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ABSTRACT 
Beyond the optimization of single parameter (usually the 

wire-length) in Standard Cell Placement (SCP), focus in the 

present work is laid on the optimization of speed, power, and 

the wire length. As discussed in our previous work of hybrid 

algorithms for single objective optimization of SCP the main 

advantage of hybridization is the improvement in 

convergence speed to Pareto front although it leads to 

increase in computation time per generation. Memetic 

Algorithm (MA) is a hybrid of Genetic Algorithm (GA) & 

Local search (LS) wherein we need to strike a right balance 

of the two for optimum solution. In this paper we work on 

our previous GA based multi-objective SCP algorithm [2] 

for simultaneous optimization of power, speed and wire 

length while maintaining the layout width as constant by 

choosing initial population to be alleles of high fitness value 

and apply proper local search to all the members of initial 

population. Further we compare the results with previously 

established GA based algorithm by applying the two on 

ami20, ami33 and ami120 cell library instances. The 

Memetic algorithm is found to give better results with 10% 

improvement in wire-length, 7.5% lesser delay and power 

consumption reduction by nearly 6%. 

 

Keywords: Memetic Algorithm, Pareto front, alleles, 

local search, fitness  
 

1. INTRODUCTION: 
Standard cell placement problem is computationally very 

hard. It is a NP-hard problem. These problems cannot be 

solved in polynomial time. Trying to evaluate every possible 

placement to determine the best one takes time proportional 

to the factorial of number of cells[7]. Therefore heuristic 

algorithms are used  to search through a large number of 

candidate placement configurations. Multi-objective optimi-

zation algorithms are even more time consuming. One 

promising approach for improving convergence to Pareto 

front is the use of local search in multi-objective GA 

(MOGA). Hybridization of GA with local search is often 

referred to as Memetic Algorithm (MA). In Multi-objective 

GA based Local Search (MOGALS) a scalar fitness function 

with random weights is used for selection of parents and 

local search is used to generate their offspring [5]. An 

improved MOGALS is proposed by avoiding use of roulette 

wheel selection over entire population. Here parents are 

selected randomly from pre-specified number of best 

solutions with respect to scalar fitness function with current 

weights.  

 

In this paper we use Algorithm-II [2] as the basic MOGA 

and introduce concept of MOGALS wherein local search 

procedure is applied to each offspring using the same scalar 

fitness function in the selection of their parents.  

 

2. MA-I [SCP using MOGALS] 
Here Memetic Algorithm based on Genetic Algorithm and 

local search is presented with as objective of optimizing 

power consumption, delay and wire length taking fixed 

width of the layout as a constraint. The problem is specified 

in our work [3]. The cost functions are formulated for all the 

three parameters separately; and subsequently an overall 

scalar fitness function is computed. 

Wire length Cost function: Total wire length is computed 

by adding estimated wire length of each net in the circuit: 

Nx

Lxt WWirecos   

 (1) 

where, WLx is the wire length estimated for net x and N is 

total no. of nets in circuit. 

Power Cost Function: Power consumption Px of net x in a 

circuit can be given by: 

...2
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where, Cx is total capacitance of net x,  VDD is the supply 

voltage,  f is the clock frequency,  Sx is the switching 

probability of net x; and  is a technology dependent 

constant. For fixed supply voltage and fixed clock frequency 

Px can be approximated as: 

xxx SCP .  

The value of  Cx for cell x is given by: 

rgx CCC  

where, Cg is gate capacitance and Cr is interconnect 

capacitance at the output node of the cell x. At the cell 

placement level, only interconnect capacitance can be 

manipulated and that too, is dependent on wire length of net 

x. 

So,  xxx SLP .  

Therefore, 

Nx
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 (2) 

Delay Cost function: Delay cost is determined by 

considering the delay along the longest path in a circuit.  
1
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where, Dswtx is the switching delay of the cell driving net x 

and Dintx is the interconnect delay of the same net. 
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Interconnect delay is the one is affected in the placement 

phase. Switching delay is technology dependent and remains 

unchanged.  

 

To compute a cost function representing the effect of all the 

three objectives in the form of single quantity, a scalar 

fitness function to be minimized was used in both the 

selection of parents and also the local search for their 

offspring as: 

 

)()()( coscos pathlongestdtptw DelaywPowerwWirewfitness

     

 (4) 

where ww, wp , wd  are the finite positive weights of each cost 

function randomly selected for each pair of parents such that 

1dpw www  

GA based approach again is divided into five stages of 

operation: 

1. Initial Stage 

2. Fitness Evaluation 

3. Parent Preference and Crossover 

4. Selection & Mutation 

5. Local Search 

 

2.1. INITIAL STAGE:  

2.1.1 Chromosome Encoding:  
In order to process a solution by GA, it is necessary to 

represent it in the form of a chromosome. A placement 

solution is the arrangement of cells in a 2-D layout. So the 

solution is represented in the form of a 2-D grid.  

Due to varying widths of the cells in a circuit, the rows may 

not have equal number of cells. Consider a circuit 

comprising of 12 cells: 1, 2 , 3 , . .  , 12. A probable layout 

may be: 

 

7 3 4 11 

8 12 6  

5 2 1  

9 10   

 

The above layout is made after computing the average 

row width. This average row width is divided by the 

smallest cell width to compute the maximum number of 

possible locations in a row. Assume 4 locations and let 

it be known from the min-cut placer that there are 4 

rows in the layout. 

 

2.1.2 Initial Solution Generation:  
Looking at the probable placement of 12 cells as above, 

initial solution is generated by random selection of a 

cell out of  the 12, and placing it in the first row. Before 

placing a cell, it is checked whether the addition of it is 

violation of  the width constraint. If any violation, place 

it at the start of next row. All the cells are thus  placed 

on the layout. As a result, there are four empty 

locations as shown above. To make it a packed grid, we 

fill the empty locations by dummy cells represented by 

negative integers as shown below. 

 

2.2. FITNESS EVALUATION 
The fitness of a solution is a measure of its proximity to the 

optimal solution. Higher the fitness value of a solution, 

closer it is to the optimal solution. In our implementation, an 

initial solution is assigned a fitness value of 0 whereas the 

optimal solution is assigned a fitness value of 1. The 

purpose is to normalize the fitness value of any solution in 

range [0,1]. 

7 3 4 11 

8 12 6 -1 

5 2 1 -2 

9 10 -3 -4 

 

2.3. PARENT PREFERENCE & CROSSOVER 

2.3.1 Parent Preference:  
In this algorithm roulette wheel scheme [6] of parent 

selection is used. An individual chromosome is selected 

with a probability proportional to its fitness value. This 

scheme allows the individuals having low fitness 

values to be selected with a low probability. 

 

2.3.2 Crossover:  
Each allele in the chromosome representation is distinct and 

this property must be retained from generation to generation 

for a chromosome to represent a valid solution. Therefore, 

simple crossover techniques are not to be used as it may 

generate duplicates. Therefore we use other types of existing 

crossover operators like order crossover, PMX etc and its 

modified form. Restricted PMX (RPMX). In RPMX, PMX 

is applied between first and second parent and then between 

second and first parent. As a result, two off-springs are 

generated and the better offspring with a high probability is 

chosen. 

 

The crossover operation is performed with a high probability 

ph. Different high crossover probabilities are attempted to 

choose parents. After choosing two parents, a random 

number nr in the range [0,1] is generated, and if nr< ph 
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crossover is applied. If it fails, another set of parents is 

chosen and the process is repeated. This process ensures that 

same number of offsprings is generated in each iteration and 

total number of off-springs generated are equal to the 

population size. On generation of a new offspring if the 

width cost of the circuit is violating the width constraint, it is 

discarded. This process continues until the number of 

offspring is equal to the initial population. 

 

2.4. SELECTION & MUTATION 

2.4.1 Selection: 
Here the selection is performed before the mutation. This 

encourages the diversity in the population by ensuring the 

transfer of mutation effect into next generation. We 

experimented this with different selection schemes including 

roulette, elitist roulette, elitist-random, and extended-elitist-

random schemes.  

 

a. In elitist roulette-random selection, the best half of 

the chromosomes are selected and the remaining 

half are selected using roulette wheel.  

 

b. In elitist roulette selection, the best chromosome is 

selected among parents and off springs, and the 

remaining are selected using roulette wheel.  

 

c. In extended elitist-random selection, the best half 

of the chromosomes are selected and the 

remaining half are selected randomly.  

d. Similarly, in elitist-random selection, the best one 

is selected from parents and off-springs, while the 

remaining are randomly selected. 

 

2.4.2 Mutation:  
Here, mutation with a dynamic probability PD is used. 

It is a function of the diversity of the population 

selected for the next generation i.e. (k+1)th generation. 

The standard deviation of the population in (k+l)th 

generation used as a measure of the diversity. It is to 

increase the mutation probability when population 

tends to lose diversity.  

 

We implemented mutation as a series of random pair-

wise interchanges. The number of inter-changes was 

taken depending on the size of the circuit. A random 

fraction fract between 0.02 and 0.04 was generated and 

fract x n interchanges were made, where n was the total 

number of cells in the circuit. 

 

2.5. LOCAL SEARCH: 
Here, a local search procedure is applied to each solution in 

the current population using the scalar fitness function given 

in equation (4). The weight vector used for parent selection 

is reused for local search excluding the initial solution where 

random weight vector is used. Local search terminates when 

there is no improvement in the solution space of k solution 

randomly selected from the neighborhood of the current 

solution. After local search is applied to all the solutions of 

the population the current solution is replaced with 

improved solutions. The algorithm is a Lamarckian Multi-

objective Memetic Algorithm. 

 

MOGALS terminates when a pre-specified number of 

solutions are examined. In local search part of the algorithm, 

a neighbor is randomly generated from neighborhood of 

current solution. This replaces the current solution if it is 

better using first improvement strategy. The algorithm 

continues in the similar fashion once the current solution is 

updated. In this algorithm all non dominates solutions are 

stored in the secondary population with no restriction on its 

size. 

 

3. RESULTS & DISCUSSION 
The algorithms were implemented in C language.  Nine 

different test-cases were considered from ami standard cell 

library.  These test cases were mapped over 0.18 micron, 5 

metal layer standard cell library [7].  

In Algorithm-II [2] layout width was constrained not to 

exceed 1.25 times the average row width. This constraint 

was satisfied in obtaining the results shown here. In case of 

MOGALS, results were computed over 20,000 generations. 

The population size was kept 40 chromosomes and RPMX 

crossover with a probability equal to 0.95 was applied. 

Extended-elitist random selection was used to attain best 

final results.    Table-1 summarizes the results of GA & 

MOGALS based algorithms. The circuits are listed in the 

increasing order of the number of contained cells K. Here 

WireCost, PowerCost and DelayCost represent the wire length, 

power and delay costs respectively. 

 

4. CONCLUSION 
As concluded in our previous work [2] Algorithm-I 

produced average solutions with 20% better timing, 12% 

less power consumption and is 1.8 times faster than the 

timing driven AMOEBA-SOCE. We subsequently presented 

an iterative approach in Algorithm-II based on GA for 

multi-objective optimization of VLSI standard cell 

placement. The fuzzy logic is used to integrate the three 

objectives wire length, delay and power into a scalar cost 

function. Algorithm-II showed marginal improvement in all 

the parameters over Algorithm-I for all the three levels of 

complexity of ami standard cell libraries. With this as the 

basis we attempted integration of GA with local search in 

MA and observed that for the same test case of 0.8 micron 

ami based standard cell library the observed results were 

encouraging with marginal improvement in all the three 

parameters as compared to Algorithm-II including 10% 

improvement in wire length 7.5% lesser delays and power 

consumption reduction by nearly 6%. This is at a cost of 

increased computational time and can be further reduced by 

restrictive application of LS search and will be attempted 

later.  
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Table 1: Comparison of MOGALS  and GA based Algorithm-II results 

 

 

Std. Cell 

instance 
Complexity 

Wire length  WL ( m) Delay D (nsec) Power  P (mW) 

Algorithm-

II 

MOGALS Algorithm-

II 

MOGALS Algorithm-II MOGALS 

ami20 Minimum 456422 411020 5.246 4.962 51.17  48.65 

ami20 Moderate 537840 484044 6.489 6.124 57.64 54.76 

ami20 Maximum 654625 589162 9.773 9.088 77.26 73.36 

ami33 Minimum 578461 520622 7.281 6.762 64.98 61.72 

ami33 Moderate 717545 645796 10.959 10.151 78.14 74.16 

ami33 Maximum 869442 782488 15.232 14.114 91.02 86.38 

ami120 Minimum 1193433 1074110 26.027 24.143 114.52 107.46 

ami120 Moderate 1261246 1135220 29.129 26.824 120.65 112.54 

ami120 Maximum 1495627 1346104 34.438 31.537 135.86 126.82 

Figure 3: Delay Comparison MOGALS v/s Algorithm-II 

Figure 4: Wire Length Comparison MOGALS v/s Algorithm-II 

Figure 2: Power Comparison MOGALS v/s Algorithm-II 


