
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.7, April 2011

31

Multi-Objective Optimization of Standard Cell
Placement using Memetic Algorithm

Aaquil Bunglowala
Department of EC

Sanghvi Inst. of Mangt & Sc.,
Indore MP 453331

Dr. Brijmohan Singhi
Department of EC

Medicaps Inst. of Tech. & Mangt,
Indore MP 453331

Dr. Ajay Verma
Department of EI

IET, DAVV
Indore MP 452017

ABSTRACT
Beyond the optimization of single parameter (usually the

wire-length) in Standard Cell Placement (SCP), focus in the

present work is laid on the optimization of speed, power, and

the wire length. As discussed in our previous work of hybrid

algorithms for single objective optimization of SCP the main

advantage of hybridization is the improvement in

convergence speed to Pareto front although it leads to

increase in computation time per generation. Memetic

Algorithm (MA) is a hybrid of Genetic Algorithm (GA) &

Local search (LS) wherein we need to strike a right balance

of the two for optimum solution. In this paper we work on

our previous GA based multi-objective SCP algorithm [2]

for simultaneous optimization of power, speed and wire

length while maintaining the layout width as constant by

choosing initial population to be alleles of high fitness value

and apply proper local search to all the members of initial

population. Further we compare the results with previously

established GA based algorithm by applying the two on

ami20, ami33 and ami120 cell library instances. The

Memetic algorithm is found to give better results with 10%

improvement in wire-length, 7.5% lesser delay and power

consumption reduction by nearly 6%.

Keywords: Memetic Algorithm, Pareto front, alleles,

local search, fitness

1. INTRODUCTION:
Standard cell placement problem is computationally very

hard. It is a NP-hard problem. These problems cannot be

solved in polynomial time. Trying to evaluate every possible

placement to determine the best one takes time proportional

to the factorial of number of cells[7]. Therefore heuristic

algorithms are used to search through a large number of

candidate placement configurations. Multi-objective optimi-

zation algorithms are even more time consuming. One

promising approach for improving convergence to Pareto

front is the use of local search in multi-objective GA

(MOGA). Hybridization of GA with local search is often

referred to as Memetic Algorithm (MA). In Multi-objective

GA based Local Search (MOGALS) a scalar fitness function

with random weights is used for selection of parents and

local search is used to generate their offspring [5]. An

improved MOGALS is proposed by avoiding use of roulette

wheel selection over entire population. Here parents are

selected randomly from pre-specified number of best

solutions with respect to scalar fitness function with current

weights.

In this paper we use Algorithm-II [2] as the basic MOGA

and introduce concept of MOGALS wherein local search

procedure is applied to each offspring using the same scalar

fitness function in the selection of their parents.

2. MA-I [SCP using MOGALS]
Here Memetic Algorithm based on Genetic Algorithm and

local search is presented with as objective of optimizing

power consumption, delay and wire length taking fixed

width of the layout as a constraint. The problem is specified

in our work [3]. The cost functions are formulated for all the

three parameters separately; and subsequently an overall

scalar fitness function is computed.

Wire length Cost function: Total wire length is computed

by adding estimated wire length of each net in the circuit:

Nx

Lxt WWirecos

 (1)

where, WLx is the wire length estimated for net x and N is

total no. of nets in circuit.

Power Cost Function: Power consumption Px of net x in a

circuit can be given by:

...2
2

1
xDDxx SfVCP

where, Cx is total capacitance of net x, VDD is the supply

voltage, f is the clock frequency, Sx is the switching

probability of net x; and is a technology dependent

constant. For fixed supply voltage and fixed clock frequency

Px can be approximated as:

xxx SCP .

The value of Cx for cell x is given by:

rgx CCC

where, Cg is gate capacitance and Cr is interconnect

capacitance at the output node of the cell x. At the cell

placement level, only interconnect capacitance can be

manipulated and that too, is dependent on wire length of net

x.

So, xxx SLP .

Therefore,

Nx

xx

Nx

xt SLPPower .cos

 (2)

Delay Cost function: Delay cost is determined by

considering the delay along the longest path in a circuit.
1

1

int)(
n

x

xswtxpathlongest DDDelay

 (3)

where, Dswtx is the switching delay of the cell driving net x

and Dintx is the interconnect delay of the same net.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.7, April 2011

32

Interconnect delay is the one is affected in the placement

phase. Switching delay is technology dependent and remains

unchanged.

To compute a cost function representing the effect of all the

three objectives in the form of single quantity, a scalar

fitness function to be minimized was used in both the

selection of parents and also the local search for their

offspring as:

)()()(coscos pathlongestdtptw DelaywPowerwWirewfitness

 (4)

where ww, wp , wd are the finite positive weights of each cost

function randomly selected for each pair of parents such that

1dpw www

GA based approach again is divided into five stages of

operation:

1. Initial Stage

2. Fitness Evaluation

3. Parent Preference and Crossover

4. Selection & Mutation

5. Local Search

2.1. INITIAL STAGE:

2.1.1 Chromosome Encoding:
In order to process a solution by GA, it is necessary to

represent it in the form of a chromosome. A placement

solution is the arrangement of cells in a 2-D layout. So the

solution is represented in the form of a 2-D grid.

Due to varying widths of the cells in a circuit, the rows may

not have equal number of cells. Consider a circuit

comprising of 12 cells: 1, 2 , 3 , . . , 12. A probable layout

may be:

7 3 4 11

8 12 6

5 2 1

9 10

The above layout is made after computing the average

row width. This average row width is divided by the

smallest cell width to compute the maximum number of

possible locations in a row. Assume 4 locations and let

it be known from the min-cut placer that there are 4

rows in the layout.

2.1.2 Initial Solution Generation:
Looking at the probable placement of 12 cells as above,

initial solution is generated by random selection of a

cell out of the 12, and placing it in the first row. Before

placing a cell, it is checked whether the addition of it is

violation of the width constraint. If any violation, place

it at the start of next row. All the cells are thus placed

on the layout. As a result, there are four empty

locations as shown above. To make it a packed grid, we

fill the empty locations by dummy cells represented by

negative integers as shown below.

2.2. FITNESS EVALUATION
The fitness of a solution is a measure of its proximity to the

optimal solution. Higher the fitness value of a solution,

closer it is to the optimal solution. In our implementation, an

initial solution is assigned a fitness value of 0 whereas the

optimal solution is assigned a fitness value of 1. The

purpose is to normalize the fitness value of any solution in

range [0,1].

7 3 4 11

8 12 6 -1

5 2 1 -2

9 10 -3 -4

2.3. PARENT PREFERENCE & CROSSOVER

2.3.1 Parent Preference:
In this algorithm roulette wheel scheme [6] of parent

selection is used. An individual chromosome is selected

with a probability proportional to its fitness value. This

scheme allows the individuals having low fitness

values to be selected with a low probability.

2.3.2 Crossover:
Each allele in the chromosome representation is distinct and

this property must be retained from generation to generation

for a chromosome to represent a valid solution. Therefore,

simple crossover techniques are not to be used as it may

generate duplicates. Therefore we use other types of existing

crossover operators like order crossover, PMX etc and its

modified form. Restricted PMX (RPMX). In RPMX, PMX

is applied between first and second parent and then between

second and first parent. As a result, two off-springs are

generated and the better offspring with a high probability is

chosen.

The crossover operation is performed with a high probability

ph. Different high crossover probabilities are attempted to

choose parents. After choosing two parents, a random

number nr in the range [0,1] is generated, and if nr< ph

Initial Stage

Fitness
Stage

 Constraints

GA
Stage1

GA
Stage2

 New Population

Local Search
Stage

Chromosome Encoding

Initial Solution Generation

ami Library
Functions

Fitness Evaluation

Parent Choice

Crossover

Optimized Placement

Selection

Mutation

Local Search

Figure 1: Flow of MOGALS based Algorithm

Improved

Population

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.7, April 2011

33

crossover is applied. If it fails, another set of parents is

chosen and the process is repeated. This process ensures that

same number of offsprings is generated in each iteration and

total number of off-springs generated are equal to the

population size. On generation of a new offspring if the

width cost of the circuit is violating the width constraint, it is

discarded. This process continues until the number of

offspring is equal to the initial population.

2.4. SELECTION & MUTATION

2.4.1 Selection:
Here the selection is performed before the mutation. This

encourages the diversity in the population by ensuring the

transfer of mutation effect into next generation. We

experimented this with different selection schemes including

roulette, elitist roulette, elitist-random, and extended-elitist-

random schemes.

a. In elitist roulette-random selection, the best half of

the chromosomes are selected and the remaining

half are selected using roulette wheel.

b. In elitist roulette selection, the best chromosome is

selected among parents and off springs, and the

remaining are selected using roulette wheel.

c. In extended elitist-random selection, the best half

of the chromosomes are selected and the

remaining half are selected randomly.

d. Similarly, in elitist-random selection, the best one

is selected from parents and off-springs, while the

remaining are randomly selected.

2.4.2 Mutation:
Here, mutation with a dynamic probability PD is used.

It is a function of the diversity of the population

selected for the next generation i.e. (k+1)th generation.

The standard deviation of the population in (k+l)th

generation used as a measure of the diversity. It is to

increase the mutation probability when population

tends to lose diversity.

We implemented mutation as a series of random pair-

wise interchanges. The number of inter-changes was

taken depending on the size of the circuit. A random

fraction fract between 0.02 and 0.04 was generated and

fract x n interchanges were made, where n was the total

number of cells in the circuit.

2.5. LOCAL SEARCH:
Here, a local search procedure is applied to each solution in

the current population using the scalar fitness function given

in equation (4). The weight vector used for parent selection

is reused for local search excluding the initial solution where

random weight vector is used. Local search terminates when

there is no improvement in the solution space of k solution

randomly selected from the neighborhood of the current

solution. After local search is applied to all the solutions of

the population the current solution is replaced with

improved solutions. The algorithm is a Lamarckian Multi-

objective Memetic Algorithm.

MOGALS terminates when a pre-specified number of

solutions are examined. In local search part of the algorithm,

a neighbor is randomly generated from neighborhood of

current solution. This replaces the current solution if it is

better using first improvement strategy. The algorithm

continues in the similar fashion once the current solution is

updated. In this algorithm all non dominates solutions are

stored in the secondary population with no restriction on its

size.

3. RESULTS & DISCUSSION
The algorithms were implemented in C language. Nine

different test-cases were considered from ami standard cell

library. These test cases were mapped over 0.18 micron, 5

metal layer standard cell library [7].

In Algorithm-II [2] layout width was constrained not to

exceed 1.25 times the average row width. This constraint

was satisfied in obtaining the results shown here. In case of

MOGALS, results were computed over 20,000 generations.

The population size was kept 40 chromosomes and RPMX

crossover with a probability equal to 0.95 was applied.

Extended-elitist random selection was used to attain best

final results. Table-1 summarizes the results of GA &

MOGALS based algorithms. The circuits are listed in the

increasing order of the number of contained cells K. Here

WireCost, PowerCost and DelayCost represent the wire length,

power and delay costs respectively.

4. CONCLUSION
As concluded in our previous work [2] Algorithm-I

produced average solutions with 20% better timing, 12%

less power consumption and is 1.8 times faster than the

timing driven AMOEBA-SOCE. We subsequently presented

an iterative approach in Algorithm-II based on GA for

multi-objective optimization of VLSI standard cell

placement. The fuzzy logic is used to integrate the three

objectives wire length, delay and power into a scalar cost

function. Algorithm-II showed marginal improvement in all

the parameters over Algorithm-I for all the three levels of

complexity of ami standard cell libraries. With this as the

basis we attempted integration of GA with local search in

MA and observed that for the same test case of 0.8 micron

ami based standard cell library the observed results were

encouraging with marginal improvement in all the three

parameters as compared to Algorithm-II including 10%

improvement in wire length 7.5% lesser delays and power

consumption reduction by nearly 6%. This is at a cost of

increased computational time and can be further reduced by

restrictive application of LS search and will be attempted

later.

5. REFERENCES
[1] A. E. Caldwell, A. B. Kahng, and I. L. Markov, "Can

Recursive Bisection Alone Produce Routable

Placements" Proc.of Design Automation

Conference,pp.477-482, 2000.

[2] Bunglowala, A., Singhi, B. M., “Standard Cell

Placement using Iterative & Constructive Heuristics for

Multi-Objective Optimization”, published in

International Journal of Electronics Engineering,

2(1),2010,pp. 131-135.

[3] Bunglowala, A., Singhi, B. M., “Performance Evaluation

and Comparison and Improvement of Standard Cell

Placement Techniques in VLSI Design”, ICETET-

IEEE Computer Society, pp. 468-473, 2008.

[4] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,

"Multilevel Hypergraph Partitioning: Application in

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.7, April 2011

34

VLSI Design," In Proc. of Design Automation

Conference, pp. 526-529, 1997.

[5] H. Ishibuchi and T. Murata, “Multi-objective genetic

local search algorithm,” in Proc. of 3rd IEEE Conf. on

Evolutionary Computation, Nagoya, Japan, pp 119-

124, 1996

[6] J. Y Sayah et. al., "Design planning for high-

performance ASICs", In IBM Journal of Research and

Development, Vol. 40, No. 4, pp. 431-452, 1996.

[7] K. Shahookar and P. Mazumder. VLSI Cell Placement

Techniques. ACM Computing Surveys,2(23):143-220,

June 1991.

[8] Sadiq M. Sait and Habib Youssef. Iterative

ComputerAlgorithms with Applications in Engineering:

Solving Combinatorial Optimization Problems. IEEE

Computer Society Press, California, December 1999.

[9] Virtual-Silicon Technology Inc., http://www.virtual-

silicon.com.

[10] X. Yang, B. Choi, and M. Sarrafzadeh, "Timing-Driven

Placement using Design Hierarchy Guided Constraint

Generation," In Proc. Int’l Conference on Computer-

Aided Design, pp. 177-180, 2002

Table 1: Comparison of MOGALS and GA based Algorithm-II results

Std. Cell

instance
Complexity

Wire length WL (m) Delay D (nsec) Power P (mW)

Algorithm-

II

MOGALS Algorithm-

II

MOGALS Algorithm-II MOGALS

ami20 Minimum 456422 411020 5.246 4.962 51.17 48.65

ami20 Moderate 537840 484044 6.489 6.124 57.64 54.76

ami20 Maximum 654625 589162 9.773 9.088 77.26 73.36

ami33 Minimum 578461 520622 7.281 6.762 64.98 61.72

ami33 Moderate 717545 645796 10.959 10.151 78.14 74.16

ami33 Maximum 869442 782488 15.232 14.114 91.02 86.38

ami120 Minimum 1193433 1074110 26.027 24.143 114.52 107.46

ami120 Moderate 1261246 1135220 29.129 26.824 120.65 112.54

ami120 Maximum 1495627 1346104 34.438 31.537 135.86 126.82

Figure 3: Delay Comparison MOGALS v/s Algorithm-II

Figure 4: Wire Length Comparison MOGALS v/s Algorithm-II

Figure 2: Power Comparison MOGALS v/s Algorithm-II

