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ABSTRACT 
This paper solves a linear Quadratic (LQ) optimal control problem 

for underwater vehicles to track desired speeds. To obtain the 

linear controller, nonlinear model of the underwater vehicles is 

linearized around an operating point. After explaining both 

nonlinear and linearized models a brief description of LQ 

controller designing procedure is reviewed. It is assumed that all 

system states are available to measure.  Weighting matrices (Q 

and R) of the linear quadratic performance index are tuned to a 

desired step response acquired, by using Particle Swarm 

Optimization (PSO) that minimizes a performance criterion. It is 

supposed that Q and R matrices are diagonal. After designing the 

LQ controller for the linear nominal model it is embedded to the 

nonlinear model. Using nonlinear simulations the speed tracking 

efficiency of designed LQ controller is shown. Control efforts of 

actuators reveal no saturation, therefore they are feasible to 

implement. 

Keywords: Underwater Vehicles, Linear Quadratic, Speed 

Tracker, PSO.  

1. INTRODUCTION 
Nearly 70% of the earth is covered with oceans. They hold plenty 

of natural resources like oil, gas, minerals and fish, etc. 

Underwater vehicles help us to exploit these resources. They have 

became an intense area of oceanic researches because of their 

emerging applications, such as scientific inspection of deep sea, 

exploitation of underwater resources, long range survey, 

oceanographic mapping, underwater pipelines tracking and so on.  

Automatic control of the underwater vehicles presents several 

difficulties due to the nonlinear behavior of a vehicle subjected to 

hydrodynamic forces and moments, the multivariable character of 

the vehicle with coupling among different channels, the consistent 

amount of uncertainty due to the lack of precise knowledge of 

hydrodynamic drag coefficients and evaluation of external 

disturbance due to environmental interaction. 

Todate optimal control theory has been extensively used to solve 

various control engineering problems. Linear quadratic (LQ) 

optimal control procedure is based on minimization of a linear 

quadratic performance index representing the control objective. 

Unlike pole placement method, where the designer must know the 

exact pole locations, optimal control places the poles at some 

arbitrary points on the left hand of s-plane so that the resulting 

system is optimal in some sense. A linear quadratic state feedback 

regulator (LQR) problem is solved which assumes that all states 

are available for feedback.   
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Optimal state estimation (Kalman filtering) can be used to realize 

the autopilot in the case when not all states are measured. For 

instance, the LQG/LTR (Linear Quadratic Gaussian/ Loop 

Transfer Recovery) design methodology has been applied to 

underwater vehicles that two simple linear SISO (Single Input-

Single Output) examples are used to demonstrate the proposed 

procedures [2]. LQG/LTR methodology is also applied to linear 

models of underwater vehicles [3]. A discrete LQR methodology 

is used to control a simple linear SISO underwater vehicle for a 

cable tracking problem in [4]. 

The ability of an underwater vehicle to maintain a desired and 

long endurance is a prerequisite for a successful operation. To 

maintain full trajectory control for such vehicles, it is necessary 

that desired speeds are followed. Position control can not be 

performed without appropriate speed tracking. Here, for an 

underwater vehicle with six degrees of freedom, both linear and 

angular speeds are considered to control. It is assumed that all 

states can be measured by suitable sensors, so that the state 

estimator is not required. The nonlinear model of the vehicle is 

linearzed around an operating point. Afterwards, an effective LQ 

controller is designed that its weighting matrices are found by 

Particle Swarm Optimization (PSO) which minimizes a time 

domain cost function. Using obtained controller, nonlinear 

simulations are assessed to test the performance of the controller 

over the nonlinear model. The necessary thrusters control efforts 

are feasible to realize. 

The proposed method has the following characteristics: a) the 

problem of speed tracking is considered as a new work, b) 

designed controller is MIMO (Multi Input-Multi Output) without 

neglecting the cross coupling terms, c) the LQ controller is 

designed with aid of PSO, and d) the linear controller efficiency is 

shown when it is set into the nonlinear model. 

This paper is organized as follows. In Section 2 dynamics and 

motion equations of underwater vehicles are discussed. A 

linearized model for underwater vehicles is presented in Section 

3.  In Section 4, a brief review of particle swarm optimization is 

given.  In Section 5, linear quadratic optimal control synthesis is 

explained. Section 6 deals with designing of the LQ controller for 

underwater vehicles speed tracking purpose. And some computer 

simulations are presented. Finally, in Section 7, this paper is 

ended with conclusions and some future works. 
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2. THE NONLINEAR MODEL OF 

UNDERWATER VEHICLES 
Throughout the marine robotics literature a vehicle’s six degrees 

of freedom dynamic equations are expressed as [1]: 

( ) ( ) ( )Mv C v v D v v g                                         (1)
 

( )J v  1 2( ) { ( ), ( )}J diag J J                        (2) 

where s(.)=sin(.), c(.)=cos(.), t(.)=tan(.),   is the position and 

orientation of the vehicle in the Earth fixed frame, 
6 1R  , v is 

linear and angular velocity of the vehicle in the body fixed frame, 
6 1R  , M is the inertia matrix including added mass, 

6 6R  , 

C(v) is a matrix consisting Coriolis and centripetal terms, 
6 6R  , D(v) is a matrix consisting damping or drag terms, 

6 6R  , ( )g   is the vector of restoring forces and moments 

due to gravity and buoyancy, 
6 1R  , and   is the vector of 

forces and moments of propulsion, 
6 1R  . 

The matrix ( )J   converts velocity in a body fixed frame, v, to 

velocity in an earth fixed frame, , as shown in Fig. 1. In fact 

1( )J  and 2 ( )J  convert linear and angular velocities in a 

body fixed frame, v, to velocities in an earth fixed frame, , 

respectively. A detailed derivation of these nonlinear equations of 

motion can be found in [1]. Below a small summary of the 

modeled phenomena is given. 

1) Mass and Inertia: In matrix M, two inertial components are 

accounted for [1],  

M=MRB+MA, M=MT, M>0                                                         (3) 

The rigid body inertial matrix, MRB, represents the mass and 

inertia terms due to the mass and other physical characteristics of 

the craft. However in a dense medium such as water, a 

considerable contribution to the mass originates from the medium. 

This so called added mass is accounted for by the matrix MA. 

2) Coriolis and Centripetal forces: For matrix C(x), a similar 

discourse can be held. Both the coriolis and centripetal forces are 

forces that are proportional to mass and inertia. Hence, the matrix 

consists of two matrices: 

( ) ( ) ( )RB AC v C v C v  T

RB RBC C                              (4) 

where CRB represents forces and moments due to the mass and 

physical characteristics of the craft, CA(x) incorporates the terms 

originating from the added mass.  

3) Damping terms: In the damping matrix, D(x), four terms are 

combined [1]:  

D(x)=Dp+ Ds(x) + Dw + DM(x)                                                    (5) 

where Dp is the potential damping, Ds(x) is linear and quadratic 

skin friction, Dw is wave drift damping and DM(x) is damping due 

to vortex shedding. 

Similar to added mass, potential damping is introduced due to 

forces on the body when the latter is forced to oscillate.  

Skin friction effects can be shown to constitute both a linear and a 

quadratic term. Low frequency friction will induce a linear term 

while high frequency effects will add a quadratic term. 

Like potential damping, wave drift damping only plays a major 

role at the surface where it can be interpreted as added resistance 

due to incoming waves. 

Damping due to vortex shedding is a result of the non-

conservative nature of a moving system in water with respect to 

energy. The viscous damping force due to this phenomenon is a 

function of the relative velocity of the craft, its physical 

characteristics and the density and viscosity of the water. 

4) Gravitation and Buoyancy: The last term on the left-hand side 

of equation (1), ( )g  , models the restoring forces which result 

from gravitation and buoyancy. Whereas the gravity force is a 

vector working along a line through the craft center of gravity, the 

buoyancy term is a force working along a line through the craft 

center of buoyancy. In general, those two points do not coincide 

and the restoring forces will introduce both forces and moments 

respectively along and about the three body axes. 

5) Thruster model: Usually, propellers are used as propulsion 

devices for underwater vehicles. The load torque Q from the 

propeller, and the thrust force T, are then usually written as [1]:
 

nn)(JKρDQ
Q 

5  , 
 

nnJKDT T )( 0
4                 (6) 

where n is rotational velocity of the thruster,  
 

 is the mass 

density of water, D is the diameter of the propeller, KQ and KT are 

the torque and the thrust coefficients of the propeller, and J0 is the 

advance ratio. 

 J0=Va/nD                                                                                    (7)

 In the rest of this paper, the thrusters are assumed to be driven by 

DC motors. DC motors are usually controlled by velocity 

feedback, which means that the rotational velocity of the thruster 

tries to follow a reference velocity nd. Therefore, ni will be the 

 

Fig 1: Inertial and body coordinate frames 
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physical input related to thruster number i. It can be also shown 

that an algebraic relation, although complicated, exists between 

the thrust  of propeller i and the physical input. Therefore, the 

thrust will be chosen as input in the model ui = Ti; This means that 

the model will be linear in the inputs. Here, it is assumed that six 

propellers are erected in six freedom degrees. So, the linear and 

angular speeds are controlled by these propellers. In fact, with 

changing in propellers rotational speeds, we can control the 

underwater vehicle speeds.   

3. THE LINEARZED MODEL FOR 

UNDERWATER VEHICLES 
The nonlinear speed system of the underwater vehicles can be 

described in state space form by defining a six dimensional state 

vector x=(u, v, w, p, q, r) as follows. 

 uBuxfx ,)(                                                         (8) 

11 )),()()(()(   MBgxDxCMxf           (9) 

For a linear controller design, it is necessary to extract the 

linearzed model from the nonlinear model around a representative 

operating point. In this paper, the nominal value of rotational 

speed of the propellers is considered 100 rpm. Using this 

assumption, the operating point is obtained:  

x0=(1, 1, 1, 1, 1, 1 )                                                                   (10) 

The linearized model is: 

xCyuBxAx  ,                                  

],,,,,[,][ 654321  ur q, p,  w,v, u,x T

Ty ]r q, p,  w, v,u,[                                                          

(11) 

where A and B are 6× 6 matrices and C is a 6×1 vector and i  

i=1, 2, …, 6 are the propeller forces, [u, v, w] and [p, q, r] are the 

linear and angular speeds of the underwater vehicle in a body 

fixed coordinate system, respectively.  

The step response of linearized model is shown in Figure 2. As it 

is seen in this figure, the step response is not tracked and system 

modes are not decoupled. 

4. PARTICLE SWARM OPTIMIZATION 
A particle swarm optimizer is a population based stochastic 

optimization algorithm modeled after the simulation of the social 

behavior of bird flocks. PSO is similar to genetic algorithm (GA) 

in the sense that both approaches are population-based and each 

individual has a fitness function. Furthermore, the adjustments of 

the individuals in PSO are relatively similar to the arithmetic 

crossover operator used in GA. However, PSO is influenced by 

the simulation of social behavior rather than the survival of the 

fittest. Another major difference is that, in PSO each individual 

benefits from its history whereas no such mechanism exists in GA. 

In a PSO system, a swarm of individuals (called particles) fly 

through the search space. Each particle represents a candidate 

solution to the optimization problem. The position of a particle is 

influenced by the best position visited by itself (i.e. its own 

experience) and the position of the best particle in its 

neighborhood. When the neighborhood of a particle is the entire 

swarm, the best position in the neighborhood is referred to as the 

global best particle and the resulting algorithm is referred to as a 

gbest PSO. When smaller neighborhoods are used, the algorithm 

is generally referred to as a lbest PSO. The performance of each 

particle (i.e. how much close the particle is to the global optimum) 

is measured using a fitness function that varies depending on the 

optimization problem. 

The global optimizing model proposed by Shi and Eberhart [6]  is 

as follows: 

)xG(

crand)xP(cRANDvwv

ibest

2ibest1i1i






       (12) 

1ii1i
vxx




                                                                        (13)  

where vi is the velocity of particle i, xi is the particle position, w is 

the inertial weight. c1 and c2 are the positive constant parameters, 

Rand and rand are the random functions in the range [0,1], Pbest 

is the best position of the ith particle and Gbest is the best position 

among all particles in the swarm.  

The inertia weight term, w, serves as a memory of previous 

velocities. The inertia weight controls the impact of the previous 

velocity: a large inertia weight favors exploration, while a small 

inertia weight favors exploitation [6]. As such, global search starts 

with a large weight and then decreases with time to favor local 

search over global search [6]. 

It is noted that the second term in equation (12) represents 

cognition, or the private thinking of the particle when comparing 

its current position to its own best. The third term in equation 

(12), on the other hand, represents the social collaboration among 

the particles, which compares a particle’s current position to that 

of the best particle [7]. Also, to control the change of particles’ 

velocities, upper and lower bounds for velocity change is limited 

to a user-specified value of Vmax. Once the new position of a 
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Fig 2: Step response of open loop linear model 
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particle is calculated using equation (13), the particle, then, flies 

towards it [6]. As such, the main parameters used in the PSO 

technique are: the population size (number of birds); number of 

generation cycles; the maximum change of a particle velocity 

Vmax and w. 

Generally, the basic PSO procedure works as follows: the process 

is initialized with a group of random particles (solutions). The ith 

particle is represented by its position as a point in search space. 

Throughout the process, each particle moves about the cost 

surface with a velocity. Then the particles update their velocities 

and positions based on the best solutions. This process continues 

until stop condition(s) is satisfied (e.g. a sufficiently good solution 

has been found or the maximum number of iterations has been 

reached). 

5. LINEAR QUADRATIC (LQ) TRACKER 
In this section we will briefly review some results from Athans 

and Falb [5] on linear quadratic (LQ) optimal control theory. 

Consider a linear controllable system (underwater vehicle 

linearized model is controllable) with state x(t) 
nR , input u(t) 

R and output y(t) 
mR . The system performance output y 

is given by: 

DuCxyBuAxx  ,                                           (14) 

x(t) is assumed to be measured by sensors. Our control objective 

is to design an optimal controller to track a desired speed yd(t). 

For this purpose, we will define an error vector: 

)(ˆ
dd xxCyyy                                                    (15) 

where xd(t) is  the desired state. It can be shown that the optimal 

control law utilizing feedback from x(t) and feedforward of yd(t) 

can be obtained by minimization of a quadratic performance 

index: 

 

T

TT dtRuuyQyJ
0

)ˆˆ(
2

1
min                                     (16) 

where R>0 and Q0 are the weighting matrices. Using some 

mathematical operations it can be showed that the optimal input is 

obtained as follows [5] 

)( 21

1 hhSxBRu T  

                                             (17) 

where h1 and h2 are obtained from equations (18) and (19). S must 

be solved from Riccati equation (20), as follows: 

0)( 1

1

1  

d

TT QxhSBBRAh                              (18) 

0)( 2

1

2   hSBBRAh TT                                          (19) 

0
~1   QSBSBRSASAS TT                           (20) 

where 0
~

 QCCQ T
 and boundary conditions are simply 

yield: 

h1(T)=0, h2(T)=0, S(T)=0                                                          (21) 

Hence, the differential equations for S, h1 and h2 can be solved for 

all ],0[ Tt  by integration. 

For T  the solution of Riccati equation (20) will tend to 

the constant matrix S∞ satisfying: 

0
~1  



 QSBBRSSAAS TT
                       (22) 

This solution is interpreted as the steady-state solution of Riccati 

equation (18). Furthermore, xd is assumed to be constant. This 

assumption can be correct, because in many applications. The 

speed of underwater vehicles has slowly-varying states. For 

T , an optimal input can be obtained as follows. 

U=K1x+K2yd                                                                             (23) 

where 

K1=-R-1BTS∞, K2=-R-1BT(A+BK1)
-TCTQ                                  (24) 

The solution is shown in Figure 3.  

6. DESIGN OF AN LQ CONTROLLER FOR 

UNDERWATER VEHICLES SPEED 

TRACKING  
LQ method is rooted in optimal control theory and in spite of 

systematic design procedure, shows some useful properties of 

efficiency and good performance. The objective is to design an 

optimal control law to provide speed tracking of a linearized 

model of underwater vehicles using the propeller forces, as the 

inputs.  

As shown in Figure 2, open loop step response is not suitable, 

because there is coupling between channels and the step command 

is not followed. To achieve a suitable step response with no 

overshoot, no steady state error and less settling time, an LQ 

problem is solved for the linearized model. First the weighting 

matrices, Q and R, should be selected.  As first attempt, Q and R 

matrices are considered to be represented by identical matrices. 

Using lqr function in MATLAB 7 software, K1 and K2 matrices 

are computed. The step response of the closed loop system is 

plotted in Figure 4. As illustrated in this figure, step response has 

not appropriate characteristics: there is coupling between channels 

and the step command is not tracked, accurately.  

In this paper, it is assumed that Q and R 6*6 to be diagonal    

matrices.  Therefore, minimizing a cost function, determining the 

vector KQ,R=[Q1, Q2, Q3, Q4, Q5, Q6, R1, R2, R3, R4, R5, R6], where 

Qi and Ri (i=1, 2, …,6) are diagonal elements of Q and R, is the 

main purpose. The performance criterion or cost function is 

1/s

K1

K2 B

A

C
xuyd y

-

++

+

 

Fig 3: Linear Quadratic optimal control block diagram 
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defined based on some typical desired output specifications in the 

time domain such as overshoot, rise time, settling time, and 

steady-state error. 

Therefore, in this paper, a time domain performance criterion 

defined by 

   
 

 
6

1

6

1

, 1)(min
,

i j

rijsijRQK TTeKF
RQ

 ssijpij EMe  
                                                                   (25) 

is used for evaluating the LQ controller performance. 

where Mpij is the maximum overshoot, Tsij is the settling time, Trij 

is the rise time and Esij is the integral absolute error of step 

response (i, j=1, 2, …, 6). Note that desired steady state of 

diagonal modes of the system (i.e. i=j) is 1 while for non-diagonal 

modes (i.e. i≠j) it is desired to be 0.  

]4,0[ is the weighting factor. The optimum selection of α 

depends on the designer’s requirement and the characteristics of 

the plant under control. We can set α to be smaller than 0.7 to 

reduce the overshoot and steady-state error. On the other hand, we 

can set α to be larger than 0.7 to reduce the rise time and settling 

time. If α is set to 0.7, then all performance criteria (i.e. overshoot, 

rise time, settling time, and steady-state error) will have the same 

worth.  

The minimization process is performed using PSO algorithm. For 

this purpose, step response of the plant is used to compute four 

performance criteria overshoot (Mp), steady-state error (Ess), rise 

time (Tr) and setting time (Ts) in the time domain. At first, the 

lower and upper bounds of the parameters are specified. Then a 

population of particles and a velocity vector are initialized, 

randomly in the specified range. Each particle represents a 

solution (i.e. Q and R matrices diagonal elements KQ,R) that its 

performance criterion should be evaluated. This work is 

performed by computing Mp, Ess, Tr, and Ts using the step 

response of the plant, iteratively. Then, by using the four 

computed parameters, the performance criterion is evaluated for 

each particle according. Then using equations (23) and (24) the 

next likely better particles (solutions) are determined. This 

process is repeated until a stopping condition is satisfied. In this 

stage, the particle corresponding to Gbest is the optimal vector 

KQ,R. 

Figure 5 shows the step response of the final closed loop system. 

Comparing figures 4 and 5, we can realize the relation between 

the cost function gains and overcoming the coupling effects. This 

means that an appropriate selection for Q and R is led to the 

efficient decoupled response. It can be concluded that the final 

step response is suitable and it has good characteristics such as 

less settling time, no overshoot and correct final value. 

Now, to assess the behavior of the designed LQ controller, it is 

embedded into the full nonlinear model of the underwater vehicle 

to form a closed loop system. Using the step command, the speed 

tracking quality is evaluated. Figure 6 shows the step response of 

the designed controller, when it is engaged into the nonlinear 

model. As shown in this figure, the proposed small errors. In 

particular, the steady state error is very small. This means that the 

designed linear controller can behave efficiently versus the model 

nonlinearity. 

Figures 7 and 8 show the control efforts of the LQ controller 

embedded into the linearized and the nonlinear models, 

respectively. As illustrated in these figures, the control effort of 

actuators reveals no saturation and so is feasible to implement. 
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Fig 4: Step response of final system with R=Q=I 
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7. CONCLUSIONS  
An LQ controller for underwater vehicles speed tracking was 

introduced in this paper. Using particle swarm optimization the 

suitable weighting matrices were obtained. A performance index 

function was defined to evaluate each of the candidate Q and R 

matrices. The introduced controller was evaluated with linear and 

nonlinear models. Linear quadratic with minimizing an index 

performance can use of the states feedback to desired speed 

tracking. Simulation results showed the efficiency and 

effectiveness of the controller performance. The proposed 

controller can follow the step commands, well. The actuator 

control efforts were at the appropriate and acceptable rang for 

implementation. The future work can focus on control of 

underwater vehicles using nonlinear techniques hybrid with 

intelligent manner. 
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Fig 6: Step response of LQ with nonlinear model 

 

Fig 7: Control efforts of the LQ controller embedded into the 
linear plant, (time unit is 0.1s) 

 

Fig 8: Control efforts of the LQ controller embedded into the 
nonlinear plant, (time unit is 0.1s) 


