
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

105

Component Based Software Engineering

 Arvinder Kaur Kulvinder Singh Mann
 Student, GNDEC, LDH Assistant Professor , GNDEC, LDH

Abstract

Traditional software estimation models are directed towards
large monolithic software development projects. Contemporary

software development practices require a new approach to
software cost estimation. Contemporary development practices
characterize a software application as interacting, independent
components. Component-based development offers many
potential benefits such as a greater reuse.
Component based software development approach is based on
the idea to develop software systems by selecting appropriate
off-the shelf components and then to assemble them with a well-

defined software architecture. Software community faces a
major challenge that is raised by fast growing demand for rapid
and cost-effective development and maintenance of large scale
and complex software systems. To overcome the challenge, the
new trend is to adopt component based software engineering
(CBSE).The key difference between CBSE and traditional
software engineering is that CBSE views a software system as a
set of off-the-shelf components integrated within appropriate

software architecture. CBSE promotes large-scale reuse, as it
focuses on building software on building software systems by
assembling off-the-shelf components rather than implementing
the entire system from scratch. CBSE also emphasis on selection
and creation of software architecture that allow systems to
achieve their quality requirements .As a result, CBSE has
introduced fundamental changes in software development and
maintenance.

Keywords software reuse, COTS, multiple criteria decision

making, OTSO stands for Off-The-Shelf Option.

1. Introduction

Software is the heart of many industrial systems in today. Added
value to products is to a large extent provided by the software.
Furthermore, production cost reduction is imperative and is

often achieved by introducing software that permits the use of
less complex hardware. Domains in which the use of software is
now essential include the automotive, medical systems, process
control, and manufacturing industries. Industrial products are
often systems consisting of software and hardware, the software
part being referred to as a software system incorporating many
software programs or applications that must cooperate without
fail.Delivering a software product on time, within budget, and to

an agreed level of quality is a critical concern for many software
organizations. Underestimating software costs can have
detrimental effects on the quality of the delivered software and
thus on a company’s business reputation and competitiveness.
On the other hand, overestimation of software cost can result in
missed opportunities to funds in other projects.

Component-based Software Engineering (CBSE) has emerged

as a technology for rapid assembly of flexible software systems.
CBSE combines elements of software architecture, modular
software design, software verification, configuration and
deployment. Component-based software engineering (CBSE) is
an approach to software development that relies on software
reuse. It emerged from the failure of object-oriented
development to support effective reuse. Components are more
abstract than object classes and can be considered to be stand-
alone service providers. In CBD, software systems are built as

an assembly of components already developed and prepared for
integration. The main advantages of the CBD approach include
effective management of complexity, increased productivity, a
greater degree of consistency, and a wider range of usability and
extendibility, reduced time to market.

2. Background

Definitions

Component:-A component is an existing piece of software
written with reuse in mind that can be deployed with little or no
modification. We assume that components are designed to be
used in certain types of applications, which implies that there are
constraints regarding the incorporation of a component into a
system. Components can be

obtained in-house or of-the-shelf.
Architecture: - Software architecture deals with the definition
of components, their external behavior, and how they interact .In
this context architecture contains a description of component
needs or roles. The process of architectural definition can be
viewed as a number of architectural decisions that need to be
made. We are chiefly concerned with the way in which these
decisions affect the components needed by the system.

Architecture can be expressed informally; or using modeling is
useful because it may uncover more subtle architectural
assumptions; however, the method we present does not rely on
any specific technique for specifying architecture.
Architectural Approach:-The process of defining architecture
involves decisions about components and their interactions. An
architectural approach captures instances of these decisions,
thereby partially specifying the components needed by a system

and restrictions on how they interact.
 Implementation Approach: - The specification of an
architectural approach provides us with a list of components
needed. When an architectural approach is combined with a set
of actual of-the-shelf components that meet these needs, the
result is an implementation approach.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

106

3. Methodologies

Component-based software systems are developed by selecting
various components and assembling them together rather than
programming an overall system from scratch, thus the life cycle
of component-based software systems is different from that of
the traditional software systems. The life cycle of component-
based software systems can be summarized as follows

a) Requirements analysis
b)Software architecture selection, construction, analysis, and

evaluation
c)Component identification and customization
d) System integration
e) System testing
f) Software maintenance

a) Requirements analysis:- Component requirement analysis is
the process of discovering, understanding, documenting,

validating and managing the requirements for components.

b) Software Architecture Selection:-The objective of this
phase is to select the architecture of the component according to
the user requirements .In this we will construct the component
and that component can be Component off the shell (COTS)
component.

c) Component Identification and Customization:-

Identification of the component can be done by selecting the
right components in accordance to the requirement for both
functionality and reliability. Component Customization is the
process that involves: - 1) Modifying the component for specific
requirement. 2) Doing necessary changes to run the component
on special platform. 3) Upgrading the specific component to get
a better performance and higher quality.

d) System Integration: It is the process of assembling
components selected into a whole system under the designed
system architecture. The objective of system integration is the

final system Composed of several components.

Interactions As The Origin Of The Integration

Problem
Integration problems arise when a component depends on
certain assumptions concerning its interactions with its
environment, but is to be placed into a system that is based on
different assumptions. The result is interaction protocol
mismatches. We define four types of interactions:
i)Component-platform interactions. A component must be
executed somewhere. It can be either a real processor or an
operating system for binary executables, or a virtual one. If an

executable program was compiled for one type of CPU, it will
need an emulator or a code converter in order to run it on
another CPU.

II) Component-hardware interactions. A component can
interact directly with hardware writing-reading from ports. If the
port’s numbers are different from what is expected by the
component, the component must undergo some modification.

III) Component-user interactions. A component’s user
interface requirements may also change. For example, a
component can have its messages in one language, when the
system requires another language.

IV) Component-software interactions. A component almost
always interacts with other software components, and there can
be mismatches between the components. A set of possible
mismatches between components representation,
communication, packaging, synchronization, semantics, control
etc. Although all four types of interactions can cause problems
for a component reuse and must be overcome, the main concern
of this

study is component-software interactions.

e) System Testing: - System testing is the process of evaluating
a system to

I) confirm that the system satisfies the specified requirements.
ii) Identify and correct the defects in system in system
implementation.

The objective of system testing is the final system integrated by
components selected in accordance to the system requirements.

f) System Maintenance:-It is the process of providing service
and maintenance activities needed to use the software effectively
after it has been delivered.

4) Strategy for Selecting Component

Many organizations are spending much time in reusable
component selection since the choice of the appropriate
components has a major impact on the project and resulting
product. A method that addresses the selection process of
packaged, reusable software, or OTS as we refer to it in this
paper. The method, called OTSO, supports the search,
evaluation and selection of reusable software, and provides

specific techniques for defining the evaluation criteria,
comparing the costs and benefits of alternatives, and
consolidating the evaluation results for decision making .The
main activities in the OTSO reusable component selection
process using a dataflow diagram notation. Each activity in
presented as a process symbol – a circle – and artifacts produced
or used are presented as data storage symbols in Figure 1. In the
search phase, the goal is to identify potential candidates for

further study. The screening phase selects the most promising
candidates for detailed evaluation. In the analysis phase, the
results of product evaluations are consolidated, and a decision
about reuse is made. As the selected alternative is used
(deployed), the effectiveness of the reuse decision, eventually,
can be assessed. Reuse candidates are evaluated in different
ways in all phases. The OTSO method is based on incremental,
evolutionary definition and use of the evaluation criteria so that

the criteria set can be gradually refined to support each phase.
While Figure 1 presents the overall OTSO process

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

107

Fig.1 Overview of the OTSO method process

Evaluation criteria definition

The evaluation criteria definition process essentially
decomposes the requirements for the COTS into a hierarchical
criteria set. Each branch in this hierarchy ends in an evaluation

attribute: a well-defined measurement or a piece of information
that will be determined during evaluation. This hierarchical
decomposition principle is analogous to the GQM method. The
evaluation attributes should have clear operational definitions so
that consistency can be maintained during evaluation.
The criteria set is specific to each COTS selection case but most
of the criteria can be categorized into four groups: functional
requirements for the COTS; required quality characteristics,

such as reliability, maintainability and portability ,business
concerns, such as cost, reliability of the vendor, and future
development prospects; and relevant software architecture, such
as constraints presented by operating system, division of
functionality in the system or specific communication
mechanisms between modules. It is possible to identify three
different sub processes in the definition of evaluation criteria.
Figure 2 presents these processes graphically using the modified

dataflow diagram (DFD) notation. First, when the available
alternatives are searched and surveyed it is necessary to define
the main search criteria and the information that needs to be
collected for each alternative. The search criteria are typically
based on the required main functionality (e.g., “visualization of

earth’s surface” or “hypertext browser”) and some key
constraints (e.g., “must run on Unix and MS-Windows” or “cost
must be less than $X’). An effective way to communicate such
requirements is to use an existing product or COTS as a
reference point, i.e., defining the functionality search criteria as

“hmk for COTS that are similar to our prototype”. The search of
alternatives should try to cover breath more than depth. It is
enough to define the survey criteria broadly so that the search is
not unnecessarily limited by too many constraints. The search
phase uses the criteria and determines the “qualifying
thresholds”, which are in deciding which alternatives are
selected for closer The search of alternatives should try to cover
breath more than depth. It is enough to define the survey criteria

broadly so that the search is not unnecessarily limited by too
many constraints. The search phase uses the criteria and
determines the “qualifying thresholds”, which are in deciding
which alternatives are selected for closer evaluation.

Fig2. Evaluation Criteria Definition Process

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

108

5. Case Study

The case study dealt with the selection of a hypertext browser
for the EOS information service. This case study included a
comparison between two analysis methods, the AHP method
and a weighted scoring method. A total of over 48 tools were
found during the search for possible tools. Based on the
screening criteria, four of them were selected for hands on
evaluation. The evaluation criteria were derived from existing,
broad requirements. However, as in the first case study, the

requirements had to be elaborated and detailed substantially
during this process. This case study further supported our
conclusion of the low overhead of the OTSO method.
Furthermore, this case study involved several evaluators, and
our criteria definition approach improved the efficiency and
consistency of the evaluation.

6. Conclusions
It is concluded that:-1) CBSE is a reuse-based approach to
defining and implementing loosely coupled components into
systems.
2) A component is a software unit whose functionality and
dependencies are completely defined by its interfaces.
3) The life cycle of the component model defines a set of

standards that component providers and composers should
follow.
The OTSO method was developed to consolidate some of the
best practices we have been able to identify for COTS selection.
The detailed evaluation criteria also contribute to the refinement
of application requirements. The requirements driven, detailed
evaluation criteria definition seemed to have a positive impact
on the evaluation process.

The experiences from case studies indicate that our method is
feasible in an operational context it improves the efficiency and

consistency of evaluations, it has low overhead costs, and it
makes the COTS selection decision rationale explicit in the
organization.

7. References

1) J. Kontio, "A Case Study in Applying a Systematic Method

for COTS Selection,"1996. Proceedings of the 18th International
Conference on Software Engineering.
2) J. Kontio and S. Chen, "Hypertext Document Viewing Tool
Trade Study: Summary of Evaluation Results," 441-TP-002-
001, 1995. ECS project Technical Paper. Hughes Corporation,
ECS project.
3) J. Kontio, S. Chen, K. Limperos, R.Tesoriero, G. Caldiera,
and M. S. Deutsch,"A COTS Selection Method and Experiences

of Its Use," 1995. Proceedings of the 20th Annual Software
Engineering Workshop. NASA. Greenbelt, Maryland.
4) T. Davis, "Toward a reuse maturity model,"eds. M. L. Griss
and L. Latour. pp. Davis_t-1-7, 1992. Proceedings of the 5th
Annual Workshop on Software Reuse. University of Maine.
5) C. Syzperski. Component Software: Beyond Object-Oriented
Programming. Addison- Wesley, 1998.
6) G. T. Heineman and W. T. Council. Component-Based

Software Engineering: Putting the Pieces Together. Addison-
Wesley, 2001.Component-Based Software Engineering:
7)Technologies, Development Frameworks, and Quality
Assurance Schemes Xia Cai, Michael R. Lyu, Kam-Fai Wong
The Chinese University of Hong Kong Hong Kong Productivity
Council {xcai@cse, lyu@cse, kfwong@se}.cuhk.edu.hk
8) Introduction to component based software engineering Ivica
Crnkovic Mälardalen University,

DepartmentofComputerEngineering,Sweden,ivica.crnkovic@md
hse

mailto:kfwong@se%7d.cuhk.edu.hk

