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ABSTRACT   
A radial basis function ( RBF ) neural network 

depends mainly upon an adequate choice of the 

number and positions of its basis function centers. In 

this paper we have proposed an algorithm for RBF 

neural network and the results may be reduced for 

artificial neural networks as particular cases. 
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1. INTRODUCTION  
The radial basis function neural networks are powerful 

function approximators for multivariate nonlinear 

continuous mappings. They have a simple architecture 

and the learning algorithm corresponds to the solution 

of a linear regression problem. The RBF network 

behavior strongly depends upon the number and the 

position of the basis functions at the hidden layer. 

Traditional method of determining the centers are 

randomly choose input vectors from the training data 

set or to obtain vectors from unsupervised clustering 

algorithms applied to input data or vectors obtain 

through a supervised learning scheme. In this paper 

we have proposed a new algorithm for RBF neural 

network and the results may be reduced for artificial 

neural networks as particular cases. 
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corresponding weights are        
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for m external input lines for n units of RBF neural 

network. 

    If we choose an activation function 
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The system output y for first stage of network for the 

weight vector  

 

w =  ( )rwww ,...,, 21 ; ( )10 ≤≤ iw     

may be taken as 
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Similarly for second stage output             
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We would have 
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Then for total output Z of multilayer RBF neural 

network, we may adapt an unified activation function  
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and therefore ( Because in case of indefinite large 

numbers the probabilistic models are best suited for 

infinity ). 
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   Or 

 

Z = ∑
∞

=0,nm

h(m+n) f(m) g(n)     
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by using identity [ 9 ] 
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In case of symmetrical layers h(m+n) may be taken as 

constant, say k. Also a group of neurons are similar in 

structure, the f(m) and g(n) in (1) may be taken as 

modular parameters  
mλ  and  

nµ
 say. So we have 

 

Z  =  k ∑
∞
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i.e. the RBF neural network output is directly 

proportional to exponentially weighted sum of inputs 

and middle stage outcomes taken radially along with 

constraints  λ  and  
µ

 which may be suitably 

defined as per network configuration. 

 

Particularly when we choose  

µ  = 0 in (2), we have (Z→  Y) 
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a result proposed by author [10] for artificial neural 

network. 

 

 

 

 

 

 

 

 

 

 

2. CONCLUSION          
In this paper we have proposed an algorithm for radial 

basis neural networks for the lack of availability of 

proper algorithm in the discipline. The further work is 

being carried out and may bring some fruitful results 

in near future.   
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