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ABSTRACT 
Image fusion is defined as the process of combining two or more 

different images into a new single image retaining important 

features from each image with extended information content. 

There are two approaches to image fusion, namely Spatial Fusion 

and Transform fusion. In Spatial fusion, the pixel values from the 

source images are directly summed up and taken average to form 

the pixel of the composite image at that location. Transform 

fusion uses transform for representing the source images at multi 

scale. The most common widely used transform for image fusion 

at multi scale is Wavelet Transform since it minimizes structural 

distortions. But, wavelet transform suffers from lack of shift 

invariance & poor directionality and Stationary Wavelet 

Transform and Wavelet Packet Transform overcome these 

disadvantages. The Multi-Wavelet Transform of image signals 

produces a non-redundant image representation, which provides 

better spatial and spectral localization of image formation than 

discrete wavelet transform. In this paper, Multi-Wavelet 

Transform, Stationary Wavelet Transform and Wavelet Packet 

Transform were combined to form Multi-Stationary Wavelet 

Packet Transform and its performance in fusion of multi-focused 

images in terms of Peak Signal to Noise Ratio, Root Mean 

Square Error, Quality Index and Normalized Weighted 

Performance Metric is presented. 
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1. INTRODUCTION 
The multi-sensor data in the field of remote sensing, medical 

imaging and machine vision may have multiple images of the 

same scene providing different information. In machine vision, 

due to the limited depth-of-focus of optical lenses in Charge 

Coupled Devices, it is not possible to have a single image that 

contains all the information of objects in the image. To achieve 

this, image fusion is required. Image fusion is defined as the 

process of combining two or more different images into a new 

single image retaining important features from each image with 

extended information content. For example, Infrared and visible 

images may be fused as an aid to pilots landing in poor weather 

or Computer Tomography and Magnetic Resonance Images may 

be fused as an aid to medical diagnosis or millimeter wave and 

visual images may be fused for concealed weapon detection or 

thermal and visual images may be fused for night vision 

applications [2]. In remote sensing, the color information is 

provided by three sensors covering the red, green and blue 

spectral wavelengths. These sensors have a low number of pixels 

(low spatial resolution) and the small objects and details (cars, 

small lines, etc.) are hidden. Such small objects and details can 

be observed with a different sensor (panchromatic), which have a 

high number of pixels (high spatial resolution) but without color 

information. With a fusion process a unique image can be 

achieved containing both: high spatial resolution and color 

information [17]. There are two approaches to image fusion, 

namely Spatial Fusion (SF) and Transform fusion (TF). In 

Spatial fusion, the pixel values from the source images are 

summed up and taken average to form the pixel of the composite 

image at that location [15]. Image fusion methods based on 

Multiscale Transforms (MST) are a popular choice in recent 

research[16]. MST fusion uses Pyramid Transform (PT) or 

Discrete Wavelet Transform (DWT) for representing the source 

image at multi scale. PT methods construct a fused pyramid 

representation from the pyramid representations of the original 

images. The fused image is then obtained by taking an inverse 

PT [18]. Due to the disadvantages of PT, which include blocking 

effects and lack of flexibility, approaches based on DWT have 

begun [16]. In [16], DWT approach is considered and it uses area 

level maximum selection rule and a consistency verification step. 

But, DWT suffers from lack of shift invariance and poor 

directionality. One way to avoid these disadvantages is to use 

Dual Tree Complex Wavelet Transform (DTCWT), which is 

most expensive, computationally intensive, and approximately 

shift invariant [6-13]. But, the un-decimated DWT, namely 

Stationary Wavelet Transform (SWT) is shift invariant and 

Wavelet Packet Transform (WPT) provides more directionality. 

This benefit comes from the ability of the WPT to better 

represent high frequency content and high frequency oscillating 

signals in particular. The Multi Wavelet Transform (MWT) of 

image signals produces a non-redundant image representation, 

which provides better spatial and spectral localization of image 

formation than DWT. This paper presents the performance of 

Multi-Stationary Wavelet Packet Transform in multi-focused 

image fusion in terms of Peak Signal to Noise Ratio (PSNR), 

Root Mean Square Error (RMSE), Quality Index (QI) and 

Normalized Weighted Performance Metric (NWPM). 

Section 2 of this paper describes the wavelet transform theory 

whereas Section 3, 4, 5, 6 presents Discrete Wavelet Transform, 

Stationary Wavelet Transform, Multi Wavelet Transform and 

Wavelet Packet Transform respectively. The Wavelet Based 

Image fusion and Area level Image fusion are described in 

Section 7 and 8. Section 9 presents the various evaluation 
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measures used in this paper and Section 10 describes the 

experimental work.  

2. WAVELET TRANSFORM THEORY 

Wavelet theory and wavelet analysis is a relatively recent branch 

of mathematics. Alfred Haar developed the first wavelet in 1909. 

The Haar wavelet belongs to the group of wavelets known as 

Daubechies wavelets, which are named after Ingrid Daubechies, 

who proved the existence of wavelet families whose scaling 

functions have certain useful properties, namely compact support 

over an interval, at least one nonvanishing moment, and 

orthogonal translates. Because of its simplicity, the Haar wavelet 

is useful for illustrating the basic concepts of wavelet theory but 

has limited utility in applications. The wavelet function (x) and 

scaling function (x) of Haar wavelet is presented in figure1.  

 

Figure 1. The wavelet and scaling function of  Haar wavelet 

Various researchers further developed the concept of wavelets 

over the next half century but it was not until the 1980's that the 

relationships between quadrature mirror filters, pyramid 

algorithms, and orthonormal wavelet bases were discovered, 

allowing wavelets to be applied in signal processing. Over the 

past decade, there has been an increasing amount of research into 

the applications of wavelet transforms to remote sensing, 

particularly in image fusion. It has been found that wavelets can 

be used to extract detail information from one image and inject it 

into another, since this information is contained in high 

frequencies and wavelets can be used to select a set of 

frequencies in both time and space. The resulting merged image, 

which can in fact be a combination of any number of images, 

contains the best characteristics of all the original images. 

Wavelets can be described in terms of two groups of functions: 

wavelet functions and scaling functions. It is also common to 

refer to them as families: the wavelet function is the “mother” 

wavelet, the scaling function is the “father” wavelet, and 

transformations of the parent wavelets are “daughter” and “son” 

wavelets. Generally, a wavelet family is described in terms of its 

mother wavelet, denoted as (x). The mother wavelet must 

satisfy certain conditions to ensure that its wavelet transform is 

stably invertible[1]. These conditions are: 

0)(

)(

1)(
2

dxx

dxx

dxx

    (1) 

The conditions specify that the function must be an element of 

L2(R), and in fact must have normalized energy, that it must be 

an element of L1(R), and that it have zero mean. The third 

condition allows the addition of wavelet coefficients without 

changing the total flux of the signal. Other conditions might be 

specified according to the application. For example, the wavelet 

function might need to be continuous, or continuously 

differentiable, or it might need to have compact support over a 

specific interval, or a certain number of vanishing moments. 

Each of these conditions affects the results of the wavelet 

transform. To apply a wavelet function, it must be scaled and 

translated. Generally, a normalization factor is also applied so 

that the daughter wavelet inherits all of the properties of the 

mother wavelet. A daughter wavelet a,b(x) is defined by the 

equation, 

)/)(()( 2/1
, abxaxba                       (2) 

where a, b∈R and a≠0; a is called the scaling or dilation factor 

and b is called the translation factor. In most practical 

applications it is necessary to place limits on the values of a and 

b. A common choice is  a=2-j
 and b=2-jk, where j and k are 

integers. The resulting equation is 

)2(2)( 2/1
, kxx j
kj                           (3) 

This choice for dilation and translation factors is called a dyadic 

sampling [5]. Changing j by one corresponds to changing the 

dilation by a factor of two, and changing k by one corresponds to 

a shift of 2−j. Figure 2 uses the Haar wavelet to illustrate the 

relationship of daughter wavelets to the mother wavelet and the 

effect of varying dilation and translation for both the general 

equation and the dyadic equation. The mother wavelet is 1,0(x) 

in Fig. 2a and ψ0,0(x) in Fig. 2b. Non-integer values are used for j 

and k in one example in Fig. 2b to allow direct comparison with 

ψ0.5, 1.5(x) in Fig. 2a. In discrete wavelet transforms, a scaling 

function, or father wavelet, is needed to cover the low 

frequencies. If the mother wavelet is regarded as a high pass 

filter then the father wavelet, denoted as ϕ(x), should be a low 

pass filter. To ensure that this is the case, it cannot have any 

vanishing moments. It is useful to specify that, in fact, the father 

wavelet have a zeroth moment, or mean, equal to one: 

1)( dxx                  (4) 

In mathematical terms, (x) is chosen so that the set {  (x−k), 

k∈Z} forms an orthonormal basis for the reference space V0. A 

subspace Vj is spanned by Zkkxx j
kj ),2(2)( 2/1

, . 

Multiresolution analysis makes use of a closed and nested 

sequence of subspaces {Vj}j∈Z,, which is dense in L2 (R): each 

subsequent subspace is at a higher resolution and contains all the 

subspaces at lower resolutions. Since the father wavelet is in V0, 

it, as well as the mother wavelet, can be expressed as linear 

combinations of the basis functions for V1, 1,k(x): 
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The set Zkkxx j
kj ),2(2)( 2/1

, then forms a basis for Wj, 

with Wj being the orthogonal complement to Vj and {Wj}j∈Z 

forming a basis for L2 (R). In practice, neither the scaling 

function nor the wavelet function is explicitly derived. Provided 

that the wavelet function has compact support, the scaling 

function is equivalent to a scaling filter and it is sufficient to 

determine the filter coefficients. The coefficients lk in Eq. (5) 

form this scaling, or low-pass, filter and the coefficients hk in Eq. 

(6) form the wavelet, or high-pass, filter To ensure that a signal 

can be exactly reconstructed from its decomposition, the scaling 

coefficients and wavelet coefficients must form a quadrature 

mirror filter.  

 

 

Figure 2. Mother wavelets and Daughter Wavelets 

a. Daughter Wavelets according to equation 2 

b.  Daughter Wavelets according to equation 3 

 

  

3. DISCRETE WAVELET TRANSFORM 

Wavelet transforms provide a framework in which a signal is 

decomposed, with each level corresponding to a coarser 

resolution, or lower frequency band. There are two main groups 

of transforms, continuous and discrete. Discrete transforms are 

more commonly used and can be subdivided in various 

categories. Although a review of the literature produces a number 

of different names and approaches for wavelet transformations, 

most fall into one of the following three categories: decimated, 

un-decimated, and non-separated. A continuous wavelet 

transform is performed by applying an inner product to the signal 

and the wavelet functions. The dilation and translation factors 

are elements of the real line. For a particular dilation a and 

translation b, the wavelet coefficient Wf (a,b) for a signal f can be 

calculated as 

dxxxffbaW babaf )()(,),( ,,  (7) 

Wavelet coefficients represent the information contained in a 

signal at the corresponding dilation and translation. The original 

signal can be reconstructed by applying the inverse transform: 

2, )(),(
1
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xf baf
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       (8) 

where Cψ is the normalization factor of the mother wavelet. 

Although the continuous wavelet transform is simple to describe 

mathematically, both the signal and the wavelet function must 

have closed forms, making it difficult or impractical to apply. 

The discrete wavelet is used instead. The term discrete wavelet 

transform (DWT) is a general term, encompassing several 

different methods. It must be noted that the signal itself is 

continuous; discrete refers to discrete sets of dilation and 

translation factors and discrete sampling of the signal. For 

simplicity, it will be assumed that the dilation and translation 

factors are chosen so as to have dyadic sampling, but the 

concepts can be extended to other choices of factors. At a given 

scale J, a finite number of translations are used in applying multi 

resolution analysis to obtain a finite number of scaling and 

wavelet coefficients. The signal can be represented in terms of 

these coefficients as 

k

J

j k
jkjkJkJk xdxCxf

1

)()()(           (9) 

where cJkare the scaling coefficients and djk are the wavelet 

coefficients. The first term in Eq. (8) gives the low-resolution 

approximation of the signal while the second term gives the 

detailed information at resolutions from the original down to the 

current resolution J. The process of applying the DWT can be 

represented as a bank of filters, as in figure 3.  In case of a 2D 

image, a single level decomposition can be performed resulting 

in four different frequency bands namely LL, LH, HL and HH 

sub band and an N level decomposition can be performed 

resulting in 3N+1 different frequency bands and it is shown in 

figure 3. At each level of decomposition, the image is split into 

high frequency and low frequency components; the low frequency 

components can be further decomposed until the desired 

resolution is reached. In practice when wavelet decomposition is 

used for image fusion, one level of decomposition can be 

sufficient, but this depends on the ratio of the spatial resolutions 
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of the images being fused. The conventional DWT can be applied 

using either a decimated or an un-decimated algorithm. In the 

decimated algorithm, the signal is down sampled after each level 

of transformation. In the case of a two-dimensional image, down-

sampling is performed by keeping one out of every two rows and 

columns, making the transformed image one quarter of the 

original size and half the original resolution. The decimated 

algorithm can therefore be represented visually as a pyramid, 

where the spatial resolution becomes coarser as the image 

becomes smaller. The decimated algorithm is not shift-invariant, 

which means that it is sensitive to shifts of the input image. The 

decimation process also has a negative impact on the linear 

continuity of spatial features that do not have a horizontal or 

vertical orientation. These two factors tend to introduce artifacts 

when the algorithm is used in applications such as image fusion.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  2D-Discrete Wavelet Transform 

4. STATIONARY WAVELET TRANSFORM 
The Discrete Wavelet Transform is not a time- invariant 

transform. The way to restore the translation invariance is to 

average some slightly different DWT, called un-decimated DWT, 

to define the stationary wavelet transform (SWT).  It does so by 

suppressing the down-sampling step of the decimated algorithm 

and instead up-sampling the filters by inserting zeros between 

the filter coefficients. Algorithms in which the filter is up-

sampled are called “à trous”, meaning “with holes”. As with the 

decimated algorithm,  the filters are applied first to the rows and 

then to the columns. In this case, however, although the four 

images produced (one approximation and three detail images) are 

at half the resolution of the original, they are the same size as the 

original image. The approximation images from the un-

decimated algorithm are therefore represented as levels in a 

parallelepiped, with the spatial resolution becoming coarser at 

each higher level and the size remaining the same. The un-

decimated algorithm is redundant, meaning some detail 

information may be retained in adjacent levels of transformation. 

It also requires more space to store the results of each level of 

transformation and, although it is shift-invariant, it does not 

resolve the problem of feature orientation. A previous level of 

approximation, resolution J−1, can be reconstructed exactly by 

applying the inverse transform to all four images at resolution J 

and combining the resulting images. Essentially, the inverse 

transform involves the same steps as the forward transform, but 

they are applied in the reverse order. In the decimated case, this 

means up-sampling the approximation and detail images and 

applying reconstruction filters, which are inverses of the 

decomposition scaling and wavelet filters, first by columns and 

then by rows. For example, first the columns of the Vertical 

Detail image would be up-sampled and the inverse scaling filter 

would be applied, then the rows would be up-sampled and the 

inverse wavelet filter would be applied. The original image is 

reconstructed by applying the inverse transform to each 

deconstructed level in turn, starting from the level at the coarsest 

resolution, until the original resolution is reached. 

Reconstruction in the un-decimated case is similar, except that 

instead of up-sampling the images, the filters are down-sampled 

before each application of the inverse filters. Shift-invariance is 

necessary in order to compare and combine wavelet coefficient 

images. Without shift-invariance, slight shifts in the input signal 

will produce variations in the wavelet coefficients that might 

introduce artifacts in the reconstructed image. Shift-variance is 

caused by the decimation process, and can be resolved by using 

the un-decimated algorithm. Let us recall that the DWT basic 

computational step is a convolution followed by decimation. The 

decimation retains even indexed elements. But choosing odd 

indexed elements instead of even indexed elements could carry 

out the decimation. This choice concerns every step of the 

decomposition process, so at every level we chose odd or even.  

 

 

 

If we perform all the different possible decompositions of the 

original signal, we have 2J different decompositions, for a given 

maximum level J. Let us denote by j = 1 or 0 the choice of odd or 

even indexed elements at step j. Every decomposition is labeled 

by a sequence of 0's and 1's:  = 1, J. This transform is called the 

decimated DWT.  It is possible to calculate all the decimated 

DWT for a given signal of length N, by computing the 

approximation and detail coefficients for every possible 

sequence. The SWT algorithm is very simple and is close to the 

Figure 4. 2D Stationary Wavelet Transform. 

 

. 
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DWT one. More precisely, for level 1, all the decimated DWT 

for a given signal can be obtained by convolving the signal with 

the appropriate filters as in the DWT case but without down 

sampling. Then the approximation and detail coefficients at level 

1 are both of size N, which is the signal length. The general step 

j convolves the approximation coefficients at level j-1, with up 

sampled versions of the appropriate original filters, to produce 

the approximation and detail coefficients at level j. This can be 

visualized in the following figure 4. 

 

5. MULTIWAVELET TRANSFORM 

Multiwavelets are very similar to wavelets but have some 

important differences. In particular, whereas wavelets have an 

associated scaling function (t) and wavelet function (t), 

multiwavelets have two or more scaling and wavelet functions. 

For notational convenience, the set of scaling functions can be 

written using the vector notation (t) = [ 1(t) 2(t) .,. r (t)] 
T, 

where  (t) is called the multi scaling function. Likewise, the 

multiwavelet function is defined from the set of wavelet 

functions as (t) = [ 1(t)  2(t)  …. r(t)]
T. When r = 1,  (t) is 

called a scalar wavelet, or simply wavelet. While in principle r 

can be arbitrarily large, the multiwavelets studied to date are 

primarily for = 2. 

)2(2)(

)2(2)(

ktGt

ktHt

k

k

k

k                             (10) 

However, {Hk} and {Gk} are matrix filters, Hk and Gk are r x r  

matrices for each integer k. The matrix elements in these filters 

provide more degrees of freedom than a traditional scalar 

wavelet. These extra degrees of freedom can be used to 

incorporate useful properties into the multiwavelet filters, such 

as orthogonality, symmetry, and high order of approximation. 

The key is to figure out how to make the best use of these extra 

degrees of freedom. During a single level of decomposition using 

discrete wavelet transform, the 2D image data is replaced with 

four blocks corresponding to the sub-bands representing either 

low pass or high pass filtering in each direction. The multi 

wavelet transform have two channels, so there will be two sets of 

scaling coefficients and two sets of wavelet coefficients. 

 

Figure 5.  2D Discrete and Multi Wavelet Transform 

 

 

6. DISCRETE WAVELET PACKET 

TRANSFORM  

 

Figure 6. 2D – Wavelet Packet Transform 

DWT obtained by iterating a perfect reconstruction filter bank on 

its low pass output, decomposes a 2D image according to octave 

band frequency decomposition. The DWT is far from being shift 

invariant and does not provide a geometrically oriented 

decomposition in multiple directions. For an image, the 

frequency decomposition provided by the DWT might not be 

optimal. To find a more suitable decomposition, algorithms have 

been proposed to find the “best-basis” from a structured 

dictionary of bases. For example, a best-basis algorithm that 

finds a sparse representation by minimizing the transform-

domain entropy and an algorithm that finds the best basis in a 

rate-distortion sense were proposed in the literature. One way to 

generalize the DWT so as to generate a structured dictionary of 

bases is given by the discrete wavelet packet transform. The 

DWPT is obtained by iterating a perfect reconstruction filter 

bank on both its low-pass and high-pass output. However, like 

the DWT, the DWPT is also shift-variant and mixes 

perpendicular orientations in multiple dimensions. In case of a 

2D image, a single level decomposition can be performed 

resulting in four different frequency bands namely LL, LH, HL 

and HH sub band and an N level decomposition can be 

performed resulting in 4N different frequency bands and it is 

shown in figure 6. 

 

7. WAVELET BASED IMAGE FUSION 

Wavelet transform is first performed on each source images, and 

then a fusion decision map is generated based on a set of fusion 

rules. The fused wavelet coefficient map can be constructed from 

the wavelet coefficients of the source images according to the 

fusion decision map. Finally the fused image is obtained by 

performing the inverse wavelet transform [2]. Let A (x, y) and B 

(x, y) are images to be fused, the  decomposed low frequency sub 

images of A (x, y) and B (x, y) be respectively lAJ
 (x, y) and lBJ 

(x, y) ( J is the parameter of resolution) and the decomposed high 

frequency sub images of A (x,y) and B(x,y) are hAj
k (x, y) and 

hBj
k (x, y). ( j is the parameter of resolution and j=1,2,3….J for 
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every j,  k=1,2,3..). Then, the fused high and low frequency sub-

images Fj
k (x, y) are given as Fj

k (x, y) = Aj
k (x, y) if G(Aj

k (x, y)) 

>= G(Bj
k (x, y)), else Fj

k (x, y)  = Bj
k (x, y) and FJ (x, y) = lAJ

 (x, 

y) if G(AJ (x, y)) >= G(BJ (x, y)), else FJ (x, y)  =  lBJ
 (x, y) 

where G is the activity measure and Fj
k (x, y) & FJ (x, y) are used 

to reconstruct the fused image F (x, y) using the inverse wavelet 

transform. The block diagram representing the wavelet based 

image fusion is shown in figure 7.  

 

Figure7. Wavelet Based Image Fusion. 

8. AREA LEVEL IMAGE FUSION 

This section describes six methods of area level image fusion 

based on multi scale representation of source images using 

wavelets. Since the useful features in the image usually are 

larger than one pixel, the pixel by pixel selection rule of pixel 

level fusion may not be the most appropriate method. In feature 

level of fusion algorithm, an area based selection rule is used. 

The images are first decomposed into sub bands using wavelet 

transform. Then the feature of each image patch over 3X3 or 5X5 

window is computed as an activity measure associated with the 

pixel centered in the window. To simplify the description of 

different feature level image fusion methods, the source images 

are assumed as A & B and the fused image as F. All the methods 

described in this paper can be used in the case of more than two 

source images. 

Method1: In this method, the maximum value of coefficients 

of sub-bands of wavelet transformed image over 3X3 or 5X5 

window is computed as an activity measure of pixel centered in 

the window. The coefficient having the larger activity measure is 

chosen to form the fused coefficients map. A binary decision map 

of same size as the wavelet transform is then created to record 

the selection results. This binary map is subject to consistency 

verification. Specifically in wavelet domain, if the centre pixel 

value comes from image A while the majority of the surrounding 

pixel values comes from image B, the centre pixel value should 

be switched to that image B. This method is called consistency 

verification method. 

Method 2: In this method, the maximum absolute value over 

3X3 or 5X5 window is computed as an activity measure of pixel 

centered in the window. The coefficient whose activity measure 

is larger was chosen to form the binary decision map and the 

consistency verification is applied to form the fused coefficients 

map [16]. 

Method3: This fusion scheme is the weighted average scheme 

suggested by Burt and Kolezynski (1993). This salient features 

are first identified in each source image. This salience of a 

feature is computed as a local energy in the neighborhood of a 

coefficient. 

q)(A,2
j

W(q)C

Q

  p)E(A,
                      (11) 

where w(q) is a weight and 
Q

w(q)=1. In practice, the 

neighborhood Q is small (typically 5X5 or 3X3) window 

centered at the current coefficient position. The closer the point q 

is near the point P, the greater w(q) is E(B,p) can also be 

obtained by this rule. The selection mode is implemented as:  

p)(A, E p)E(B, p),(B, Cj

p)(B, E p)E(A, p),(A, Cj
 p)(F, Cj                  (12) 

This selection scheme helps to ensure that most of the dominant 

features are incorporated into the fused image. 

Method 4: In this fusion method, the salience measure of each 

source image is computed using Equation 13. At a given 

resolution level j, this fusion scheme uses two distinct modes of 

combination namely Selection and Averaging. In order to 

determine whether the selection or averaging will be used, the 

match measure M(p) is calculated as 

p)E(B,p)E(A,

q)(B,q)C(A,W(q)C2

 M(p)

jj
Q                  (13) 

If M(p) is smaller than a threshold T, then the coefficient with 

the largest local energy is placed in the composite transform 

while the coefficient with less local energy is discarded. The 

selection mode is implemented as 

p)(A, E p)E(B, p),(B, Cj

p)(B, E p)E(A, p),(A, Cj
 p)(F, Cj             (14) 

Else if M(p)  T, then in the averaging mode, the combined 

transform coefficient is implemented as 

p)(A, E p)E(B, p),(A, Cj Wp)(B, CjW

p)E(B, p)E(A,p),(B, Cj Wp)(A, CjW
 p)(F, Cj

minmax

minmax
      (15) 

where )W-1 Wand 
T-1

M(p)-1
0.5-0.5  W minmaxmin

 

In this study, the fusion methods are implemented using the 

parameters such as a window size 3*3 and a T-value of 0.75.  

Method 5: For a function f (x,y) it is common practice to 

approximate the magnitude of the gradient by using absolute 

values instead of squares and square roots [14]: 

1)yf(x, -y)f(x,  y)1,f(x -y)f(x,  Gy  Gxf      (16)              

This equation is simpler to compute and it still preserves relative 

changes in grey levels. In image processing, the difference 

between pixel and its neighbors reflect the edges of the image. 

Firstly compute the difference between the low frequency 

coefficient at the point p and its eight neighbors, respectively. 
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The value E is acquired by summing squares of all the 

differences. At last, choose the low frequency coefficient with the 

greater value E as the corresponding coefficient of the fused 

image. This method can maintain the information of edges. So it 

can improve the quality of the fused image. The algorithm is as 

follows. 

2
q)(A,jC-q)(A,jC

Q

  p)E(A,  

2
q)(B,jC-q)(B,jC

Q

  p)E(B,
 

Finally, select the corresponding high frequency coefficient of the 

fused image.  

p)(A, E p)E(B, p),(B, Cj

p)(B, E p)E(A, p),(A, Cj
 p)(F, Cj                      (17) 

9. EVALUATION CRITERIA 
There are four evaluation measures are used in this paper, 

namely Root Mean Square Error (RMSE), Peak Signal to Noise 

Ratio (PSNR), Quality Index (QI)[4] and Normalized Weighted 

Performance Metric (NWPM) [3] which are given in the 

equations 18,19,20 & 21 respectively. 

RMSE= 
2

1 1

2)],(),([

N

N

i

N

j

jiFjiR
                   (18) 

PSNR= 10log 10 (255) 2/(RMSE)2 (db)                       (19) 

QI= 

))((

4
2222

ba

ab

ba

ab                     (20) 

B
ijWA

ijWji

B
ijWAF

ijQA
ijWAF

ijQji
NWPM

,

,
           (21) 

where A and B are the input images, R is the reference image, F 

is the fused image, a is the average value of A, b is the average 

value of B, QAF(i,j) and QBF(i,j) are the edge preservation values. 

 

10. EXPERIMENTAL WORK 
Three pairs of source images namely Pepsi image of size 

512x512, Lab and Disk image of size 480 x 640 are taken. The 

pairs of source images to be fused are assumed to be registered 

spatially. The images are wavelet transformed using Haar in the 

first level decomposition and sym8 for the second level of 

decomposition. For taking the stationary wavelet transform of the 

two images, readily available MATLAB routines are taken. In 

each sub-band, individual pixels of the two images are compared 

based on the fusion rule that serves as a measure of activity at 

that particular scale and space. Taking pixels from the wavelet 

transform that shows greater activity at the level creates a fused 

wavelet transform. The inverse wavelet transform is the fused 

image with clear focus on the whole image.  

 

 

 

11. RESULTS 
 

For the above mentioned method, image fusion is performed 

using Multi Stationary Wavelet Packet Transform (MSWPT), its 

performance is measured in terms of Root Mean Square Errors, 

Peak Signal to Noise Ratio, Quality Index & Normalized 

Weighted Performance Metric and the results are shown in figure 

8 and tabulated in table1.  

Table 1. Performance Comparison of MSWPT 

Lab Image of size 480 x 640 

Metho

d 
1 2 3 4 5 

RMSE 8.259 7.9358 8.8756 7.641 5.2445 

PSNR 29.792 30.139 29.166 30.467 33.737 

QI 0.985 0.9862 0.983 0.9864 0.994 

NWPM 0.5849 0.6045 0.5957 0.6175 0.658 

Disk Image of size 480 x 640 

Metho

d 
1 2 3 4 5 

RMSE 10.732 10.459 11.674 10.03 7.619 

PSNR 27.517 27.74 26.783 28.104 30.492 

QI 0.9748 0.9763 0.9712 0.976 0.9863 

NWPM 0.5745 0.6003 0.5869 0.6066 0.6472 

Pepsi Image of Size 512 x 512 

Metho

d 
1 2 3 4 5 

RMSE 6.436 6.103 7.176 5.287 4.295 

PSNR 31.958 32.419 31.012 33.666 35.471 

QI 0.9906 0.9917 0.9889 0.9931 0.9955 

NWPM 0.6936 0.7058 0.6993 0.7362 0.7398 

 

12. CONCLUSION 
This paper presents the comparison of five types of area level of 

fusion of multi-focused images using MSWPT in terms of 

various performance measures.  MSWPT provides very good 

results both quantitatively and qualitatively for area level fusion. 

Hence using these fusion methods, one can enhance the image 

with high geometric resolution. 
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Figure 8. Results of Image Fusion 

A. Input Image 1  B. Input Image2   C. Reference Image 

D. Fused Image 
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