
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.8, April 2011

24

A new DAG based Dynamic Task Scheduling

Algorithm (DYTAS) for Multiprocessor Systems

Dr. D.I. George Amalarethinam
Director - M.C.A., Dept. of Computer Science

Jamal Mohamed College, Trichy, S.India.

G.J. Joyce Mary
Research Scholar, PRIST University,

Thanjavur , S.India.

ABSTRACT
The dynamic tasks scheduling of parallel tasks in

multiprocessor systems is still a demanding problem that is

being investigated by the researchers. However, the

Directed Acyclic Graph (DAG) - based dynamic tasks

scheduling is not yet paid enough attention. In this paper a

DAG based dynamic tasks scheduling model and a

scheduling algorithm DYTAS (DYnamic TAsk Scheduling

algorithm) has been proposed with a lower time

complexity. Furthermore, the simulation experiments show

that, the scheduling model and scheduling algorithm are

feasible, a higher scheduling successful ratio may be

obtained by this algorithm for parallel jobs with large

number of tasks.

General Terms
Parallel program, Directed Acyclic Graph.

Key words : DAG, Dynamic Scheduling, Task,

Multiprocessor, Schedule length, Homogeneous.

1. INTRODUCTION
The dynamic tasks scheduling of parallel tasks in

multiprocessor system is a challenging problem. Achieving

high performance in a multiprocessor system is a key

factor of scheduling parallel tasks. The objective of

dynamic task scheduling is to map tasks in parallel on the

multiprocessors and order their execution so that a

minimum schedule length is given under the limit of task

precedence requirements. Many scheduling schemes are

adopted in parallel computing environment. Most of these

schemes consider the precedence constrains among

tasks[1]. Up to now, Direct Acyclic Graph (DAG) is a

most popular way that is used as modeling the precedence

constraints among tasks.

 1.1 DAG Model
A parallel program can be represented by a weighed

Directed Acyclic Graph(DAG), in which the vertex/node

weights represent task processing time and the edge

weights represent data dependencies as well as the

communication time between tasks. The communication

time is also referred as communication cost. Directed

Acyclic Graph (DAG) is a directed graph that contains no

cycles. A rooted tree is a special kind of DAG and a DAG

is a special kind of directed graph.

Directed Acyclic Graph(DAG) G = (V, E), where V is a set

of v nodes/vertices and E is a set of e directed edges. The

source node of an edge is called the parent node while the

sink node is called the child node. A node with no parent is

called an entry node and a node with no child is called an

exit node.

1.2 Application of DAG
DAGs may be used to model different kinds of structure

in mathematics and computer science, to model processes

in which information flows in a consistent direction

through a network of processors, as a space-efficient

representation of a collection of sequences with

overlapping subsequences, to represent a network of

processing elements and etc. Examples of this include the

following:

 In electronic circuit design, a combinational

logic circuit is an acyclic system of logic gates that

computes a function of an input, where the input and

output of the function are represented as

individual bits.

 Dataflow programming languages describe systems

of values that are related to each other by a directed

acyclic graph. When one value changes, its

successors are recalculated; each value is evaluated

as a function of its predecessors in the DAG.

 In compilers, straight line code (that is, sequences of

statements without loops or conditional branches)

may be represented by a DAG describing the inputs

and outputs of each of the arithmetic operations

performed within the code; this representation

allows the compiler to perform common sub

expression elimination efficiently.

This paper aims at building a dynamic scheduling model

with DAGs. In this model, an assigned processor which is

called center scheduler, responsible for dynamically

schedules the tasks. Based on the proposed dynamic

scheduling model we present a new dynamic scheduling

algorithm. This algorithm has been tested by conducting

experiments in a simulated environment and the results of

these experiments show that, the proposed scheduling

algorithm is a valid dynamic scheduling algorithm with

better performance.

2. RELATED WORK
The dynamic scheduling algorithms presented in many

literatures are designed to supporting the real- time system.

The real time system is a level of computer responsiveness

that a user senses as sufficiently immediate or that enables

the computer to keep up with some external process. Real

time systems are defined as those system in which the

http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Dataflow
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Common_subexpression_elimination
http://en.wikipedia.org/wiki/Common_subexpression_elimination
http://en.wikipedia.org/wiki/Common_subexpression_elimination

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.8, April 2011

25

correctness of the system depends not only on the logical

result of computation, but also on the time at which the

results are produced.

The scheduling algorithms are classified into two kinds,

namely, static (or off-line) scheduling [1][2][3][4] and

dynamic (or on-line) scheduling algorithm[5][6]. Most of

these algorithms say that the real-time tasks are

independent. While some scheduling algorithms that adopt

the DAG model representing the precedence relationship

among the tasks only suit to the non real time system. In

the recent days, the real-time DAG is used to study the

scheduling problem of dependent tasks in a parallel job

[3][4]. Xiao Qin et al[3] propose that, the scheduling

algorithm doesn‟t ignore the precedence relationship

among the tasks. However they are all static scheduling

algorithm. In a word, DAG-based scheduling algorithm

that suits to the homogeneous environment with dynamic

scheduling in non real time scheduling is rarely seen in the

literature. In this paper we present a new dynamic

scheduling algorithm - Dynamic Task Scheduling

(DYTAS) for non real time system in homogeneous

environment. It can deal with multiple parallel tasks that

are modeled by DAG. And it also considers the special

processing skill of processors.

3. THE SYSTEM MODEL

3.1. The workload model
The arrival of the parallel tasks is assumed dynamic to the

homogeneous system. The parallel tasks are modeled by

DAG. A non real-time DAG[7] is defined as: G = (V, E),

where V is a set of v nodes and E is a set of e directed

edges. A node in the DAG represents a task which in turn

is a set of instructions which must be executed sequentially

without preemption in the same processor. The weight of a

node ni is called the computation cost and is denoted by

w(vi). The edges in the DAG, each of which is denoted by

(vi, vj), correspond to the communication messages and

precedence constraints among the nodes. The weight of an

edge is called the communication cost of the edge and is

denoted by c(vi, vj). The source node of an edge is called

the parent node while the sink node is called the child

node. A node with no parent is called an entry node and a

node with no child is called an exit node.

The homogeneous system comprises a group of

processors, P={P1,P2,P3,…..Pm}, where Pi denotes a

processor with local memory. These processors are tightly

coupled[8], but, the communication cost between the

processors is common.

3.2. The scheduler model
Figure 1 describes a new non real-time scheduler model in

homogeneous environment. When all parallel tasks arrive

at a assigned processor which is called central scheduler,

that will enter into a queue called Initial Task Queue

(ITQ) , to wait for being scheduled ; In addition to

ITQ,

Figure 1. Scheduling model for homogeneous

environment

The central scheduler also manages two more queues,

Dispatch Task Queue (DTQ) and Completed Task

Queue(CTQ). The scheduling algorithm encapsulated in

the scheduler is started to work with ITQ. The central

scheduler is responsible for scheduling each ready task in

the DTQ. Once the scheduling algorithm is started, all the

tasks are arranged according to its dependent tasks. After

arranging the tasks, the scheduler, schedule the tasks to the

individual Processor Task Queue(PTQ). Processors will

complete the tasks in their own PTQ by simultaneously

checking with its dependent task result in CTQ. If the CTQ

is not availing the result of its dependent task , PTQi shall

point to the next PTQi+1,PTQi+2,…PTQn,PTQ1,…PTQi-1 to

fix the suitable task, and migrate that task to the PTQi.

Until the PTQi‟s become empty, then the scheduling

algorithm shall stop working. Then Processor Status

Window(PSW) displays the status of each processor that,
the list of processors is in running state and in idle state.

4. PROPOSED DYNAMIC

SCHEDULING ALGORITHM
We propose a new dynamic scheduling algorithm based on

above scheduler model, DYnamic TAsk Schedulling

(DYTAS) algorithm. This strategy makes the whole

parallel job finished at the possible earliest time viz. the

response time of this parallel task is shortest. According to

DYTAS, the tasks in ITQ are scheduled by its dependency.

The front task in ITQ is always first scheduled and mapped

to a processor by the algorithm. While in the static

scheduling algorithm, the tasks are sorted by a certain

priority rank, because the data of DAG is known in

advance[9]. But, the proposed dynamic scheduling

algorithm is different from the static scheduling

algorithms, by migrating the task during the runtime.

The algorithm DYTAS is focusing on the processor

selection strategy. It mainly lies on how to select a

processor on which the tasks are mapped even though, the

tasks are scheduled earlier.

When selecting a processor to do the particular task from

the PTQi , two time-indexes must be considered:

 The earliest free time of the processor Pi

 The earliest start time of the task vi on the

processor Pi.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.8, April 2011

26

In the proposed scheduler model, the parallel tasks in ITQ

and the ready tasks are in processor‟s PTQ. Even though

ITQ and DTQ locate at the central scheduler, the

processors on which the mapped tasks are actually

executed are separated from the scheduler and placed at

PTQi‟s. At the same time, the scheduling process and the

executing process are parallel works. So that, the scheduler

and the working processors synchronous with each other.

1. Procedure DYTAS

2. dtq[] = SORT[Ti , Tj]

3. l = 0;

4. while (dtq[] is not empty) do

5. for i = 1 to n

6. ptqi = dtq [l]

7. l = l + 1

8. end for;

9. end while;

10. for each processor Pk in processor group do

11. while (Pk is in running state)

12. skip and select the next ptqk+1

13. end while

14. Pk = ptqk[j]

15. if (dependent task of ptqk[j] is in ctq)

16. TASK(ptqk[],Pk , j, ctq, cpk, CTj)

17. else

18. do

19. move the pointer to the next ptq

20. if (dependent task of ptqk[j] is in ctq)

21. TASK(ptqk[],Pk , j, ctq, cpk, CTj)

22. exit do

23. endif

24. while(checking with all ptq’s once)

25. endif

26. end for

27. end DYTAS

Procedure for TASK

28. procedure TASK(ptqk[],Pk,j,ctq,cpk,CTj)

29. do Tj with Pk

30. remove Tj from ptqk

31. insert Tj in ctq

32. cpk = cpk + Ctj

33. end TASK

Figure 2 : Algorithm DYTAS

Figure 2 listing the algorithm DYTAS. The worst case

time complexity for DYTAS is О(t3), t is the total number

of the tasks. The loop 5 – 8 distributes all the tasks in

DTQ to PTQi „s. The middle loop 11 – 13 tours on every

ptq to fetch the task to the processor. The loop 15-25

checks the availability of Tj in CTQ. If Tj is available,

proceed with the same processor and if not, proceed

selecting the task from the next PTQ‟s till fetches the

suitable task.

After fetched or assigned the task to the processor, post in

the PSW and remove from the PTQi. This process will

repeat all the PTQi‟s becomes empty. If any PTQ

completes its Task set at the earliest, migrate the suitable

task from the available PTQ‟s. If suppose, there is no task

is suitable to fetch at that cycle, processor has to wait till

any one of the dependent task becomes available at CTQ.

The waiting time is said to be a processors idle state. The

time complexity of the whole DYTAS is O(t3). It is

closely related with the length of DTQ and the total

number of processors, also related with the precedence

relationship among tasks in DAG.

5. SIMULATION EXPERIMENTS

AND ANALYSIS
In order to analyzing the feasibility of the proposed

Table 1 : Input Task List generated using DAGEN

scheduling model and the performance of DYTAS, a

series of simulation experiments is designed. The DAG of

parallel tasks are generated randomly for simulation. The

total number of tasks Ti is assumed as 25 for the view and

the number of processor is assumed to be 4. Table 1

T0 0 10 -

T1 8 2 T0

T2 8 10 T0

T3 5 17 T0

T4 1 4 T3

T5 9 17 T1

T6 1 2 T0

T7 9 15 T0

T8 5 16 T4

T9 1 15 T2

T10 4 1 T8

T11 3 18 T4

T12 1 4 T8

T13 1 16 T1

T14 9 1 T6

T15 5 15 T3

T16 6 14 T4

T17 1 14 T13

T18 7 12 T0

T19 1 6 T7

T20 1 1 T13

T21 5 1 T19

T22 6 8 T10

T23 2 11 T19

T24 1 10 T5

T24 8 10 T9

T24 8 10 T11

T24 8 10 T12

T24 4 10 T14

T24 4 10 T15

T24 3 10 T16

T24 1 10 T17

T24 3 10 T18

T24 7 10 T20

T24 1 10 T21

T24 3 10 T22

T24 1 10 T23

Task_id CC CP
Parent

Task_id

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.8, April 2011

27

represents the input data which randomly generated

through a tool named DAGEN.

Table 2 : PTQi’s at the Initial Stage

Tasks are evenly distributed to PTQ‟s after arranging

according to its dependency. The PTQi status at the initial

stage is described in Table 2. The dynamic scheduling is

implemented the task migration during the run time. Table

3 shows the task migration. Table 4 shows the runtime

anomaly of parallelized tasks.

Scheduling length in a single processor of our example is

240 time units. Time taken to complete tasks in the first

processor (P1) is 80 time units, P2 is 65 time units, P3 is

67 time units and P4 is 66 time units. We assume that, the

number of processors(np) in the architecture is 4. The

minimum schedule length can be obtained from

Table 4 : Run time anomaly of parallelized tasks

The Speedup percentage of this prototype is 75 %. But at

the same time, with the help of this research, we may

conclude that, speedup of the parallel system is depending

upon not only the proper scheduling, but also the number

of processors in the architecture and the number of tasks

scheduled to the architecture.

Table 3 : PTQi ‘s during run time

Minimum Schedule Length =

The minimum schedule length of the above illustration is

60 . Hence the speedup shall be attained from

Speedup =

 ___________Computation cost__________

The number of tasks and the number of processors are

directly proportional to each other. Though, the

architecture used in our model is tightly coupled, the

communication cost is not to be entertained, because it is

negligible.

The results of simulation experiment shows that, the

proposed dynamic scheduling model and scheduling

algorithm DYTAS of DAG-based parallel tasks gives the

better scheduling with high speed up percentage. The

T5 T16

migrate to P3

at

migrate to P4

at runtime

runtime

T2 T17

migrate to P4

at runtime

migrate to P1

at runtime

T1 T15 T23

migrate to P4

at runtime

migrate to P1

at runtime

migrate to P4

at runtime

T4 T22 T21

migrate to P2

at runtime

migrate to

P3 at

 runtime

migrate to P2

at runtime

PTQ4 T6 T13 T14

PTQ3 T7 T8 T10

T24

PTQ2 T18 T9 T11 T12

PTQ1 T0 T3 T19 T20

PTQ1 T0 T3 T5 T16 T19 T20 T24

PTQ2 T18 T2 T9 T11 T12 T17

PTQ3 T7 T1 T15 T8 T10 T23

PTQ4 T6 T13 T4 T14 T22 T21

PRO-

CESSORS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

P1

P2

P3

P4 T6(2) T2(10) T1(2) T13(16)

T15(15)

T18(12) T9(15) T4(4)

T7(15) T5(17)

T0(10) T3(17)

PRO-

CESSORS
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

P1
T20

(1)

P2
T4(

4)

T21

(1)

P3
T10

(1)

P4
T14

(1)

T8(16) T22(8)

T16(14) T23(11)

T5(17)

T11(18)

T19(6) T17(14) T24(10)

T12(4)

T15(15)

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.8, April 2011

28

Speedup curve in Figure 3a, 3b, 3c shows that, the number

of tasks and the number of processors is related with each

other and affects the speed of the system. We can

powerfully use our DYTAS in the multiprocessor system

by providing suitable set of tasks.

Figure 3.a The Speedup curve when P = 4

 i
Figure 3.b The Speedup curve when P = 8

ii
Figure 3.c The Speedup curve when P = 2

6. CONCLUSION AND FUTURE

WORK
Studying of task scheduling problem is still a research

focus. The scheduling algorithms presented by researcher

are often seen in the literature. But the DAG-based parallel

tasks in dynamic task scheduling algorithm don‟t yet

magnetize enough attentions. So we build a new dynamic

scheduling model and present a scheduling algorithm

DYTAS based on the new model. Obviously, the worst

case time complexity of DYTAS is low. The results of

simulation experiment shows that, DYTAS is feasible with

DAG based dynamic scheduling. The dynamic scheduling

using DYTAS is based on dependent tasks, and the

distribution based on the availability of processors. The

speedup is reasonable and it shows that, the algorithm is

working properly. The proposed scheduling algorithm

should add fault-tolerant function in the further work.

REFERENCE
[1] T.F.Abdulzaher, K.G.Shin, 1999 “Combined task and

message scheduling in distributed real-time systems,”

IEEE Transaction on Parallel and Distributed

Systems, Vol.10, No.11

[2] J.C.Palencia, H.M.Gonzalez, 1998 “Schedulability

analysis for tasks with static and dynamic offsets,” In

Proceeding of the 19th IEEE Real-Time Systems

Symposium, pp.26-37.

[3] Xiao Qin, Hong Jiang, C.S.Xie, Z.F.Han, 2000

“Reliabilitydriven scheduling for real-time tasks with

precedence constraints in heterogeneous distributed

systems,” In Proceeding of 12th International

Conference Parallel and Distributed Computing and

Systems .

[4] Xiao Qin, Z.F.Han, H.Jin, L.P.Pang,2000 “Real-time

faulttolerant scheduling in heterogeneous distributed

systems,” in proceeding of the 2000 International

Conference on Parallel and Distributed Processing

Techniques and Applications, Vol.I, pp. 421-427.

[5] V.Kalogeraki, P.M.Melliar-Smith, L.E.Moser, 2000,

“Dynamic scheduling for soft real-time distributed

object systems,” In proceeding of Third IEEE

International Symposium on Object-Oriented Real-

Time Distributed Computing, pp. 114-121.

[6]G.Manimaran and C.S.R Murthy,1998, “ An efficient

dynamic scheduling algorithm for multiprocessor

real-time systems,” IEEE Transaction on Parallel and

Distributed system, Vol.9, No.3, pp. 312-319.

[7] Dan Ma, Wei Zhang, Qinghua Li, 2004, “Dynamic

Scheduling Algorithm for Parallel Real-time Jobs in

Heterogeneous System” Proceedings of the Fourth

International Conference on Computer and

Information Technology (CIT‟04) IEEE

[8] Kai Hwang and Faye A. Briggs, 1984, “Computer

Architecture and Parallel Processing”

[9] G.J. Joyce Mary, D.I. George Amalarethinam, 2010,

Dynamic Task Scheduling in Multiprocessor and the

Swift Embryonic World of Parallel Computing – A

Survey. Published in the “International Journal of

Algorithm, Computing and Mathematics” – Vol. III –

No. 4 , PP 53

0

20

40

60

80

100

25 100 200

Number of Task(X Axis) Vs Speed

up % (Y Axis) for 4 Processors

Speedup %

0

20

40

60

80

100

25 100 200

Number of Task(X Axis) Vs Speed

up % (Y Axis) for 8 Processors

Speedup %

0

20

40

60

80

100

25 100 200

Number of Task(X Axis) Vs Speed

up % (Y Axis) for 2 Processors

Speedup %

