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ABSTRACT 

Multi–stage interconnection networks (MIN) can be designed to 

achieve fault tolerance and collision solving by providing a set 

of disjoint paths. In this paper, we are discussing the new 

simulator added to the tool designed for developing fault-

tolerant MINs. The designed tool is one of its own kind and will 

help the user in developing 2 and 3-disjoint path networks. The 

java technology has been used to design the tool and have been 

tested on different software platform. 
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1. INTRODUCTION AND MOTIVATION 
In a multiprocessor system, many processors and memory 

modules are tightly coupled together with an interconnection 

network. A properly designed interconnection network certainly 

improves the performance of such multiprocessor system. 

Multistage Interconnection Networks (MINs) [1-10] are highly 

suitable for communication among tightly coupled nodes. For 

ensuring high reliability in complex systems, fault tolerance is 

an important issue. The basic idea for fault tolerance is to 

provide multiple paths for a source–destination pair, so that 

alternate paths can be used in case of a fault in a path [1-23]. 

However, to guarantee 1–fault tolerance, a network should have 

a pair of alternate paths for every source destination pair which 

are disjoint in nature [1–8, 24-31]. 

Now-a-days applications of MINs are widely used for on-Chip 

communication. In past number of techniques has been used to 

increase the reliability and fault-tolerance of MINs, a survey of 

the fault-tolerance attributes of these networks is found in [1-6]. 

The modest cost of unique paths MINs makes them attractive for 

large multiprocessors systems, but their lack of fault-tolerance, 

is a major drawback. To mitigate this problem, three hardware 

options are available [1-5, 20-23]: 

1. Replicate the entire network, 

2. Add extra stages, 

3. And /or Add chaining links. 

4. Rearranging of the connection patterns with the 

addition or deletion of hardware links.  

In addition to this, MINs can be designed to achieve fault 

tolerance and collision solving by providing a set of disjoint 

paths. Many researchers have done sufficient work on providing 

1-fault tolerance to the MINs however; little attention has been 

paid to design the 3-Disjoint Paths Fault-tolerant MINs. We 

have been inspired by the work presented by the authors in [24-

31]. 

A Multi–stage interconnection network is fully able to meet the 

reliability demands if it is at least one fault tolerant that is there 

is at least one alternative path to deal with faults or collisions. 

This alternative path should be disjoint in nature with the 

existing routing path followed so that there is no such 

implication that if a switch or a link fails in the existing routing 

path then the alternative path will also fail. Most design of 

Multi–stage interconnection networks do not generate at least 

two disjoint paths and hence are not always fault tolerant 

resulting in packet losses and eventual performance degradation. 

Hence, this approach of two disjoint paths will always guarantee 

a way out of the problem of faults or collisions in a network [32-

34]. 

Whenever we want to design a interconnection network, we 

used to design them manually using the windows word and then 

hardwired them through the programming. At present, we do not 

have any tool through which we can develop the interconnection 

networks tool or this remains out of limelight therefore in this 

paper; we have discussed a tool designed for developing fault-

tolerant multi-stage interconnection networks. The designed tool 

is one of its own kind and will help the user in developing 2 and 

3-disjoint path networks.  

The rest of the paper is as follows: Section 2 discusses the 

testbed and experimental setup, new modules added to the 

existing case tool [32-34] and algorithm supported by the screen 

shots and the pseudocode followed by the conclusion and 

references. 

2. CASE TOOL: FAST 

INTERCONNECTIONS 

2.1 Testbed and Experimental Setup 
CASE stands for "Computer Assisted Software Engineering. A 

CASE tool is a software tool that helps software designers and 

developers specify, generate and maintain some or all of the 

software components of an application. Many popular CASE 

tools provide functions to allow developers to draw database 
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schemas and to generate the corresponding code in a data 

description language (DDL). Other CASE tools support the 

analysis and design phases of software development, for 

example by allowing the software developer to draw different 

types of UML diagrams [35]. 

We have designed both the networks using the Fast 

Interconnections tool and the architectural design of the software 

is already published in [33-34]. We have used Eclipse, is a 

multi-language software development environment comprising 

an integrated development environment (IDE) and an 

extensible plug-in system. It is written mostly in Java and can be 

used to develop applications in Java and, by means of various 

plug-ins, other programming languages. The IDE is often called 

Eclipse JDT for Java (i.e. JDK 1.6) and IDE is running on top of 

the IBM System x, running with Novell's SUSE Linux 

Enterprise Server 11. We have used advanced java features to 

build our system. The most important part of the tool is 

designing of the components, which are used to design disjoint 

paths MINs. We have design them in paint and stored them in 

component library. We have provided the access of this 

component within the tool using ComponentChooser class. 

2.2 New Module added to the Case Tool 
1. Added a new 3-Disjoint Paths Multi-stage Interconnection 

Network Simulator, 

2. Design a circuit, enter a custom path, faulty component 

numbers, and click on simulate button,  

3. Simulation will start and the path will turn green/red, 

depending on the packet drop with the faulty component 

marked by red cross every time a packet is dropped. 

2.3 Algorithm 
Algorithmic Step 1: Get path in A. 

Algorithmic Step 2: Extract individual wire numbers in path1[]. 

Algorithmic Step 3: Get faulty_components in B. 

Algorithmic Step 4: Extract individual comp. numbers in 

cmp1[]. 

Algorithmic Step 5: Verify the correctness of the path1[] and 

cmp1[]. 

Algorithmic Step 6: For 15 seconds repeats steps 7 and 8. 

Algorithmic Step 7: For each wire in path1[] display it as green 

color for packet transfer. 

Algorithmic Step 8: For every alternate packet drop a packet at 

components in cmp1[], display a red cross over components in 

cmp1[] and wires in  path1[] as red color. 

Algorithmic Step 9: End Simulation. 

 

 

2.4 Case Tool: Screen Shots 
 

 

Fig 1: The front end of the Case Tool with the Welcome 

Message from the Fast Interconnections Group. 

 

 

Fig 2: The front window with different widths of the wires, 

MIN Components and Color Chooser Applet. 

 

 

Fig 3: A case tool with various components and size of the 

application window can be fixed in terms of horizontal and 

vertical distance. 
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Fig 4: Shows that the elements have been aligned. 

 

 

Fig 5: Shows that the components drawn using the draw 

method. We have changed the draw method which we have 

presented last time because of the addition of the new 

module.  

 

Fig 6: Highlighting the path in the MIN. 

 

 

Fig 7: MIN with one faulty Component and dropping of 

Packet. 

2.5 Code for the New Module 
@Action 

public Task simulate() throws Exception  

{ 

 sim_paint(); 

 return new SimulateTask(getApplication()); 

} 

 

public void load_sim(File file) throws Exception 

{ 

 this.path = file.getPath();; 

 System.out.println(this.path); 

 ois = new ObjectInputStream(new  

           FileInputStream(this.path)); 

for(int i = 0;i < 100;i++) 

{ 

 cmp[i] = (cmp1)ois.readObject(); 

 lc[i] = (Color)ois.readObject(); 

 thick[i] = (Integer)ois.readObject(); 

 line2[i] = (Integer)ois.readObject(); 

} 

for(int i = 0;i < 100;i++) 

{ 

 for(int j = 0;j < 4;j++) 

 { 

  line[i][j] = (Integer)ois.readObject(); 

 } 

} 

 no_cmp = (Integer)ois.readObject(); 

 no_line = (Integer)ois.readObject(); 

 ois.close(); 

 redraw(); 

} 

void sim_paint() 

{ 

 int pkt=0; 

 Point p1,p2,p3,p4; 

 Graphics2D g=(Graphics2D) 

canvas1.getGraphics(); 

 g.setStroke(new BasicStroke()); 

 g.setColor(Color.BLACK); 

 int x=0; 

 String a=jTextField1.getText(); 

 int[] path1=new int[a.length()]; 

 for(int i=0;i<a.length();i++) 
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 { 

  

path1[i]=Character.getNumericValue(a.charAt(i)); 

 } 

 String b=jTextField2.getText(); 

 int[] cmp1=new int[b.length()]; 

 for(int i=0;i<b.length();i++) 

 { 

  

cmp1[i]=Character.getNumericValue(b.charAt(i)); 

 } 

 int flag1=0; 

 for (int i=0;i<a.length();i++) 

 { 

  if(path1[i]>no_line) 

  { 

   flag1=1; 

   break; 

  } 

} 

int flag2=0; 

for (int i=0;i<b.length();i++) 

{ 

 if(cmp1[i]>no_cmp) 

 { 

  flag2=1; 

  break; 

 } 

} 

int time=5000000; 

if(flag1==1 || flag2==1) 

{ 

 time=0; 

 if(flag1==1) 

JOptionPane.showMessageDialog(this.canvas1, 

"Invalid Path. Please check the input."); 

else if(flag2==1) 

JOptionPane.showMessageDialog(this.canvas1, 

"Invalid Component number. Please check the 

input."); 

} 

for(int i=0;i<time;i++) 

{ 

 int j; 

 if(i%(time/125)<24000) 

 { 

  g.setColor(Color.RED); 

 for(j=0;j<b.length();j++) 

 { 

  p3=cmp[cmp1[j]].centre; 

  pkt++; 

  g.drawLine(p3.x-40, p3.y-40, p3.x+40,p3.y+40); 

  g.drawLine(p3.x-40, p3.y+40, p3.x+40,p3.y-40); 

 } 

} 

else 

{ 

 g.setColor(g.getBackground()); 

 for(j=0;j<b.length();j++) 

 { 

  p3=cmp[cmp1[j]].centre; 

  g.drawLine(p3.x-40, p3.y-40, p3.x+40,p3.y+40); 

  g.drawLine(p3.x-40, p3.y+40, p3.x+40,p3.y-40); 

 } 

 g.setColor(Color.GREEN); 

} 

for(j=0;j<a.length();j++) 

{ 

 Stroke d= new BasicStroke(3); 

 g.setStroke(d); 

 

p1=cmp[line[path1[j]][0]].getPoint(line[path1[j]

][1]); 

 

p2=cmp[line[path1[j]][2]].getPoint(line[path1[j]

][3]); 

 g.drawLine(p1.x,p1.y,p2.x,p2.y); 

  } 

 } 

} 

 

//the paint function has been modified a little 

too, //new code is : 

void redraw() 

{ 

 Point p1,p2,p3,p4; 

 Graphics2D g=(Graphics2D) 

canvas1.getGraphics(); 

 canvas1.paint(g);    

 for(int j=0;j<no_cmp;j++) 

 { 

  cmp[j].draw(g); 

  g.drawString(Integer.toString(j),cmp[j]. 

  centre.x,cmp[j].centre.y); 

 } 

 g.setStroke(new BasicStroke()); 

 g.setColor(Color.BLACK); 

for(int j=0;j<no_line;j++) 

{ 

 Stroke d= new BasicStroke(thick[j]); 

 g.setStroke(d); 

 g.setColor(lc[j]); 

if(line2[j]!=1) 

{ 

 p1=cmp[line[j][0]].getPoint(line[j][1]); 

 p2=cmp[line[j][2]].getPoint(line[j][3]); 

 g.drawLine(p1.x,p1.y,p2.x,p2.y); 

 g.drawString(Integer.toString(j),p1.x ,(p1.y-2) 

); 

} 

else 

{ 

 p1=cmp[line[j][0]].getPoint(line[j][1]); 

 p2=cmp[line[j][0]].getPoint(line[j][1]); 

 p3=cmp[line[j][2]].getPoint(line[j][3]); 

 p4=cmp[line[j][2]].getPoint(line[j][3]); 

 int wtm1,wtm2; 

 if(cmp[line[j][0]].top_bot(line[j][1])==1) 

  wtm1=2*cmp[line[j][0]].getW(); 

 else 

  wtm1=(int) (1.5 * cmp[line[j][0]].getW()); 

 if(cmp[line[j][2]].top_bot(line[j][1])==1) 

  wtm2=2*cmp[line[j][2]].getW(); 

 else 
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 wtm2=(int) (1.5 *cmp[line[j][2]].getW()); 

 if(p1.x<=p3.x) 

 { 

  g.drawLine(p1.x,p1.y,p2.x+wtm1,p2.y); 

  g.drawLine(p2.x+wtm1,p2.y,p3.x+wtm2,p3.y); 

  g.drawLine(p3.x+wtm2,p3.y,p4.x,p4.y); 

 } 

 else 

 { 

 g.drawLine(p1.x,p1.y,p2.x-wtm1,p2.y); 

 g.drawLine(p2.x-wtm1,p2.y,p3.x-wtm2,p3.y); 

 g.drawLine(p3.x-wtm2,p3.y,p4.x,p4.y); 

  } 

  } 

 } 

} 

3. CONCLUSION AND FUTURE WORK 
In this paper, we have discussed a the newly added module to 

the existing tool called as Fast Interconnections, which have 

been designed to develop the 2 and 3-disjoint path multi-stage 

interconnection network. We have provided the algorithm of the 

new simulator supported by the screen shots and pseudocode. 

The current of the newly added module are as follows- 

simulation run time and the amount of packets dropped is 

currently fixed, faulty components are to be input before 

simulation starts. Further work- we will maintain a database for 

dropped packets, and allow user to dynamically drop packets 

from anywhere in the circuit during simulation. 
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