Fuzzy BG – Ideals in BG – Algebra

R.Muthuraj Department of Mathematics PSNA CET, Dindigul. – 624 622 M.Sridharan Department of Mathematics PSNA CET, Dindigul. – 624 622 P.M.Sitharselvam Department of Mathematics PSNA CET, Dindigul. – 624 622

Abstract

In this paper, we introduce the concept of fuzzy BG – ideals in BG – Algebra and we have discussed some of their properties.

AMS Subject Classification (2000): 06F35, 03G25.

Keywords

BG-algebra, sub BG - algebra and BG-ideals, fuzzy BG – ideals, fuzzy BG – bi-ideal.

1.Introduction

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK – algebras and BCI – algebras. It is known that the class of BCK – algebras is a proper subclass of the class of BCI – algebras. J. Neggers and H.S.Kim introduced a new notion, called B – algebra. C.B.Kim and H.S.Kim introduced the notion of the BG – algebra which is a generalization of B – algebra. In this paper, we classify the fuzzy BG – ideals in BG – Algebra.

2. Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1

A nonempty set X with a constant 0 and a binary operation '* ' is called a BG – Algebra if it satisfies the following axioms.

- 1. x * x = 0,
- 2. x * 0 = x,
- 3. (x * y) * (0 * y) = x, $\forall x, y \in X$.

Example 2.1

Let $X = \{ 0,1,2 \}$ be the set with the following table.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is a BG – Algebra.

Definition 2.2

Definition 2.3

Let X be a BG-algebra and I be a subset of X ,then I is called a BG-ideal of X if it satisfies following conditions:

- 1. $0 \in \mathbf{I}$,
- 2. $x * y \in I \text{ and } y \in I \Rightarrow x \in I,$
- $3. \quad x \in \ I \ \text{and} \ y \in \ X \Rightarrow \ x \ast y \in \ I \ , \ \ I \times X \subseteq I.$

Definition 2.4

A mapping f: X \rightarrow Y of a BG-algebra is called a homomorphism if f(x*y) =f(x)*f(y) \forall x ,y \in X

Remark:

If f:
$$X \rightarrow Y$$
 is a homomorphism of BG-algebra, then $f(0) = 0$.

Definition 2.5

Let X be a non-empty set .A fuzzy sub set μ of the set X is a mapping $\mu : X \rightarrow [0,1]$.

Definition 2.6

A fuzzy set μ in X is said to be a fuzzy BG – bi-ideal if $\mu(x * w * y) \ge \min \{ \mu(x), \mu(y) \} \forall x, y, w \in X .$ International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

3. FUZZY SUBALGEBRAS

Definition 3.1

Let $\mu\,$ be a fuzzy set in BG – Algebra. Then $\mu\,$ is called a fuzzy subalgebra of X if

 $\mu (x * y) \ge \min \{ \mu (x), \mu(y) \} \forall x, y \in X.$

Example 3.1

Let $X = \{0, 1, 2, 3\}$ be the set with the following table.

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then (X, *, 0) is a BG – Algebra. Define a fuzzy set $\mu : X \rightarrow [0,1]$ by $\mu (0) = \mu (1) = t_0$ and $\mu (2) = \mu (3) = t_1$ for $t_0, t_1 \in [0,1]$ with $t_0 > t_1$. Then μ is a fuzzy subalgebra of X.

Definition 3.2

Let μ be a fuzzy set in a set X. For $t \in [0,1]$, the set $\mu_t = \{ x \in X / \mu (x) \ge t \}$ is called a level subset of μ .

4. Fuzzy BG - Ideal

Definition 4.1

A fuzzy set μ in X is called fuzzy BG – Ideal of X if it satisfies the following inequalities.

1. $\mu(0) \ge \mu(x)$,

2.
$$\mu(x) \ge \min\{ \mu(x * y), \mu(y) \},\$$

 $3. \quad \mu\left(x\ast y\right)\geq min \left\{ \ \mu\left(x\right), \ \mu(y) \right\} \ \forall \ \ x,y\in X.$

Definition 4.2

Let λ and μ be the fuzzy sets in a set X . The Cartesian product $\lambda ≀ \mu : X ≀ X \to [0,1]$ is defined by

 $(\lambda \times \mu)(x,y) = \min \{ \lambda(x), \mu(y) \} \forall x,y \in X.$

Theorem 4.1

If λ and μ are fuzzy BG – Ideals of a BG – algebra X, then $\lambda \times \mu$ is a fuzzy BG – Ideals of X × X.

Proof

For any $(x,y) \in X \times X$, we have

$$(\lambda \times \mu)(0,0) = \min\{\lambda(0), \mu(0)\}$$
$$\geq \min\{\lambda(x), \mu(y)\}$$
$$= (\lambda \times \mu)(x,y)$$

That is, $(\lambda \times \mu)(0,0) = (\lambda \times \mu)(x,y)$.

Let (x_1, x_2) and $(y_1, y_2) \in X \times X$. Then,

$$(\lambda \times \mu) (x_1, x_2)$$

- $= \min \{ \lambda(\mathbf{x}_1), \mu(\mathbf{x}_2) \}$
- $\geq \min \{ \min \{ \lambda(x_{1^*}y_1), \lambda(y_1) \}, \min \{ \mu(x_{2^*}y_2), \mu(y_2) \} \}$
- $= \min \{ \min \{ \lambda(x_{1*}y_1), \mu(x_{2*}y_2) \}, \min \{ \lambda(y_1), \mu(y_2) \} \}$

= min {(
$$\lambda \times \mu$$
)(($x_{1*}y_1, x_{2*}y_2$)), ($\lambda \times \mu$)(y_1, y_2)}

= min {
$$(\lambda \times \mu)((x_1, x_2) * (y_1, y_2)), (\lambda \times \mu)(y_1, y_2)$$
}

That is,

$$(\lambda X \mu) ((x_1, x_2))$$

= min { $(\lambda \times \mu)((x_1, x_2) * (y_1, y_2)), (\lambda \times \mu)(y_1, y_2)$ }

and $(\lambda \times \mu)((x_1, x_2) * (y_1, y_2))$

- = $(\lambda \times \mu)(x_{1*}y_1, x_{2*}y_2)$
- $= \min \{ \lambda(x_{1*}y_{1}), \mu(x_{2*}y_{2}) \}$
- $\geq \min \{\min \{\lambda(x_1), \lambda(y_1)\}, \min \{\mu(x_2), \mu(y_2)\}\}$
- $= \min \{\min \{\lambda(x_1), \mu(x_2)\}, \min \{\lambda(y_1), \mu(y_2)\}\}\$
- = min { $(\lambda \times \mu)$ ((x₁,x₂)), ($\lambda \times \mu$)((y₁,y₂))}

That is , $(\lambda \times \mu)((x_1, x_2) * (y_1, y_2))$

= min { $(\lambda \times \mu)$ (x_1, x_2), ($\lambda \times \mu$)(y_1, y_2)}

Hence $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$.

International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

Theorem 4.2

Let λ and μ be fuzzy sets in a BG – algebra such that $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$. Then i. Either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x) \quad \forall x \in X$.

- ii. If $\lambda(0) \ge \lambda(x) \forall x \in X$, then either $\mu(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x)$.
- iii. If $\mu(0) \ge \mu(x) \forall x \in X$, then either $\lambda(0) \ge \lambda(x)$ or $\lambda(0) \ge \mu(x)$.

Proof

- i. Assume $\lambda(x)>\lambda(0)$ and μ $(y)>\mu$ (0) for some $x,\,y\in X$.
- Then $(\lambda \times \mu)(\mathbf{x}, \mathbf{y}) = \min \{ \lambda(\mathbf{x}), \mu(\mathbf{y}) \}$ > $\min \{ \lambda(0), \mu(0) \}$ = $(\lambda \times \mu)(0, 0)$

Therefore $(\lambda \times \mu)(x, y) > (\lambda \times \mu)(0, 0), \forall x, y \in X$.

- Which is a contradiction to λ X μ is a fuzzy BG ideal of
- Х X X.
- Therefore either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x) \quad \forall x \in X$.
- ii. Assume $\mu(0) < \lambda(x)$ and $\mu(0) < \mu(y) \forall x, y \in X$.

Then
$$(\lambda \times \mu)(0,0) = \min\{\lambda(0), \mu(0)\}\)$$

= $\mu(0).$
And $(\lambda \times \mu)(x, y) = \min\{\lambda(x), \mu(y)\} > \mu(0)\)$
= $(\lambda \times \mu)(0, 0).$

This implies $(\lambda \times \mu)(x, y) > (\lambda \times \mu)(0, 0)$.

Which is a contradiction to $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$.

Hence if If $\lambda(0) \ge \lambda(x) \forall x \in X$, then either

 $\mu(0) \ge \lambda(x) \text{ or } \mu(0) \ge \mu(x)$

iii. This proof is quite similar to (ii).

Theorem 4.3

If $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$, then λ or μ is a fuzzy BG – ideal of X.

Proof

Firstly to prove that μ is a fuzzy BG – ideal of X.

Given $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$, then by Theorem4.2(i), either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x)$, $\forall x \in X$. Let $\mu(0) \ge \mu(x)$.

By theorem 4.2(iii) then either λ (0) $\geq \lambda$ (x) or λ (0) $\geq \mu$ (x).

Now $\mu(x)$. = min { $\lambda(0), \mu(x)$ } $= (\lambda \times \mu)(0,x)$ $\geq \min \{ (\lambda \times \mu) ((0, x) * (0, y)), (\lambda \times \mu) (0, y) \}$ = min { $(\lambda \times \mu)((0 * 0, x * y), (\lambda \times \mu)(0, y)$ } = min { $(\lambda \times \mu)((0, x * y), (\lambda \times \mu)(0, y)$ } = min { $(\lambda \times \mu)((0 * 0, x * y), (\lambda \times \mu)(0, y)$ } $= \min \{ \mu (x * y), \mu (y) \}.$ That is, $\mu(x) \geq \min \{ \mu(x * y), \mu(y) \}.$ $\mu (\mathbf{x} \ast \mathbf{y}) = \min \{\lambda (0), \mu (\mathbf{x} \ast \mathbf{y})\}$ $= (\lambda \times \mu) (0, x * y)$ $= (\lambda \times \mu) (0 * 0, x * y)$ $= (\lambda \times \mu)((0, x) * (0, y))$ $\mu (\mathbf{x} \ast \mathbf{y}) \geq \min \{ (\lambda \times \mu) (0, \mathbf{x}), (\lambda \times \mu) (0, \mathbf{y}) \}$ $= \min \{ \mu(x), \mu(y) \}.$ That is, $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}.$ This proves that μ is a fuzzy BG-ideal of X. Secondly to prove that λ is a fuzzy BG – ideal of X. Given $\lambda \times \mu$ is a fuzzy BG – ideal of X \times X, then by Theorem 4.2(i), either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x), \forall x \in X$.

Let $\lambda(0) \ge \lambda(x)$

By theorem 4.2(ii) then either $\mu(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x)$.

$$\begin{aligned} \lambda (\mathbf{x}) &= \min \{ \mu (0), \lambda (\mathbf{x}) \} \\ &= (\lambda \times \mu)(0, \mathbf{x}) \\ &\geq \min \{ (\lambda \times \mu)((0, \mathbf{x}) * (0, \mathbf{y})), (\lambda \times \mu)(0, \mathbf{y}) \} \\ &= \min \{ (\lambda \times \mu)((0, \mathbf{x} * \mathbf{y}), (\lambda \times \mu)(0, \mathbf{y}) \} \\ &= \min \{ (\lambda \times \mu)((0, \mathbf{x} * \mathbf{y}), (\lambda \times \mu)(0, \mathbf{y}) \} \end{aligned}$$

International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

 $= \min \{ (\lambda \times \mu) ((0 \circ 0, x \circ y), (\lambda \times \mu) (0, y) \}$ $= \min \{ \lambda (x \circ y), \lambda (y) \}$ That is, $\lambda (x) \ge \min \{ \lambda (x \circ y), \lambda (y) \}$. $\lambda (x \circ y) = \min \{ \mu(0), \lambda (x \circ y) \}$ $= (\lambda \times \mu) (0, x \circ y)$ $= (\lambda \times \mu) (0, x \circ y)$ $= (\lambda \times \mu) (0, x \circ y)$ $\lambda (x \circ y) \ge \min \{ (\lambda \times \mu) (0, x), (\lambda \times \mu) (0, y) \}$ $= \min \{ \lambda (x), \lambda (y) \}$ That is, $\lambda (x \circ y) \ge \min \{ \lambda (x), \lambda (y) \}$. This proves that λ is a fuzzy BG-ideal of X.

Theorem 4.4

If μ is a fuzzy BG – ideal of X, then μ_t is a BG – ideal of X for all $t \in [0, 1]$.

Proof:

Let μ be a fuzzy BG – ideal of X. Then 1. μ (0) $\geq \mu$ (x), 2. μ (x) $\geq \min\{ \mu (x * y), \mu(y) \}$, 3. μ (x * y) $\geq \min\{ \mu (x), \mu(y) \} \forall x, y \in X$. To prove that μ_t is a BG – ideal of X We know that $\mu_t = \{ x / \mu(x) \geq t \}$ Let x, y $\in \mu_t$ and μ is a fuzzy BG – ideal of X. Since μ (0) $\geq \mu$ (x) $\geq t$ Implies 0 $\in \mu_t$, $\forall t \in [0, 1]$. Let x * y $\in \mu_t$ and y $\in \mu_t$ Therefore, μ (x * y) $\geq t$ and μ (y) $\geq t$. Now μ (x) $\geq \min\{ \mu (x * y), \mu(y) \} \geq \min\{ t, t \} \geq t$. Hence μ (x) $\geq t$.

That is, $x \in \mu_t$.

Let $x \in \mu_t$, $y \in X$.

Choose y in X such that $\mu(y) \ge t$.

Since $x \in \mu_t$ implies $\mu(x) \ge t$.

We know that $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}$

```
\geq \min\{t,t\} \geq t.
```

 $\label{eq:constraint} \text{That is,} \qquad \mu \left(x \ast y\right) \quad \geq \quad t \quad \text{implies } x \ast y \in \mu_t \,.$

Hence μ_t is a BG – ideal of X.

Theorem 4.5

If X be a BG – algebra, $\forall t \in [0, 1]$, and μ_t is a BG - ideal of X, then μ is a fuzzy BG – ideal of X.

Proof :

Since μ_t is a BG - ideal of X .

i. $0 \in \mu_t$, ii. $x * y \in \mu_t$ and $y \in \mu_t$ implies $x \in \mu_t$, iii. $x \in \mu_t \ y \in X$ implies $x * y \in \mu_t$. To prove that μ is a fuzzy BG – ideal of X. i. Let x, $y \in \mu_t$ then $\mu(x) \ge t$ and $\mu(y) \ge t$. Let $\mu(x) = t_1$ and $\mu(y) = t_2$, without loss of generality let $t_1 \le t_2$ Then $x \in \mu_{t1}$. Now $x \in \mu_{t1}$ and $y \in X$ implies $x * y \in \mu_{t1}$. That is, $\mu(x * y) \ge t_1$ $= \min \{ t_1, t_2 \}$ $= \min \{ \mu(x), \mu(y) \}.$ That is, $\mu(x * y)$ $\geq \min \{ \mu(x), \mu(y) \}.$ ii. Let $\mu(0) = \mu(x \cdot x)$ $\geq \min \{ \mu(x), \mu(x) \}$ (by proof (i)) $\geq \mu(x).$ That is, $\mu(0) \ge \mu(x) \forall x \in X$. iii. Let $\mu(x) = \mu((x * y) * (0 * y))$ $\geq \min \{ \mu (x * y), \mu (0 * y) \} (by (i))$ $\geq \min \{ \mu (x * y), \min \{ \mu (0), \mu (y) \} \}$ $\geq \min \{ \mu (x * y), \mu (y) \} (by (ii)).$ μ(x) $\geq \min \{ \mu (x * y), \mu (y) \}.$ Hence μ is a fuzzy BG – ideal of X.

Theorem 4.6

Every fuzzy BG – ideal is a fuzzy BG – bi-ideal.

Proof

It is trivial.

Remark:

Converse of the above theorem is not true. That is every fuzzy BG – bi –ideal is not fuzzy BG – ideal. Let us prove this by an example.

Example:

Let $X = \{ 0,1,2 \}$ be the set with the following table.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is a BG – Algebra.

We define a fuzzy set μ : $X \rightarrow [0,1]$ by $\mu(0) = 0.8$ and

$$\mu(\mathbf{x}) = 0.2 \ \forall \ \mathbf{x} \neq \mathbf{0}.$$

Clearly μ is fuzzy BG – ideal of X . But μ is not a BG – bi-ideal of X .

For, Let x = 0, w = 1, y = 0. Then

 $\mu(x * w * y) = \mu (0 * 1 * 0) = \mu(0 * 1) = \mu(1) = 0.02.$

 $\min \{ \mu(x), \mu(y) \} = \min \{ \mu(0), \mu(0) \} = \mu(0) = 0.8.$

 $\label{eq:hence} \text{Hence} \quad \ \ \mu(x\ast w\ast y) \ \le \min \ \{ \ \mu(x), \ \mu(y) \ \}.$

Hence μ is not a fuzzy BG – bi-ideal of X.

Definition 4.3

Let f: X \to Y be a mapping of BG –algebra and μ be a fuzzy set of Y then μ^f is the pre -image of μ under f if $\mu^f(x) = \mu$ (f (x)) $\forall x \in X$.

Theorem 4.7

Let f: $X \rightarrow Y$ be a homomorphism of BG – algebra if μ is a fuzzy BG – ideal of Y then μ^{f} is a fuzzy BG – ideal of X.

Proof

For any $x \in X$, we have

$$\mu^{f}(x) = \mu(f(x)) \leq \mu(0) = \mu(f(0)) = \mu^{f}(0)$$

Let $x, y \in X$, then

$$\min \{ \mu^{f}(x * y), \mu^{f}(y) \} = \min \{ \mu(f(x * y)), \mu(f(y)) \}$$

$$= \min \{ \mu(f(x) * f(y)), \mu(f(y)) \}$$

$$\leq \mu(f(x))$$

$$= \mu^{f}(x)$$

$$= \mu^{f}(x)$$

$$\min \{ \mu^{f}(x), \mu^{f}(y) \} = \min \{ \mu(f(x * y), \mu^{f}(y)) \}$$

$$\min \{ \mu^{f}(x), \mu^{f}(y) \} = \min \{ \mu(f(x)), \mu(f(y)) \}$$

$$\leq \mu(f(x) * f(y))$$

$$= \mu(f(x * y))$$

$$= \mu^{f}(x * y)$$

$$= \mu^{f}(x * y)$$

$$= \min \{ \mu^{f}(x), \mu^{f}(y) \}$$

$$Hence \mu^{f} is a fuzzy BG - ideal of X.$$

Theorem 4.8

Let f: $X \rightarrow Y$ be an epimorphism of BG – algebra. If μ^{f} is a fuzzy BG – ideal of X, then μ is a fuzzy BG – ideal of Y.

Proof

Let $y \in Y$, $\exists x \in X$ such that f(x) = y,

Then $\mu(\mathbf{y})$ $= \mu(f(x))$ $= \mu^{f}(x)$ $\leq \mu^{f}(0)$ $= \mu (f(0)) = \mu (0).$ Again let x, $y \in Y$ then $\exists a, b \in X$ such that f(a) = x and f(b) = y. It follows that $\mu(x) = \mu(f(a))$ $= \mu^{f}(a)$ $\geq \min \{ \mu^{f}(a * b), \mu^{f}(b) \}$ = min { $\mu(f(a * b), \mu(f(b)))$ $= \min \{ \mu(f(a) \cdot f(b)), \mu(f(b)) \}$ = min { μ (x * y), μ (y)}. That is, $\mu(x)$ $\geq \min \{ \mu (x * y), \mu(y) \}.$ and $\mu(x * y)$ $= \mu(f(a) * f(b))$ $= \mu(f(a * b))$ $= \mu^{f}(a * b)$ $\geq \min\{ \mu^{f}(a), \mu^{f}(b) \}$ = min{ $\mu(f(a), \mu(f(b))$ $= \min \{ \mu(x), \mu(y) \}$ Hence $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}.$

Hence μ is fuzzy BG – ideal of Y.

References

- S.S.Ahn and D. Lee, Fuzzy subalgebras of BG algebras, Commun. Korean Math.Soc, 19 (2004), No2, 243 – 251.
- [2] M.Akram and K.H.Dar, On Fuzzy d- algebras, Journal of mathematics, Vol.37 (2005) 61 – 76.
- [3] Y.B. Jun, E.H.Roh and H.S.Kim, On BH algebras, sci. mathematica, 1 (1998), 347 – 354.
- [4] Neggers and H.S.Kim, On B- Algebras, Math, Vensik, 54 (2002), 21-29.
- [5] Neggers and H.S.Kim, On d- Algebras, Math, Slovaca, 49 (1999), 19-26.
- [6] A.Borumand Saeid , Fuzzy Topological BG-algebras, Int.J.math. (to appear).
- [7] Q.P.Hu and X.Li , On BCH-algebras , Mathematics Seminar notes 11 (1983), 313-320.