
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.6, April 2011

Case Tool: Fast Interconnections with New 3-Disjoint

Paths MIN Simulation Module

Ravi Rastogi, Amit Singh
and Nikhil Singhal

Department of CSE and IT,
Jaypee University of

Information Technology,
Waknaghat, Solan-173234,

Himachal Pradesh, India

Nitin
Department of Computer
Science, The Peter Kiewit

Institute, College of
Information Science and
Technology, University of

Nebraska at Omaha, Omaha-
68182-0116, Nebraska,

United States of America

Durg Singh Chauhan

Uttarakhand Technical
University, Post Office

Chandanwadi, Prem Nagar,
Sudohwala, Dehradun-

248007, Uttarakhand, India

ABSTRACT

Multi–stage interconnection networks (MIN) can be designed to

achieve fault tolerance and collision solving by providing a set

of disjoint paths. In this paper, we are discussing the new

simulator added to the tool designed for developing fault-

tolerant MINs. The designed tool is one of its own kind and will

help the user in developing 2 and 3-disjoint path networks. The

java technology has been used to design the tool and have been

tested on different software platform.

Keywords

Multi-stage Interconnection Networks, Fault-tolerance, 3-

Disjoint Paths.

1. INTRODUCTION AND MOTIVATION
In a multiprocessor system, many processors and memory

modules are tightly coupled together with an interconnection

network. A properly designed interconnection network certainly

improves the performance of such multiprocessor system.

Multistage Interconnection Networks (MINs) [1-10] are highly

suitable for communication among tightly coupled nodes. For

ensuring high reliability in complex systems, fault tolerance is

an important issue. The basic idea for fault tolerance is to

provide multiple paths for a source–destination pair, so that

alternate paths can be used in case of a fault in a path [1-23].

However, to guarantee 1–fault tolerance, a network should have

a pair of alternate paths for every source destination pair which

are disjoint in nature [1–8, 24-31].

Now-a-days applications of MINs are widely used for on-Chip

communication. In past number of techniques has been used to

increase the reliability and fault-tolerance of MINs, a survey of

the fault-tolerance attributes of these networks is found in [1-6].

The modest cost of unique paths MINs makes them attractive for

large multiprocessors systems, but their lack of fault-tolerance,

is a major drawback. To mitigate this problem, three hardware

options are available [1-5, 20-23]:

1. Replicate the entire network,

2. Add extra stages,

3. And /or Add chaining links.

4. Rearranging of the connection patterns with the

addition or deletion of hardware links.

In addition to this, MINs can be designed to achieve fault

tolerance and collision solving by providing a set of disjoint

paths. Many researchers have done sufficient work on providing

1-fault tolerance to the MINs however; little attention has been

paid to design the 3-Disjoint Paths Fault-tolerant MINs. We

have been inspired by the work presented by the authors in [24-

31].

A Multi–stage interconnection network is fully able to meet the

reliability demands if it is at least one fault tolerant that is there

is at least one alternative path to deal with faults or collisions.

This alternative path should be disjoint in nature with the

existing routing path followed so that there is no such

implication that if a switch or a link fails in the existing routing

path then the alternative path will also fail. Most design of

Multi–stage interconnection networks do not generate at least

two disjoint paths and hence are not always fault tolerant

resulting in packet losses and eventual performance degradation.

Hence, this approach of two disjoint paths will always guarantee

a way out of the problem of faults or collisions in a network [32-

34].

Whenever we want to design a interconnection network, we

used to design them manually using the windows word and then

hardwired them through the programming. At present, we do not

have any tool through which we can develop the interconnection

networks tool or this remains out of limelight therefore in this

paper; we have discussed a tool designed for developing fault-

tolerant multi-stage interconnection networks. The designed tool

is one of its own kind and will help the user in developing 2 and

3-disjoint path networks.

The rest of the paper is as follows: Section 2 discusses the

testbed and experimental setup, new modules added to the

existing case tool [32-34] and algorithm supported by the screen

shots and the pseudocode followed by the conclusion and

references.

2. CASE TOOL: FAST

INTERCONNECTIONS

2.1 Testbed and Experimental Setup
CASE stands for "Computer Assisted Software Engineering. A

CASE tool is a software tool that helps software designers and

developers specify, generate and maintain some or all of the

software components of an application. Many popular CASE

tools provide functions to allow developers to draw database

24

25

schemas and to generate the corresponding code in a data

description language (DDL). Other CASE tools support the

analysis and design phases of software development, for

example by allowing the software developer to draw different

types of UML diagrams [35].

We have designed both the networks using the Fast

Interconnections tool and the architectural design of the software

is already published in [33-34]. We have used Eclipse, is a

multi-language software development environment comprising

an integrated development environment (IDE) and an

extensible plug-in system. It is written mostly in Java and can be

used to develop applications in Java and, by means of various

plug-ins, other programming languages. The IDE is often called

Eclipse JDT for Java (i.e. JDK 1.6) and IDE is running on top of

the IBM System x, running with Novell's SUSE Linux

Enterprise Server 11. We have used advanced java features to

build our system. The most important part of the tool is

designing of the components, which are used to design disjoint

paths MINs. We have design them in paint and stored them in

component library. We have provided the access of this

component within the tool using ComponentChooser class.

2.2 New Module added to the Case Tool
1. Added a new 3-Disjoint Paths Multi-stage Interconnection

Network Simulator,

2. Design a circuit, enter a custom path, faulty component

numbers, and click on simulate button,

3. Simulation will start and the path will turn green/red,

depending on the packet drop with the faulty component

marked by red cross every time a packet is dropped.

2.3 Algorithm
Algorithmic Step 1: Get path in A.

Algorithmic Step 2: Extract individual wire numbers in path1[].

Algorithmic Step 3: Get faulty_components in B.

Algorithmic Step 4: Extract individual comp. numbers in

cmp1[].

Algorithmic Step 5: Verify the correctness of the path1[] and

cmp1[].

Algorithmic Step 6: For 15 seconds repeats steps 7 and 8.

Algorithmic Step 7: For each wire in path1[] display it as green

color for packet transfer.

Algorithmic Step 8: For every alternate packet drop a packet at

components in cmp1[], display a red cross over components in

cmp1[] and wires in path1[] as red color.

Algorithmic Step 9: End Simulation.

2.4 Case Tool: Screen Shots

Fig 1: The front end of the Case Tool with the Welcome

Message from the Fast Interconnections Group.

Fig 2: The front window with different widths of the wires,

MIN Components and Color Chooser Applet.

Fig 3: A case tool with various components and size of the

application window can be fixed in terms of horizontal and

vertical distance.

26

Fig 4: Shows that the elements have been aligned.

Fig 5: Shows that the components drawn using the draw

method. We have changed the draw method which we have

presented last time because of the addition of the new

module.

Fig 6: Highlighting the path in the MIN.

Fig 7: MIN with one faulty Component and dropping of

Packet.

2.5 Code for the New Module
@Action

public Task simulate() throws Exception

{

 sim_paint();

 return new SimulateTask(getApplication());

}

public void load_sim(File file) throws Exception

{

 this.path = file.getPath();;

 System.out.println(this.path);

 ois = new ObjectInputStream(new

 FileInputStream(this.path));

for(int i = 0;i < 100;i++)

{

 cmp[i] = (cmp1)ois.readObject();

 lc[i] = (Color)ois.readObject();

 thick[i] = (Integer)ois.readObject();

 line2[i] = (Integer)ois.readObject();

}

for(int i = 0;i < 100;i++)

{

 for(int j = 0;j < 4;j++)

 {

 line[i][j] = (Integer)ois.readObject();

 }

}

 no_cmp = (Integer)ois.readObject();

 no_line = (Integer)ois.readObject();

 ois.close();

 redraw();

}

void sim_paint()

{

 int pkt=0;

 Point p1,p2,p3,p4;

 Graphics2D g=(Graphics2D)

canvas1.getGraphics();

 g.setStroke(new BasicStroke());

 g.setColor(Color.BLACK);

 int x=0;

 String a=jTextField1.getText();

 int[] path1=new int[a.length()];

 for(int i=0;i<a.length();i++)

27

 {

path1[i]=Character.getNumericValue(a.charAt(i));

 }

 String b=jTextField2.getText();

 int[] cmp1=new int[b.length()];

 for(int i=0;i<b.length();i++)

 {

cmp1[i]=Character.getNumericValue(b.charAt(i));

 }

 int flag1=0;

 for (int i=0;i<a.length();i++)

 {

 if(path1[i]>no_line)

 {

 flag1=1;

 break;

 }

}

int flag2=0;

for (int i=0;i<b.length();i++)

{

 if(cmp1[i]>no_cmp)

 {

 flag2=1;

 break;

 }

}

int time=5000000;

if(flag1==1 || flag2==1)

{

 time=0;

 if(flag1==1)

JOptionPane.showMessageDialog(this.canvas1,

"Invalid Path. Please check the input.");

else if(flag2==1)

JOptionPane.showMessageDialog(this.canvas1,

"Invalid Component number. Please check the

input.");

}

for(int i=0;i<time;i++)

{

 int j;

 if(i%(time/125)<24000)

 {

 g.setColor(Color.RED);

 for(j=0;j<b.length();j++)

 {

 p3=cmp[cmp1[j]].centre;

 pkt++;

 g.drawLine(p3.x-40, p3.y-40, p3.x+40,p3.y+40);

 g.drawLine(p3.x-40, p3.y+40, p3.x+40,p3.y-40);

 }

}

else

{

 g.setColor(g.getBackground());

 for(j=0;j<b.length();j++)

 {

 p3=cmp[cmp1[j]].centre;

 g.drawLine(p3.x-40, p3.y-40, p3.x+40,p3.y+40);

 g.drawLine(p3.x-40, p3.y+40, p3.x+40,p3.y-40);

 }

 g.setColor(Color.GREEN);

}

for(j=0;j<a.length();j++)

{

 Stroke d= new BasicStroke(3);

 g.setStroke(d);

p1=cmp[line[path1[j]][0]].getPoint(line[path1[j]

][1]);

p2=cmp[line[path1[j]][2]].getPoint(line[path1[j]

][3]);

 g.drawLine(p1.x,p1.y,p2.x,p2.y);

 }

 }

}

//the paint function has been modified a little

too, //new code is :

void redraw()

{

 Point p1,p2,p3,p4;

 Graphics2D g=(Graphics2D)

canvas1.getGraphics();

 canvas1.paint(g);

 for(int j=0;j<no_cmp;j++)

 {

 cmp[j].draw(g);

 g.drawString(Integer.toString(j),cmp[j].

 centre.x,cmp[j].centre.y);

 }

 g.setStroke(new BasicStroke());

 g.setColor(Color.BLACK);

for(int j=0;j<no_line;j++)

{

 Stroke d= new BasicStroke(thick[j]);

 g.setStroke(d);

 g.setColor(lc[j]);

if(line2[j]!=1)

{

 p1=cmp[line[j][0]].getPoint(line[j][1]);

 p2=cmp[line[j][2]].getPoint(line[j][3]);

 g.drawLine(p1.x,p1.y,p2.x,p2.y);

 g.drawString(Integer.toString(j),p1.x ,(p1.y-2)

);

}

else

{

 p1=cmp[line[j][0]].getPoint(line[j][1]);

 p2=cmp[line[j][0]].getPoint(line[j][1]);

 p3=cmp[line[j][2]].getPoint(line[j][3]);

 p4=cmp[line[j][2]].getPoint(line[j][3]);

 int wtm1,wtm2;

 if(cmp[line[j][0]].top_bot(line[j][1])==1)

 wtm1=2*cmp[line[j][0]].getW();

 else

 wtm1=(int) (1.5 * cmp[line[j][0]].getW());

 if(cmp[line[j][2]].top_bot(line[j][1])==1)

 wtm2=2*cmp[line[j][2]].getW();

 else

28

 wtm2=(int) (1.5 *cmp[line[j][2]].getW());

 if(p1.x<=p3.x)

 {

 g.drawLine(p1.x,p1.y,p2.x+wtm1,p2.y);

 g.drawLine(p2.x+wtm1,p2.y,p3.x+wtm2,p3.y);

 g.drawLine(p3.x+wtm2,p3.y,p4.x,p4.y);

 }

 else

 {

 g.drawLine(p1.x,p1.y,p2.x-wtm1,p2.y);

 g.drawLine(p2.x-wtm1,p2.y,p3.x-wtm2,p3.y);

 g.drawLine(p3.x-wtm2,p3.y,p4.x,p4.y);

 }

 }

 }

}

3. CONCLUSION AND FUTURE WORK
In this paper, we have discussed a the newly added module to

the existing tool called as Fast Interconnections, which have

been designed to develop the 2 and 3-disjoint path multi-stage

interconnection network. We have provided the algorithm of the

new simulator supported by the screen shots and pseudocode.

The current of the newly added module are as follows-

simulation run time and the amount of packets dropped is

currently fixed, faulty components are to be input before

simulation starts. Further work- we will maintain a database for

dropped packets, and allow user to dynamically drop packets

from anywhere in the circuit during simulation.

4. REFERENCES
[1] T.Y. Feng, A survey of interconnection networks, IEEE

Computer 14, pp. 12-27, 1981.

[2] G.B. Adams III, D.P. Agrawal and H.J. Siegel, A survey

and comparison of fault-tolerant multi-stage

interconnection networks, IEEE Computer 20, pp. 14-27,

1987.

[3] W.J. D`ally, Scalable Switching Fabrics for Internet

Routers, White paper, Avici Systems Incorporation, 2001.

[4] L.N. Bhuyan, Special issue of interconnection networks,

IEEE Computer, Vol. 20 (6), June 1987.

[5] H.J. Siegel, Interconnection Network for Large Scale

Parallel Processing: Theory and Case Studies, McGraw

Hill, ISBN 0-07-057561-4, 1990.

[6] K. Hwang, Advanced Computer Architecture: Parallelism,

Scalability, Programmability, Tata McGraw-Hill, India,

ISBN 0-07-053070-X, 2000.

[7] J. Duato, S. Yalamanchili and L.M. Ni, Interconnection

Networks: An Engineering Approach, Morgan Kaufmann,

ISBN 1-55860-852-4, 2003.

[8] W.J. Dally and B. Towles, Principles and Practices of

Interconnection Networks, Morgan Kaufmann, San

Francisco, ISBN 978-0-12-200751-4, 2004.

[9] H.R. Arabnia and M.A. Oliver, Arbitrary Rotation of

Raster Images with SIMD Machine Architectures,

International Journal of Eurographics Association

(Computer Graphics Forum), 6(1), pp. 3-12, 1987.

[10] S.M. Bhandarkar, H.R. Arabnia and J.W. Smith, A

Reconfigurable Architecture For Image Processing And

Computer Vision, International Journal of Pattern

Recognition And Artificial Intelligence, 9(2), pp. 201-229,

1995.

[11] S.M. Bhandarkar and H.R. Arabnia, The Hough Transform

on a Reconfigurable Multi-Ring Network, Journal of

Parallel and Distributed Computing, 24(1), pp. 107-114,

1995.

[12] M.A. Wani and H.R. Arabnia, Parallel Edge-Region-Based

Segmentation Algorithm Targeted at Reconfigurable Multi-

Ring Network, The Journal of Supercomputing, 25(1), pp.

43-63, 2003.

[13] J. Duato, A New Theory of Deadlock-free Adaptive

Routing in Wormhole Networks, IEEE Transactions on

Parallel and Distributed Systems, 4(12), pp. 1320-

1331,1993.

[14] J. Duato, A Necessary and Sufficient Condition for Dead

lock-free Adaptive Routing in Wormhole Networks, IEEE

Transactions on Parallel and Distributed Systems, 6(10),

pp. 1055-1067,1995.

[15] W.J. Dally and C.L. Seitz, Deadlock-Free Message Routing

in Multiprocessor Interconnection Networks, IEEE

Transactions on Computers, C-36(5), pp. 547-553, 1987.

[16] W.J. Dally and H. Aoki, Deadlock-Free Adaptive Routing

in Multi computer Networks Using Virtual Channels, IEEE

Transactions on Parallel Distributed Systems, 4(4), 1993.

[17] J. Duato, Deadlock-Free Adaptive Routing Algorithms for

the 3DTorus: Limitations and Solutions, In Proceedings of

Parallel Architectures and Languages Europe 93, 1993.

[18] Nitin and A. Subramanian, Efficient Algorithms to Solve

Dynamic MINs Stability Problems using Stable Matching

with Complete TIES, Journal of Discrete Algorithms, 6(3),

pp. 353-380, 2008.

[19] A. Singh, W.J. Dally, A.K. Gupta, B. Towels, Adaptive

Channel Queue Routing on k-ary n-cubes, Proceedings of

the sixteenth annual ACM symposium on Parallelism in

algorithms and architectures, 2004.

[20] Nitin, S. Garhwal and N. Srivastava, Designing a Fault-

tolerant Fully-chained Combining Switches Multi-stage

Interconnection Network with Disjoint Paths, The Journal

of Supercomputing, DOI 10.1007/s11227-009-0336-z, pp.

1-32, 2009.

[21] Nitin and D.S. Chauhan, Comparative Analysis of Traffic

Patterns on k-ary n-tree using Adaptive Algorithms based

on Burton Normal Form, Journal of Supercomputing, DOI:

10.1007/s11227-010-0454-7, pp. 1-20, 2010.

[22] Nitin, V.K. Sehgal and P.K. Bansal, On MTTF analysis of

a Fault-tolerant Hybrid MINs, WSEAS Transactions on

Computer Research, ISSN 1991-8755, 2(2), pp. 130-138,

2007.

[23] Nitin, Component Level Reliability analysis of Fault-

tolerant Hybrid MINs, WSEAS Transactions on

Computers, ISSN 1109-2750, 5(9), pp. 1851-1859, 2006.

29

[24] C.W. Chen and C.P. Chung, Designing a disjoint path

interconnection network with collision solving and fault

tolerance, The Journal of Supercomputing, 34(1), pp. 63-

80, 2005.

[25] C.W. Chen, Design schemes of dynamic rerouting

networks with destination tag routing for tolerating faults

and preventing collisions, The Journal of Supercomputing,

38(3), pp. 307-326, 2006.

[26] H.J. Siegal, D.R. Jose and A.B. Fortes, Destination tag

routing techniques based on a state model for the IADM

network, IEEE Transaction on Computers, 41(3), pp. 274-

285, 1992.

[27] B. Smith, Design of dynamic rerouting networks with

destination tag routing for tolerating faults and preventing

collisions, Springer Science, 2006.

[28] D.S. Parker and C.S. Raghavendra, The gamma network,

IEEE Transactions on Computers, 33, pp. 367-373, 1984.

[29] P.J. Chuang, CGIN: A fault tolerant modified gamma

interconnection network, IEEE Transactions on Parallel

and Distributed Systems, 7(12), pp. 1301-1306, 1996.

[30] C.W. Chen, N.P. Lu, T.F. Chen, and C.P. Chung, Fault-

tolerant gamma interconnection networks by chaining, In

IEE Proceedings on Computers and Digital Techniques,

147(2), pp. 75-80, 2000.

[31] C.W. Chen, N.P. Lu, and C.P. Chung, 3-Disjoint gamma

interconnection networks, The Journal of Systems and

Software, 66, pp .129-134, 2003.

[32] R. Rastogi, Nitin and D.S. Chauhan, 3-Disjoint Paths Fault-

tolerant Omega Multi-stage Interconnection Network with

Reachable Sets and Coloring Scheme, Proceedings of the

13th IEEE International conference on Computer Modeling

and Simulation (IEEE UKSim), Emmanuel College,

Cambridge, UK, March 30-April 1, 2011.

[33] R. Rastogi, Nitin and D.S. Chauhan, Fast Interconnections:

A Case Tool for Developing Fault-tolerant Multi-stage

Interconnection Networks, International Journal of

Advancements in Computing Technology, ISSN: 2005-

8039, 2(5), December 2010, pp. 13-24.

[34] R. Rastogi and Nitin, On a Fast Interconnections,

International Journal of Computer Science and Network

Security, ISSN: 1738-7906, 10(8), August 2010, pp. 74-79.

[35] ERCIM Working Group Software Evolution, available at

http://wiki.ercim.eu/wg/SoftwareEvolution/index.php/Term

inology

