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ABSTRACT 

This paper investigates the possibility estimating the  direction of 

arrival (DOA)  in a system identification perspective. The system 

is modeled as an autoregressive (AR) process and extended 

Kalman filter (EKF) is used to estimate the DOA, which forms a 

state of the augmented state vector of the EKF. The states 

generate the signals at a linearly phased array. Simulation results 

demonstrate the feasibility of the approach to estimate DOA to a 

reasonable degree of convergence especially at high SNRs.   

Categories and Subject Descriptors 

C.4 [Performance of systems]: C.4.3 -  Measurement 

Techniques, C.4.4 – Modeling Techniques 

C.3.4[Special Purpose and Application Base 

Systems(J.7)]:Signal Processing . 

1.6.4 Simulation and Modeling (G.3) – Model  

General Terms 

AR Model, Estimation 

Keywords 

Modeling, Direction of arrival, Estimation 

1. INTRODUCTION 
The problem of estimating the direction of arrival of plane waves 

sampled by an array of sensors has extensively been investigated 

in the last decade[1]. Array signal processing has found 

important application in diverse areas such as radar, sonar, 

communication and seismic exploration. A problem central to the 

sensor array processing is the estimation of direction of arrival 

(DOA) of the signals [2]. Recently high resolution methods for 

this type have captured the attention of many researchers [2]. 

      In this paper, the DOA estimation is viewed as a system 

identification problem. A recursive estimation system 

identification procedure based on extended Kalman algorithm is 

applied, which leads to an iterative solution to the DOA problem 

[2]. The application of Kalman filtering  requires signal 

modeling by dynamic state equations  and the assumption that 

the stochastic process involved is gaussian. Despite its 

generality, the KF has found limited application in sensor array 

processing, because it needs a precise modeling of the process to 

be estimated. 

      In a stochastic environment, the Kalman filtering is one of 

the best linear estimators. The KF can be readily used to 

estimate the states of a linear model with known 

parameters[4,5].If the model turns out be non-linear , a real time 

Taylor approximation of the system function at the previous state 

and that of the observation function at the corresponding 

predicted position is considered which is the extended Kalman 

filter[4]. This EKF has already proved to be an effective tool for 

both state estimation and adaptive parameter identification [4,6-

7]. 

    The organization of the paper is as follows. In section 2 our 

approach in obtaining an AR model for the sensor array 

processing is explained. The EKF based algorithm for joint state 

and parameter estimation is explained in section 3. The 

simulation results are discussed in section in section 4. Finally a 

summary of the results is made and conclusions are drawn in in 

section 5. 

2. MODELING 

 

             Fig. 1. Incident signal and sensor array  

    We have an incoming plane wave in a white noise 

background.The data vectorX(n)represents the data received by 

an array of N sensors and M is the total number of snapshots. 

The signal vector at a sensor can be decomposed in to  

)()( 1kSXkX nn   where S is a function of the parameter that 

enters non-linearly in to the model and  ]..[ m21 aaaS . 

The AR coefficients a1 to am are obtained from a finite set of 

measurements of the signals impinging on the first sensor and 
m

1j

kjjn XakX )(  and /sin
)()(

d2j
11n ekXkX  

  , where  d is the inter element spacing ,    is the wave length of 

the signal and   is the physical direction of arrival of the 

incoming plane wave. 

Thus the system matrix can be formed as 
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 where   /sin d2je  

The system can now  be modeled as follows 
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3. THE EXTENDED KALMAN FILTER 

SYSTEM IDENTIFICATION 
    In this paper the EKF is applied to estimate the state vector, 

which contains DOA as its component. That is DOA is estimated 

in an adaptive manner. The unknown parameter DOA is not 

considered as deterministic.  If k+1 = k   =  the variance is zero 

and the EKF procedure only yields k = k-1 for all k independent 

of the observation data and this does not give any information on 

k. By using variance in parameter k as zero, the unknown 

system parameter cannot be identified via EKF method. 

   The adaptive DOA estimation problem in the extended Kalman 

filter sense, is formulated in the following manner. Suppose the 

system state space description  

kkkkk1k WXAX )(                                                       (i) 

kkkkk XCY )(       is considered where 

n
k RX  is the state vector , r

k RY  is the output vector , k  

and  k  are uncorrelated gaussian white noise sequence with 

zero mean and gaussian distribution having covariance matrices 

designated by Q & R respectively. 

    In this application the objective is to identify  and hence it is 

considered as a random vector such as  k+1 = k +                 (ii) 

 k  is any zero mean gaussian white noise uncorrelated with  k   

and with pre-assigned positive definite variances Var(  k  ) = S k  . 

Now the system (i) together with assumption (ii) can be 

reformulated as the non-linear model  
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,thus the measurement function h=1.and the extended 

Kalman filter procedure is applied to estimate  the state vector 

which includes  k    in an adaptive way. 

3.1 Algorithm for Adaptive Estimation of [8]. 
For k=1,2 . . . . 
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4. SIMULATION AND RESULTS 
  Simulated data are used to evaluate the performance of the 

algorithm described in 2 and 3 respectively. A uniform linear 

array of 8 sensors as shown in figure 1 is used. To implement the 

EKF algorithm for parameter estimation, the state vector is 

augmented with the parameter  θ, which is the angle of arrival. 

Four sources with different DOAs ( -400, 220, 300 and 60 0  ) 

were selected and white noise of different powers were added to 

the source signals to achieve suitable noise levels. Figures 2-5 

demonstrates the convergence of the estimated DOAs with actual 

ones. Figures 6-9 show RMSEs and CRBs of the DOA estimates 

for the model discussed in section 2. Each point on the plot is 

obtained after hundred montecarlo simulations. The tuning of the 

process noise covariance Q and observation noise covariance R 

is done manually and are set to fixed values  and do not form part 

of the estimation process in the EKF recursions. Although the 

use of fixed values may produce questionable convergence 

results, it has not created any problem in the results presented in 

this paper 
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Fig.2 DOA estimation RMSEs and CRB verus number of 

snapshots for true  DOA= -40 deg 
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Fig.3 DOA estimation RMSEs and CRB versus number of 

snapshots for true  DOA= 22 deg 
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Fig.4 DOA estimation RMSEs and CRB versus number of 

snapshots for true  DOA= 30 deg 
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Fig.5 DOA estimation RMSEs and CRB versus number of 

snapshots for true  DOA= 60 deg 
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Fig.6 DOA estimate versus the number of samples for true 

DOA= -40 deg at SNR=-5 
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Fig.7 DOA estimate versus the number of samples for true 

DOA= 30 deg at SNR=0 

0 100 200 300 400 500 600 700 800 900 1000
14

16

18

20

22

24

26

28

30

32

No of samples

A
n
g
le

 o
f 

a
rr

iv
a
l

 

Fig.8 DOA estimate versus the number of samples for true 

DOA= 22 deg at SNR=3 
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Fig.9 DOA estimate versus the number of samples for true 

DOA= 60 deg at SNR=5 

5. CONCLUSION 

  In this paper we have attempted to treat the DOA estimation as 

a system identification problem. The key to this algorithm is the 

use of AR for modeling and EKF for system identification. The 

DOA estimation is done in the presence of modeling error. The 

estimation is a two step procedure where, at first a parameterized 

state space realization of the array model is identified and then, 

the DOA parameter is extracted from the identified parameter. It 

is seen that the model along with the EKF algorithm gives better 

convergence to the true values, even at low SNRs. Further the 

CRB and RMSE plots demonstrate that the results are promising. 

The estimation procedure adapted can be extended to broad band 

and arbitrary signals.  
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