the pre-fetch unit, an entry is fetched into the

main buffer cache. The LRU replacement policy is used in all

the units. The proposed model is compared with buffer cache

architecture with LRU replacement algorithm. The performance

is comparable for sequential input where as 3% improvement in

performance is seen for random input.

General Terms

Database buffer cache algorithm

Keywords

Buffer cache architecture, Least Recently used, Performance of

database management system

1. INTRODUCTION
Buffer caches play an important role in database management

systems. The size of the buffer cache plays a significant role in

its performance. Pre-fetching plays a significant role in buffer

cache performance. Various algorithms for buffer cache have

been proposed. Some of them are LFU, LFU-k, 2Q, FBR,

LRFU. The author in [12] proposes a buffer cache algorithm

with pre-fetching that performs better than the waiting room -

weighing room algorithm proposed in [3]. Pre-fetching has also

been proven to be effective as discussed in [3, 4, 7 and 8]. File

system speed has impact on buffer cache management [1]. The

Least Recently Used replacement algorithm (LRU replacement)

is often used in buffer cache. The major performance issue is

that the LRU replacement entry is accessed after being evicted

from the buffer cache. Pre-fetching helps in performance to a

certain extent if the access pattern is sequential. This paper

proposes an architecture which saves the LRU evicted entry

inside the main memory in a separate unit called LRU Evict

Unit. This reduces the number of misses based on the access

pattern. The concept of access distance is used. This concept

refers to the number of distinct entries that are accessed between

consecutive accesses to a record. For example if the access

pattern were 100, 200, 300, 100, 200, the access distance for 100

is 2 at time = 4 units as 200, 300 are accessed before it is

accessed again.

An algorithm to place/replace entries in the proposed buffer

cache model is developed. It is simulated for sequential and

random input. The performance for sequential input is

comparable with LRU replacement algorithm. A performance

improvement of 3% is seen for random input.

The rest of the paper is organized as follows. Section 2 gives the

Motivation, section 3 proposed model, section 4 Simulations,

section 5 Conclusion and section 6 lists the references.

2. MOTIVATION
Consider a buffer cache of size four entries. Let the pre-fetch

unit for this cache consist of three entries. Consider the

following record access. Let the record id be 100, 200, 300, 400,

500, 600, 100. In the LRU replacement algorithm misses for

100, 200, 300, 400 happens with total number of misses = 4.

The record id 500 replaces record id 100 by LRU replacement

algorithm with number of misses = 5. Misses occur for 600 and

100 with total misses = 7. Consider the following architecture

with associated algorithm; the system has a LRU Evict Unit in

addition to the main buffer cache unit and Pre-fetch unit. The

size of this unit is two entries.

1. Check if the address is in Main cache unit. If so,

increment the number of hits and stop.

2. Check if the record is found in LRU evict. If found,

the record is fetched for processing and placed in the

Pre-fetch Unit. The LRU replacement policy is

adapted in the Pre-fetch unit. Increments hit count and

stop.

3. Check if the record is found in Pre-fetch Unit. If

found, promote it to Main cache unit, increment hit

count and stop.

4. Place the record in Main Cache unit. The policy for

placement is as follows. If there is a vacant slot, place

the record. If all slots are full, place the record in LRU

slot. The LRU record is placed in the LRU Evict unit.

The policy for placement in LRU Evict is as follows.

If there is vacant slot, it is placed in it. Else, the LRU

of LRU Evict is replaced. Pre-fetch the next block

based on OBL into the pre-fetch unit. Increment the

number of misses and stop.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.4, April 2011

20

According to the above algorithm, misses occur for 100,

200, 300, 400 with total number of misses = 4. For 500, the

record with record id 100 is replaced. The record with

record id 100 is placed in the LRU Evict unit. Record with

id 600 replaces record with id 200 which is placed in the

LRU Evict unit. The total number of misses is = 6. For

record with record id 100, a hit is observed in LRU Evict

Unit. It is transferred into the Pre-fetch Unit. There is an

increase in number of hits in this algorithm. This is the

motivation behind this paper.

3. PROPOSED ARCHITECTURE
The proposed system is shown in Figure 1. The system consists

of three parts.

1. Main cache unit

2. LRU Evict

3. Pre-fetch Unit

The record is searched for in the Main Cache Unit depicted by

(1). If not found, it is searched in Pre-fetch Unit and fetched to

Main Cache Unit depicted by (2). The victim of replacement is

placed in LRU Evict Cache depicted by (3). If not found in Pre-

fetch Unit, the record is searched in the LRU Evict Unit and

placed in Pre-fetch Unit depicted by (4). The Pre-fetch Unit is

assumed to have size to place n number of records n>1. The

size of the LRU and Pre-fetch unit is assumed to be less than the

Main cache unit.

The algorithm for the proposed architecture is given next.

Algorithm LRU_Retain_Buffer Cache Algorithm: Given an

address a this algorithm returns TRUE if it is found in the cache

unit else returns FALSE

1. Check if the address is in Main cache unit. If so, write

TRUE and stop.

2. Check if the record is found in LRU evict. If found,

the record is fetched for processing and placed in the

Pre-fetch Unit. Write TRUE and stop.

3. Check if the record is found in Pre-fetch Unit. If

found, promote it to Main cache unit, write TRUE and

stop.

4. Place the record in Main Cache unit. The policy for

placement is as follows. If there is a vacant slot, place

the record. If all slots are full, place the record in LRU

slot. The LRU record is placed in the LRU Evict unit.

The policy for placement in LRU Evict is as follows.

If there is vacant slot, it is placed in it. Else, the LRU

of LRU Evict is replaced. Pre-fetch the next block

based on OBL into the Pre-fetch unit. Write FALSE

and stop.

The time complexity of the algorithm is O (n) for n records. The

algorithm gives a second chance for access to the LRU block

that is evicted from the Main Cache unit by placing it in LRU

Evict unit. A record which is accessed at time x, is placed in

LRU Evict on becoming LRU candidate and stays in the LRU

Evict Unit till it is accessed next or becomes LRU record in it.

The size of the LRU Evict Unit and Pre-fetch Unit play an

important role in the performance of the algorithm. For the best

case, if the size of the LRU Evict is equal to the total number of

distinct addresses in the application, only the first access to the

record will incur a miss.

4. SIMULATIONS
The proposed algorithm is simulated for sequential and random

input. C routines were written to generate the record ids for

sequential and random access. The performance of the proposed

model and the LRU replacement algorithm are comparable for

sequential input with 99% hits. The performance of the

algorithm is shown in Table 1 and Table 2 for random input of

size 100000 entries. For a given buffer cache size, the sizes of

the LRU Evict Unit and Pre-fetch Unit are varied. It is observed

that for a given buffer cache size, the misses are minimum for

pre-fetch unit of 64 entries for LRU Evict Unit sizes of 64, 32,

16, 8, 4, 2. The pre-fetch unit size was varied from 64 to 2 in

powers of two for this study. In these tables c stands for the

LRU Evict Unit size and p stands for Pre-fetch Unit size in

number of entries. If the buffer cache size is greater than the

number of unique entries in the run, the number of misses is

equal to the number of unique entries. This was verified for

various sizes of the LRU Evict Unit and Pre-fetch Unit. Table 3

gives this data for random input. The algorithm is compared

with traditional LRU replacement algorithm. A performance

improvement of 3% was seen. This is shown in Table 4.

Table 1 Buffer Cache Size = 512 entries. random input

size=100000 entries. The rows are c and columns p

c/p 64 32 16 8 4 2

64 42615 44575 45323 45725 45861 46001

32 43145 44582 45349 45750 45907 46024

16 44483 46039 46800 47206 47380 47460

8 45202 46781 47558 47978 48146 48215

4 45666 47251 47955 48359 48513 48623

2 45861 47379 48121 48530 48730 48818

0 46019 47583 48328 48719 48915 48998

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.4, April 2011

21

Figure 1 Proposed Buffer Cache Model

Table 2 Buffer Cache Size = 256 entries random input size =

100000 entries. The rows are c and columns p.

c/p 64 32 16 8 4 2

64 66436 68980 70178 70669 71005 71092

32 66803 69060 70132 70717 70973 71117

16 68261 70528 71619 72215 72513 72646

8 69043 71275 72350 72895 73222 73358

4 69370 71622 72763 73340 73632 73796

2 69513 71834 72991 73574 73857 74005

0 69727 72087 73182 73751 74034 74199

Table 3 Buffer Cache Size = 1024 entries random input size

= 100000 entries. The rows are c and columns p.

c/p 64 32 16 8 4 2

64 1000 1000 1000 1000 1000 1000

32 1000 1000 1000 1000 1000 1000

16 1000 1000 1000 1000 1000 1000

8 1000 1000 1000 1000 1000 1000

4 1000 1000 1000 1000 1000 1000

2 1000 1000 1000 1000 1000 1000

0 1000 1000 1000 1000 1000 1000

Table 4 Performance Comparison for random input of

100000 entries

size lru proposed %improve

512 46028 42615 3.413

256 69752 66436 3.316

The simulated results are compared with buffer cache proposed

in [10] of same size. The buffer cache algorithm proposed in [6]

performs same as the proposed algorithm in [11] for sequential

input of size 500001 entries and random input of size 10001

entries. Hence, the comparisons were confined to the algorithm

in [11] to save computational time.

Main Cache

Unit

LRU Evict Unit

Pre-fetch Unit

Address stream

3 4

2

1

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.4, April 2011

22

5. CONCLUSION
This paper proposes an algorithm for buffer cache. The proposed

algorithm assumes that the system has three units Main cache

unit, LRU Evict Unit and Pre-fetch Unit. The algorithm is based

on the concept of providing second chance to the LRU accessed

record in the buffer cache. The algorithm is simulated and

performance improvement of 3% is seen over LRU replacement

algorithm for random input while the performance is comparable

with LRU replacement algorithm for sequential input.

6. REFERENCES
[1] Ali R. Butt, Chris Gniady, and Y.Charlie Hu, The

Performance Impact of Kernel Prefetching on Buffer Cache

Replacement Algorithms, ACM SIGMETRICS, ’05.

[2] Elizabeth J. O’Neil and Patrick E. O’Neil, UMass/Boston,

The LRU-K Page Replacement Algorithm for Database

disk Buffering, SIGMOD,1993

[3] H.Seok Jeon, Sam H.Noh, A Database Disk Buffer

Management Algorithm based on Prefetching, Proceedings

of the seventh international conference on Information and

Knowledge Management 1998, pp-167-174

[4] Hui Lei, Dan Ducha mp, An Analytical Approach to File

Prefetching, Proceedings of the USENIX 1997 Annual

Technical Conference, pp-275-288, 1997.

[5] Jong Min Kim_ Jongmoo Choi_ Jesung Kim_Sam H. Noh,

Sang Lyul Min_ Yookun Cho, Chong Sang Kim, A Low-

Overhead High-Performance Unified Buffer Management

Scheme that Exploits Sequential and Looping References,

OSDI, 2000

[6] Mukesh Kumar Chaudhary, Manoj Kumar, Mayank Rai, A

Modified Algorithm for Buffer Cache Management, IJCA,

No. 12, Article 8

[7]Mark Palmer, Stanley B. Zdonik, FIDO, A cache that learns

to Fetch, Proceedings of 17th International Conference on

Very Large Databases, pp255-264, 1991.

[8] Pei Cao, Edward W. Felten, Anna R. Karlin, Kai Li, A Study

of Integrated Prefetching and Caching Strategies,

Measurement and Modeling of Computer Systems, 1995

[9] Pei Cao, Edward W. Felten, Anna R. Karlin, Kai Li ,

Implementation and Performance of Integrated

Application-Controlled File Caching, Prefetching and Disk

Scheduling, ACM Transactions on Computer Systems,

1996

[10] Song Jiang and Xiaodong Zhang, LIRS: An Efficient Low

Inter-reference Recency Set Replacement Policy to

Improve Buffer Cache Performance, Proc. of

SIGMETRICS 2002

[11] S Subha, An Algorithm for Buffer Cache Management,

ITNG, 2009.

[12] Theodore Johnson, Dennis Shasha, 2Q: A Low Overhead

High Performance Buffer Management Replacement

Algorithm, Proceedings of the Twentieth International

Conference on Very Large Databases, 1994

