Fuzzy BG - Ideals in BG - Algebra

R.Muthuraj
Department of Mathematics
PSNA CET, Dindigul. - 624622

M.Sridharan
Department of Mathematics
PSNA CET, Dindigul. - 624622

P.M.Sitharselvam
Department of Mathematics
PSNA CET, Dindigul. - 624622

Abstract

In this paper, we introduce the concept of fuzzy BG - ideals in BG - Algebra and we have discussed some of their properties.

AMS Subject Classification (2000): 06F35, 03G25.

Keywords

BG-algebra, sub BG - algebra and BG-ideals, fuzzy BG ideals, fuzzy BG - bi-ideal.

1.Introduction

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK - algebras and BCI - algebras. It is known that the class of BCK - algebras is a proper subclass of the class of BCI algebras. J. Neggers and H.S.Kim introduced a new notion, called B - algebra. C.B.Kim and H.S.Kim introduced the notion of the BG - algebra which is a generalization of B - algebra. In this paper, we classify the fuzzy BG - ideals in BG - Algebra.

2. Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1

A nonempty set X with a constant 0 and a binary operation ' *' is called a BG - Algebra if it satisfies the following axioms.

1. $\mathrm{x} * \mathrm{x}=0$,
2. $x * 0=x$,
3. $(\mathrm{x} * \mathrm{y}) *(0 * \mathrm{y})=\mathrm{x}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Example 2.1

Let $\mathrm{X}=\{0,1,2\}$ be the set with the following table.

*	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	1	2
$\mathbf{1}$	1	0	1
$\mathbf{2}$	2	2	0

Then ($\mathrm{X},{ }^{*}, 0$) is a BG - Algebra.

Definition 2.2

Let S be a non empty subset of a BG -algebra X, then S is called a subalgebra of X if $x * y \in S, \quad$ for all $x, y \in S$.

Definition 2.3

Let X be a BG-algebra and I be a subset of X,then I is called a BG-ideal of X if it satisfies following conditions:

1. $0 \in \mathrm{I}$,
2. $x * y \in I$ and $y \in I \Rightarrow x \in I$,
3. $x \in I$ and $y \in X \Rightarrow x * y \in I, \quad I \times X \subseteq I$.

Definition 2.4

A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ of a BG-algebra is called a homomorphism if $\mathrm{f}(\mathrm{x} * \mathrm{y})=\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$

Remark:

If $f: X \rightarrow Y$ is a homomorphism of BG-algebra, then $f(0)=0$.

Definition 2.5

Let X be a non-empty set .A fuzzy sub set μ of the set X is a mapping $\mu: \mathrm{X} \rightarrow[0,1]$.

Definition 2.6

A fuzzy set μ in X is said to be a fuzzy $B G$ - bi-ideal if $\mu(\mathrm{x} * \mathrm{w} * \mathrm{y}) \geq \min \{\mu(\mathrm{x}), \mu(\mathrm{y})\} \forall \mathrm{x}, \mathrm{y}, \mathrm{w} \in \mathrm{X}$.

3. FUZZY SUBALGEBRAS

Definition 3.1

Let μ be a fuzzy set in BG - Algebra. Then μ is called a fuzzy subalgebra of X if

$$
\mu(\mathrm{x} * \mathrm{y}) \geq \min \{\mu(\mathrm{x}), \mu(\mathrm{y})\} \forall \mathrm{x}, \mathrm{y} \in \mathrm{X} .
$$

Example 3.1

Let $\mathrm{X}=\{0,1,2,3\}$ be the set with the following table.

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then $(\mathrm{X}, *, 0)$ is a BG - Algebra. Define a fuzzy set $\mu: \mathrm{X} \rightarrow$ $[0,1]$ by $\mu(0)=\mu(1)=t_{0}$ and $\mu(2)=\mu(3)=t_{1}$ for $t_{0}, t_{1} \in[0,1]$ with $t_{0}>t_{1}$. Then μ is a fuzzy subalgebra of X.

Definition 3.2

Let μ be a fuzzy set in a set X. For $t \in[0,1]$, the set $\mu_{t}=\{x \in X / \mu(x) \geq t\}$ is called a level subset of μ.

4. Fuzzy BG - Ideal

Definition 4.1

A fuzzy set μ in X is called fuzzy BG - Ideal of X if it satisfies the following inequalities.

1. $\mu(0) \geq \mu(x)$,
2. $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$,
3. $\mu(x * y) \geq \min \{\mu(x), \mu(y)\} \forall x, y \in X$.

Definition 4.2

Let λ and μ be the fuzzy sets in a set X. The Cartesian product $\lambda \times \mu: \mathrm{X} \times \mathrm{X} \rightarrow[0,1]$ is defined by
$(\lambda \times \mu)(\mathrm{x}, \mathrm{y})=\min \{\lambda(\mathrm{x}), \mu(\mathrm{y})\} \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Theorem 4.1

If λ and μ are fuzzy $\mathrm{BG}-$ Ideals of a $\mathrm{BG}-$ algebra X , then $\lambda \times \mu$ is a fuzzy $\mathrm{BG}-$ Ideals of $\mathrm{X} \times \mathrm{X}$.
Proof

$$
\begin{aligned}
(\lambda \times \mu)(0,0) & =\min \{\lambda(0), \mu(0)\} \\
& \geq \min \{\lambda(\mathrm{x}), \mu(\mathrm{y})\} \\
& =(\lambda \times \mu)(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

That is, $(\lambda \times \mu)(0,0)=(\lambda \times \mu)(x, y)$.

Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{X} \times \mathrm{X}$. Then,
$(\lambda \times \mu)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
$=\min \left\{\lambda\left(\mathrm{x}_{1}\right), \mu\left(\mathrm{x}_{2}\right)\right\}$
$\geq \min \left\{\min \left\{\lambda\left(\mathrm{x}_{1} * \mathrm{y}_{1}\right), \lambda\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mu\left(\mathrm{x}_{2} * \mathrm{y}_{2}\right), \mu\left(\mathrm{y}_{2}\right)\right\}\right\}$
$=\min \left\{\min \left\{\lambda\left(\mathrm{x}_{1} * \mathrm{y}_{1}\right), \mu\left(\mathrm{x}_{2} * \mathrm{y}_{2}\right)\right\}, \min \left\{\lambda\left(\mathrm{y}_{1}\right), \mu\left(\mathrm{y}_{2}\right)\right\}\right\}$
$=\min \left\{(\lambda \times \mu)\left(\left(\mathrm{x}_{1} * \mathrm{y}_{1}, \mathrm{x}_{2}{ }^{*} \mathrm{y}_{2}\right)\right),(\lambda \times \mu)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$
$=\min \left\{(\lambda \times \mu)\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right),(\lambda \times \mu)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$
That is,

$$
\begin{aligned}
&(\lambda \times \mu)\left(\left(x_{1}, x_{2}\right)\right) \\
&=\min \left\{(\lambda \times \mu)\left(\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)\right),(\lambda \times \mu)\left(y_{1}, y_{2}\right)\right\} \\
& \text { and }(\lambda \times \mu)\left(\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)\right) \\
&=(\lambda \times \mu)\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
&=\min \left\{\lambda\left(x_{1} * y_{1}\right), \mu\left(x_{2} * y_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\lambda\left(x_{1}\right), \lambda\left(y_{1}\right)\right\}, \min \left\{\mu\left(x_{2}\right), \mu\left(y_{2}\right)\right\}\right\} \\
&=\min \left\{\min \left\{\lambda\left(x_{1}\right), \mu\left(x_{2}\right)\right\}, \min \left\{\lambda\left(y_{1}\right), \mu\left(y_{2}\right)\right\}\right\} \\
&=\min \left\{(\lambda \times \mu)\left(\left(x_{1}, x_{2}\right)\right),(\lambda \times \mu)\left(\left(y_{1}, y_{2}\right)\right)\right\}
\end{aligned}
$$

That is, $(\lambda \times \mu)\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)$

$$
=\min \left\{(\lambda \times \mu)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),(\lambda \times \mu)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}
$$

Hence $\lambda \times \mu$ is a fuzzy $\mathrm{BG}-\mathrm{ideal}$ of $\mathrm{X} \times \mathrm{X}$.

For any $(x, y) \in X \times X$, we have

Theorem 4.2

Let λ and μ be fuzzy sets in a BG - algebra such that $\lambda \times \mu$ is a fuzzy BG - ideal of $X \times X$. Then
i. Either $\lambda(0) \geq \lambda(x)$ or $\mu(0) \geq \mu(x) \forall x \in X$.
ii. If $\lambda(0) \geq \lambda(x) \forall x \in X$, then either $\mu(0) \geq \lambda(x)$ or $\mu(0) \geq \mu(x)$.
iii. If $\mu(0) \geq \mu(x) \forall x \in X$, then either $\lambda(0) \geq \lambda(x)$ or $\lambda(0) \geq \mu(x)$.

Proof

i. Assume $\lambda(\mathrm{x})>\lambda(0)$ and $\mu(\mathrm{y})>\mu(0)$ for some $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Then $(\lambda \times \mu)(\mathrm{x}, \mathrm{y})=\min \{\lambda(\mathrm{x}), \mu(\mathrm{y})\}$

$$
>\min \{\lambda(0), \mu(0)\}
$$

$$
=(\lambda \times \mu)(0,0)
$$

Therefore $(\lambda \times \mu)(\mathrm{x}, \mathrm{y})>(\lambda \times \mu)(0,0), \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Which is a contradiction to $\lambda \times \mu$ is a fuzzy BG - ideal of $\mathrm{X} \times \mathrm{X}$.

Therefore either $\lambda(0) \geq \lambda(\mathrm{x})$ or $\mu(0) \geq \mu(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$.
ii. Assume $\mu(0)<\lambda(\mathrm{x})$ and $\mu(0)<\mu(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Then $(\lambda \times \mu)(0,0) \quad=\min \{\lambda(0), \mu(0)\}$

$$
=\mu(0) .
$$

And $(\lambda \times \mu)(x, y) \quad=\min \{\lambda(x), \mu(y)\}>\mu(0)$

$$
=(\lambda \times \mu)(0,0)
$$

This implies $(\lambda \times \mu)(x, y)>(\lambda \times \mu)(0,0)$.
Which is a contradiction to $\lambda \times \mu$ is a fuzzy BG - ideal of $\mathrm{X} \times \mathrm{X}$.

Hence if If $\lambda(0) \geq \lambda(x) \forall x \in X$, then either
$\mu(0) \geq \lambda(\mathrm{x})$ or $\mu(0) \geq \mu(\mathrm{x})$
iii. This proof is quite similar to (ii).

Theorem 4.3

If $\lambda \times \mu$ is a fuzzy BG - ideal of $\mathrm{X} \times \mathrm{X}$, then λ or μ is a fuzzy BG - ideal of X .

Proof

Firstly to prove that μ is a fuzzy BG - ideal of X .
Given $\lambda \times \mu$ is a fuzzy BG - ideal of $X \times X$, then by Theorem4.2(i), either $\lambda(0) \geq \lambda(\mathrm{x})$ or $\mu(0) \geq \mu(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}$. Let $\mu(0) \geq \mu(\mathrm{x})$.

By theorem 4 .2(iii) then either $\lambda(0) \geq \lambda(x)$ or $\lambda(0) \geq \mu(x)$.

$$
\text { Now } \begin{aligned}
\mu(\mathrm{x}) . & =\min \{\lambda(0), \mu(\mathrm{x})\} \\
& =(\lambda \times \mu)(0, \mathrm{x}) \\
& \geq \min \{(\lambda \times \mu)((0, \mathrm{x}) *(0, \mathrm{y})),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{(\lambda \times \mu)((0 * 0, \mathrm{x} * \mathrm{y}),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{(\lambda \times \mu)((0, \mathrm{x} * \mathrm{y}),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{(\lambda \times \mu)((0 * 0, \mathrm{x} * \mathrm{y}),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{\mu(\mathrm{x} * \mathrm{y}), \mu(\mathrm{y})\} .
\end{aligned}
$$

That is, $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$.

$$
\begin{aligned}
\mu(\mathrm{x} * \mathrm{y}) & =\min \{\lambda(0), \mu(\mathrm{x} * \mathrm{y})\} \\
& =(\lambda \times \mu)(0, \mathrm{x} * \mathrm{y}) \\
& =(\lambda \times \mu)(0 * 0, \mathrm{x} * \mathrm{y}) \\
& =(\lambda \times \mu)((0, \mathrm{x}) *(0, y)) \\
\mu(\mathrm{x} * \mathrm{y}) & \geq \min \{(\lambda \times \mu)(0, \mathrm{x}),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{\mu(\mathrm{x}), \mu(\mathrm{y})\}
\end{aligned}
$$

That is, $\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$.
This proves that μ is a fuzzy BG-ideal of X .
Secondly to prove that λ is a fuzzy BG - ideal of X .
Given $\lambda \times \mu$ is a fuzzy $B G-$ ideal of $X \times X$, then by Theorem4.2(i), either $\lambda(0) \geq \lambda(x)$ or $\mu(0) \geq \mu(x), \forall x \in X$.

Let $\lambda(0) \geq \lambda(x)$
By theorem 4.2 (ii) then either $\mu(0) \geq \lambda(x)$ or $\mu(0) \geq \mu(x)$.
Now,

$$
\begin{aligned}
\lambda(\mathrm{x}) & =\min \{\mu(0), \lambda(\mathrm{x})\} \\
& =(\lambda \times \mu)(0, \mathrm{x}) \\
& \geq \min \{(\lambda \times \mu)((0, \mathrm{x}) *(0, \mathrm{y})),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{(\lambda \times \mu)((0 * 0, \mathrm{x} * \mathrm{y}),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{(\lambda \times \mu)((0, \mathrm{x} * \mathrm{y}),(\lambda \times \mu)(0, \mathrm{y})\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min \{(\lambda \times \mu)((0 * 0, \mathrm{x} * \mathrm{y}),(\lambda \times \mu)(0, \mathrm{y})\} \\
& =\min \{\lambda(\mathrm{x} * \mathrm{y}), \lambda(\mathrm{y})\}
\end{aligned}
$$

That is, $\lambda(x) \geq \min \{\lambda(x * y), \lambda(y)\}$.

$$
\begin{aligned}
\lambda(\mathrm{x} * \mathrm{y}) & =\min \{\mu(0), \lambda(\mathrm{x} * \mathrm{y})\} \\
& =(\lambda \times \mu)(0, \mathrm{x} * \mathrm{y}) \\
& =(\lambda \times \mu)(0 * 0, \mathrm{x} * \mathrm{y}) \\
& =(\lambda \times \mu)((0, \mathrm{x}) *(0, \mathrm{y}))
\end{aligned}
$$

$$
\lambda(\mathrm{x} * \mathrm{y}) \geq \min \{(\lambda \times \mu)(0, \mathrm{x}),(\lambda \times \mu)(0, \mathrm{y})\}
$$

$$
=\min \{\lambda(\mathrm{x}), \lambda(\mathrm{y})\}
$$

That is, $\lambda(\mathrm{x} * \mathrm{y}) \geq \min \{\lambda(\mathrm{x}), \lambda(\mathrm{y})\}$.
This proves that λ is a fuzzy BG-ideal of X.

Theorem 4.4

If μ is a fuzzy $B G$ - ideal of X, then μ_{t} is a $B G$ - ideal of X for all $\mathrm{t} \in[0,1]$.

Proof:

Let μ be a fuzzy BG - ideal of X. Then

1. $\mu(0) \geq \mu(x)$,
2. $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$,
3. $\mu(x * y) \geq \min \{\mu(x), \mu(y)\} \forall x, y \in X$.

To prove that μ_{t} is a BG - ideal of X
We know that $\mu_{t}=\{x / \mu(x) \geq t\}$
Let $\mathrm{x}, \mathrm{y} \in \mu_{\mathrm{t}}$ and μ is a fuzzy BG - ideal of X .
Since $\mu(0) \geq \mu(\mathrm{x}) \geq \mathrm{t}$ Implies $0 \in \mu_{\mathrm{t}}, \forall \mathrm{t} \in[0,1]$.
Let $\mathrm{x} * \mathrm{y} \in \mu_{\mathrm{t}}$ and $\mathrm{y} \in \mu_{\mathrm{t}}$
Therefore, $\mu(\mathrm{x} * \mathrm{y}) \geq \mathrm{t}$ and $\mu(\mathrm{y}) \geq \mathrm{t}$.
Now $\mu(x) \geq \min \{\mu(x * y), \mu(y)\} \geq \min \{t, t\} \geq t$.
Hence $\mu(x) \geq \mathrm{t}$.
That is, $x \in \mu_{\text {t }}$.
Let $\mathrm{x} \in \mu_{\mathrm{t}}, \mathrm{y} \in \mathrm{X}$.
Choose y in X such that $\mu(y) \geq t$.
Since $\mathrm{x} \in \mu_{\mathrm{t}}$ implies $\mu(\mathrm{x}) \geq \mathrm{t}$.
We know that $\mu(\mathrm{x} * \mathrm{y}) \geq \min \{\mu(\mathrm{x}), \mu(\mathrm{y})\}$

$$
\geq \min \{t, t\} \geq t
$$

That is, $\quad \mu(\mathrm{x} * \mathrm{y}) \quad \geq \mathrm{t} \quad$ implies $\mathrm{x} * \mathrm{y} \in \mu_{\mathrm{t}}$.
Hence μ_{t} is a $B G$ - ideal of X.
Theorem 4.5
If X be a BG - algebra, $\forall \mathrm{t} \in[0,1]$, and μ_{t} is a BG - ideal of X, then μ is a fuzzy $B G$ - ideal of X.

Proof :

Since μ_{t} is a BG - ideal of X .
i. $\quad 0 \in \mu_{t}$,
ii. $\quad x * y \in \mu_{t}$ and $y \in \mu_{t}$ implies $x \in \mu_{t}$,
iii. $x \in \mu_{t} y \in X$ implies $x * y \in \mu_{t}$.

To prove that μ is a fuzzy BG - ideal of X.
i. Let $\mathrm{x}, \mathrm{y} \in \mu_{\mathrm{t}}$ then $\mu(\mathrm{x}) \geq \mathrm{t}$ and $\mu(\mathrm{y}) \geq \mathrm{t}$.

Let $\mu(x)=t_{1}$ and $\mu(y)=t_{2}$, without loss of generality let $t_{1} \leq t_{2}$
Then $\mathrm{x} \in \mu_{\mathrm{tl}}$.
Now $\mathrm{x} \in \mu_{\mathrm{t} 1}$ and $\mathrm{y} \in \mathrm{X}$ implies $\mathrm{x} * \mathrm{y} \in \mu_{\mathrm{tl}}$.
That is, $\quad \mu(x * y) \quad \geq t_{1}$ $=\min \left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$ $=\min \{\mu(x), \mu(y)\}$.
That is, $\mu(x * y) \quad \geq \min \{\mu(x), \mu(y)\}$.
ii. Let $\mu(0)=\mu(\mathrm{x} * \mathrm{x})$
$\geq \min \{\mu(x), \mu(x)\}$ (by proof (i))
$\geq \mu(\mathrm{x})$.
That is, $\mu(0) \geq \mu(x) \forall x \in X$.
iii. Let $\mu(x)=\mu((x * y) *(0 * y))$
$\geq \min \{\mu(x * y), \mu(0 * y)\}(b y(i))$
$\geq \min \{\mu(x * y), \min \{\mu(0), \mu(y)\}\}$
$\geq \min \{\mu(x * y), \mu(y)\}($ by (ii)).
$\mu(\mathrm{x}) \quad \geq \min \{\mu(\mathrm{x} * \mathrm{y}), \mu(\mathrm{y})\}$.
Hence μ is a fuzzy BG - ideal of X.

Theorem 4.6

Every fuzzy BG - ideal is a fuzzy BG - bi-ideal.
Proof
It is trivial.

Remark:

Converse of the above theorem is not true. That is every fuzzy BG - bi -ideal is not fuzzy BG - ideal. Let us prove this by an example.

Example:

Let $\mathrm{X}=\{0,1,2\}$ be the set with the following table.

$*$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	1	2
$\mathbf{1}$	1	0	1
$\mathbf{2}$	2	2	0

Then $(\mathrm{X}, *, 0)$ is a BG - Algebra.

We define a fuzzy set $\mu: X \rightarrow[0,1]$ by $\mu(0)=0.8$ and

$$
\mu(x)=0.2 \forall x \neq 0 .
$$

Clearly μ is fuzzy BG - ideal of X . But μ is not a BG - bi-ideal of X .

For, Let $\mathrm{x}=0, \mathrm{w}=1, \mathrm{y}=0$. Then
$\mu(\mathrm{x} * \mathrm{w} * \mathrm{y})=\mu(0 * 1 * 0)=\mu(0 * 1)=\mu(1)=0.02$.
$\min \{\mu(\mathrm{x}), \mu(\mathrm{y})\}=\min \{\mu(0), \mu(0)\}=\mu(0)=0.8$.
Hence $\quad \mu(\mathrm{x} * \mathrm{w} * \mathrm{y}) \leq \min \{\mu(\mathrm{x}), \mu(\mathrm{y})\}$.
Hence μ is not a fuzzy BG - bi-ideal of X .

Definition 4.3

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a mapping of $\mathrm{BG}-$ algebra and μ be a fuzzy set of Y then μ^{f} is the pre -image of μ under f if $\mu^{f}(x)=\mu$ (f $(\mathrm{x})) \forall \mathrm{x} \in \mathrm{X}$.

Theorem 4.7

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a homomorphism of $\mathrm{BG}-$ algebra if μ is a fuzzy BG - ideal of Y then μ^{f} is a fuzzy BG - ideal of X.

Proof

For any $\mathrm{x} \in \mathrm{X}$, we have

$$
\mu^{\mathrm{f}}(\mathrm{x})=\mu(\mathrm{f}(\mathrm{x})) \leq \mu(0)=\mu(\mathrm{f}(0))=\mu^{\mathrm{f}}(0)
$$

Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then

$$
\begin{aligned}
\min \left\{\mu^{\mathrm{f}}(\mathrm{x} * \mathrm{y}), \mu^{\mathrm{f}}(\mathrm{y})\right\} & =\min \{\mu(\mathrm{f}(\mathrm{x} * \mathrm{y})), \mu(\mathrm{f}(\mathrm{y}))\} \\
& =\min \{\mu(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y})), \mu(\mathrm{f}(\mathrm{y}))\} \\
& \leq \mu(\mathrm{f}(\mathrm{x})) \\
& =\mu^{\mathrm{f}}(\mathrm{x})
\end{aligned}
$$

That is, $\mu^{f}(x) \quad \geq \min \left\{\mu^{f}(x * y), \mu^{f}(y)\right\}$

$$
\min \left\{\mu^{f}(x), \mu^{f}(y)\right\}=\min \{\mu(f(x)), \mu(f(y))\}
$$

$$
\leq \quad \mu(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y}))
$$

$$
=\mu(\mathrm{f}(\mathrm{x} * \mathrm{y}))
$$

$$
=\mu^{\mathrm{f}}(\mathrm{x} * \mathrm{y})
$$

That is, $\mu^{\mathrm{f}}(\mathrm{x} * \mathrm{y}) \geq \min \left\{\mu^{\mathrm{f}}(\mathrm{x}), \mu^{\mathrm{f}}(\mathrm{y})\right\}$
Hence μ^{f} is a fuzzy BG - ideal of X.

Theorem 4.8

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an epimorphism of BG - algebra. If μ^{f} is a fuzzy $B G$ - ideal of X, then μ is a fuzzy $B G$ - ideal of Y.

Proof

Let $\mathrm{y} \in \mathrm{Y}, \exists \mathrm{x} \in \mathrm{X}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$,

Then $\mu(\mathrm{y}) \quad=\mu(\mathrm{f}(\mathrm{x}))$
$=\mu^{\mathrm{f}}(\mathrm{x})$
$\leq \mu^{\mathrm{f}}(0)$
$=\mu(\mathrm{f}(0))=\mu(0)$.
Again let $x, y \in Y$ then $\exists a, b \in X$ such that $f(a)=x$ and $f(b)=y$.

It follows that $\mu(\mathrm{x})=\mu(\mathrm{f}(\mathrm{a}))$

$$
=\mu^{\mathrm{f}}(\mathrm{a})
$$

$$
\geq \min \left\{\mu^{\mathrm{f}}(\mathrm{a} * \mathrm{~b}), \mu^{\mathrm{f}}(\mathrm{~b})\right\}
$$

$$
=\min \{\mu(\mathrm{f}(\mathrm{a} * \mathrm{~b}), \mu(\mathrm{f}(\mathrm{~b})\}
$$

$$
=\min \{\mu(\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{~b})), \mu(\mathrm{f}(\mathrm{~b})\}
$$

$$
=\min \{\mu(x * y), \mu(y)\} .
$$

That is, $\quad \mu(x) \geq \min \{\mu(x * y), \mu(y)\}$.
and $\mu(\mathrm{x} * \mathrm{y}) \quad=\mu(\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{b}))$
$=\mu(f(a * b))$
$=\mu^{\mathrm{f}}(\mathrm{a} * \mathrm{~b})$
$\geq \min \left\{\mu^{\mathrm{f}}(\mathrm{a}), \mu^{\mathrm{f}}(\mathrm{b})\right\}$
$=\min \{\mu(\mathrm{f}(\mathrm{a}), \mu(\mathrm{f}(\mathrm{b})\}$
$=\min \{\mu(x), \mu(y)\}$
Hence $\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$.
Hence μ is fuzzy BG - ideal of Y.

References

[1] S.S.Ahn and D. Lee, Fuzzy subalgebras of BG algebras, Commun. Korean Math.Soc, 19 (2004), No2, 243-251.
[2] M.Akram and K.H.Dar, On Fuzzy d- algebras, Journal of mathematics, Vol. 37 (2005) 61-76.
[3] Y.B. Jun, E.H.Roh and H.S.Kim, On BH - algebras, sci. mathematica, 1 (1998), $347-354$.
[4] Neggers and H.S.Kim, On - B- Algebras, Math,Vensik, 54 (2002), 21-29.
[5] Neggers and H.S.Kim, On - d- Algebras, Math,Slovaca, 49 (1999), 19-26.
[6] A.Borumand Saeid , Fuzzy Topological BG-algebras, Int.J.math. (to appear).
[7] Q.P.Hu and X.Li, On BCH-algebras, Mathematics Seminar notes 11 (1983), 313-320.

