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ABSTRACT 

In this paper we present Hopfield model of a neuron dynamics 

given by the neuronic equation. In the first model second order 

neuronic equation describe the behavior of a neuron in the 

presence of some local positive feedback. The second model 

portray two neurons in which first order neuronic equation 

represents dynamics of the second neuron in the presence of a 

discharged pulse coded signal function from the first neuron. We 

have shown that the solution is bounded and the paths 

surrounding the equilibrium point are not closed curves in the 

phase plane. Some conditions ensuring the existence and 

uniqueness of the equilibrium point are derived. 
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1. INTRODUCTION 

Hopfield neural networks [1-2] have been extensively applied to 

study the diverse area like optimization, pattern recognition, 

model identification, Huffman codes, signal, image processing 

[3-9]. Hopfield neural network with  distributed delay under 

dynamical thresholds was first introduced by Gopalsamy and 

Leung [10]. Later on Zhang, Li and Huo [11], Zhang and Li 

[12], Zhang and Huo [13], worked on more general, multineuron 

model with distributed delay under dynamical thresholds. All 

the models studied so far are based on first order neuronic 

equation with self feedback, however in the present work we 

have consider first and second order neuronic equation 

successively in the presence and absence of external stimulus. 

Neuronal dynamics in the presence of external stimulus is 

crucial to study since it describes a real picture of the neuron 

behavior. The neuronic equation considered by Caianiello and 

De Luca [14] is given by 
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They study the delay differential equation of the form   
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consider taylor's series expansion of u (t + τ) up to second order, 

from (1) (2) and (3) we derive a second order neuronic equation 

given by  
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k, a and b satisfy the condition  
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for the meaning of various terms used above one can refer 

[10].The term A(t) in (1)  is the external stimulus to the neuron 

and has been taken as self feedback x(t) in the argument of the 

tanh function in (4) and (5). 
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2. QUALITATIVE ANALYSIS OF THE 

SECOND ORDER NEURONIC EQUATION 

WITH SELF FEEDBACK  

Here we shall first discuss the behavior of a neuron action with 

self feedback given by (5).  

Let  y  x
.

=                                                                            (8) 

In view of (8) equation (5) reduces to 
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2.1 Boundedness of the solution 

In this part we shall discuss the boundedness of the solution of 

(8) and (9) using Lyapunov functional V (t) = V (x, y) (t) 

defined by  

,ds  x(u)du  k(s)ab   ds y(s)y(t)x(t)(t)V

t

st0

t

0 














+∫++= ∫∫

−

∞

(10) 

calculating the upper right derivative D+V of V along the 

solution of (8) and (9) 
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It follows from (10) and (14) that V(t) is bounded on (0,∞) 

boundedness of V(t) on (0, ∞) implies that (x ,y) are bounded on 

(0, ∞). 

2.2   Uniqueness of the equilibrium point 

Taking a cue from Cronin [15] work on the topological degree 

theory for the nonlinear mapping, some authors ( Zhang and Li 

[12], Cao and Wang [16]) use this theory to find the existence 

and uniqueness of the equilibrium point of the neuronic equation 

representing multineuron model. In the following lines our work 

is based on the paper by Zhang and Li[12] , for the definition 

and terms used here one can refer them. 

Theorem  2.2.1. The system of equations  (8) and (9) has a 

unique equilibrium point subject to the following conditions (15) 

and (16). 

tanh x : R → R is globally Lipschitz with Lipschitz constant 

L>0, that is 

( ) ( ) R. x, x   , xxL  xtanhxtanh 2 12121 ∈∀−≤−                  (15) 

There exists   ε > 0 such that  

b-1L a-1ε =              (16)         

The equilibrium points  of (8) and (9) are given by 
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the solution of f (x) = 0 are the equilibrium point of (8) and (9). 

We define a homotopic mapping 
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( )[ ] ( ) ( ) ,  c-tanh aλ -  c- tanh- c- xb-1tanh aλ - x ≥              (21)            

by (15) we have     

( ) ( ) c- tanh aλ - x  b-1  L aλ- x  ) λH(x, ≥                          (22)                 

( )[ ] ( ) c-tanh aλ - x  b-1L a-1λ =                                              (23) 
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with the help of (16) above inequality is modified. 

Let   

( ) c-tanh  η = .                                                                (25) 

In view of above equation (24) reduces to  
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In view  of (28) we obtain for any λ ∈ (0,1]        

 , 0  λ  ) λH(x, >≥                                                (30) 

which implies that H(x,λ) ≠ 0 for any x∈∂U and λ∈ (0,1].  If 

λ=0 from (20) we have H(x,λ) = id(x) =x ≠0 for any x∈∂U here 

id  is identity mapping, hence H (x, λ) ≠0 for any x∈∂U and λ∈ 

(0,1]. From the definition of topological degree one can show 

that deg(id,U,0) = 1, also from homotopy invariance theorem 

[15] we have deg (f,U,0) = deg (id,U,0) = 1.By the topological 

degree theory we conclude that the equation f(x)=0 has at least a 

solution in U, therefore  (8) and (9) has at least an equilibrium 

point . 

In the next few lines we shall prove uniqueness of the 

equilibrium point (x*, 0) of (8) and (9). Suppose (z*, 0) is also an 

equilibrium point of (8) and (9) then we have 
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In view (16), we obtain  
**

z  x = , therefore system of equations 

(8) and (9) has a unique equilibrium point. 

2.3 Nature of the solution 

Here we shall analyze the nature of path near the equilibrium 

points of (8) and (9), by applying Bendixson’s criteria [17] for 

planar dynamical systems. The equations (8) and (9) can be 

rewritten as 
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Since τ >0 therefore from Bendixson's criteria we conclude that 

the system of equations (8) and (9) has no closed orbits. 

The differential equation of the paths of (8) and (9) is given by  
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equation   (39) is unchanged when (x, y) is replaced by (–x,–y) 

and (-x, y) is replaced by (x,-y). This means that the curve given 
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by (39) is symmetrical in the phase plane (x, y) and the paths in 

the first and second quadrant are similar to paths in the third and 

fourth quadrant respectively. Path is horizontal when they cross 

the x-axis and becomes vertical as they cross the curve. 

0.cdss)(tx(s)kb(t)xtanhaxyτ

0

=













−−−−+ ∫
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By an inspection of the signs of the right sides of the (8) and (9) 

shows that all paths are directed to the right above the x-axis and 

to the left below the x-axis and move downwards or upwards 

according as  














−−−>+ ∫

∞

cdss)(tx(s)kb(t)xtanha  xyτ

0

 

or 














−−−<+ ∫

∞

cdss)(tx(s)kb(t)xtanha  xyτ

0

 

3. QUALITATIVE ANALYSIS OF   THE 

FIRST ORDER NEURONIC EQUATION 

WITHOUT SELF   FEEDBACK 

In this model we examine qualitatively the first order neuronic 

equation in the presence of external stimulus without any self 

feedback. We are presenting two neuron model where output 

from the  first neuron becomes external stimulus for the second 

neuron. The external stimulus is the pulse coded signal function 

which originate from a neuron and propagate down the axon on 

their passage to the synaptic junction. The neuronic systems use 

multiple electrochemical mechanism to intensify these pulses. 

The pulse coded signal function consider by  Kosko [18,pp.50-

51] is given by the solution of the first order linear 

inhomogeneous differential equation. 

, q(t)    y(t)  p(t)   (t)y
.

=+     (40) 

where q(t) is the bipolar pulse function given by 
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Let us assume that p(t) =1 for all t. Now (40) reduces to 
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Integrating 
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where c1 is the integration constant. When t→ 0 ⇒   y(t)→1+c1, 

and whereas  t→∞ ⇒ y(t)→1,therefore y(t) is bounded for any t 

∈ [0,∞].   

The neuronic equation (4) is the presence of external stimulus 

with no self feedback is given by 
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3.1     Boundedness of the solution 

In this part we shall discuss the boundedness of the solution of 

(42) and (44) using Lyapunov function, consider a Lyapunov 

functional  V(t) =  V(x ,y)(t)  defined by 
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calculating the upper right derivative D+V of V along the 

solution of (42) and (44) 
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(t)yds(s)y2ads(s)xab)(1(t)y),V(x 
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It follows from (45)  and (50) that V(t) is bounded on (0,∞) this 

implies that (x ,y) are bounded on (0,∞). 

3.2  Uniqueness of the equilibrium point 

The equilibrium points of  the system of equations (42) and (44) 

are given by   

1  y
*

=        (51) 

c],- xb - y tanh[a  x
***
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*

=  in (51) we obtain      
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With the help of topological degree theory used in section 2.2 

we can prove that their exists a unique equilibrium point of (42) 

and (44) given by  1). , x(
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3.3  Nature of the solution 

Here we shall study the nature of path near the equilibrium point 

of (42)  and (44).We rewrite (42) and (44) as 
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In view of (42) and (44) we obtain 
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In all the cases (i)-(iii) , (59) yields div[g ,h] <0 , therefore from 

Bendixson's criteria we conclude that the system of equations 

(42) and (44) has no closed orbits. From (42) and (44) we derive 

a differential equation 
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In the phase plane (x, y) curve given by (65) is not symmetrical. 

The path is horizontal as they cross the curve 

∫
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c]-ds s)- x(tk(s)b- tanh[y(t)a x(t) and is vertical when they 

cross the line y = 1.By inspection of the signs of the right side of 

(42) and (44) shows that path move downwards or upwards 

according as y>1 or y<1 and paths are directed to the right or  

left provided    
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4. CONCLUSION 

In the foregoing sections we have   investigated the two models 

of a neuron action under dynamical thresholds. In the first model  

behavior of a single neuron is studied in the absence of external 

stimulus with positive self feedback, section two gives the 

detailed analysis of this model. In the second model we consider 

neuron dynamics in the presence of external stimulus that is 

pulse coded signal function, section three describes this model. 

In both these models it is observed that the solution of neuronic 

equation is bounded and has no limit cycles, this implies that it 

has no oscillatory solutions. These models are relevant in many 

realistically significant problems such as the study of the 

dynamics of biological neurons and in the design of the stable 

artificial neural networks. Our ideas can be extended to a class 

of cellular neural networks consisting of  multineuron model 
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