
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

21

Implementation of Elliptic Curve Digital Signature

Algorithm
Aqeel Khalique Kuldip Singh Sandeep Sood

Department of Electronics & Computer Engineering,

Indian Institute of Technology Roorkee
Roorkee, India

ABSTRACT

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the

elliptic curve analogue of the Digital Signature Algorithm

(DSA). It was accepted in 1999 as an ANSI standard, and was

accepted in 2000 as IEEE and NIST standards. It was also

accepted in 1998 as an ISO standard, and is under consideration

for inclusion in some other ISO standards. Unlike the ordinary

discrete logarithm problem and the integer factorization problem,

no sub exponential-time algorithm is known for the elliptic curve

discrete logarithm problem. For this reason, the strength-per-key-

bit is substantially greater in an algorithm that uses elliptic

curves. This paper describes the implementation of ANSI X9.62

ECDSA over elliptic curve P-192, and discusses related security

issues.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection –access

controls, authentication cryptographic control; E.3 [Data]: Data

Encryption –Public key cryptosystem, standards.

General Terms
Algorithms, Security.

Keywords

integer factorization, discrete logarithm problem, elliptic curve

cryptography, DSA, ECDSA.

1. INTRODUCTION

Cryptography is the branch of cryptology dealing with the design

of algorithms for encryption and decryption, intended to ensure

the secrecy and/or authenticity of message. The DSA was

proposed in August 1991 by the U.S. National Institute of

Standards and Technology (NIST) and was specified in a U.S.

Government Federal Information Processing Standard (FIPS 186)

called the Digital Signature Standard (DSS). Its security is based

on the computational intractability of the discrete logarithm

problem (DLP) in prime-order subgroups of Zp
*. Digital signature

schemes are designed to provide the digital counterpart to

handwritten signatures (and more). Ideally, a digital signature

scheme should be existentially non-forgeable under chosen-

message attack. The ECDSA have a smaller key size, which

leads to faster computation time and reduction in processing

power, storage space and bandwidth. This makes the ECDSA

ideal for constrained devices such as pagers, cellular phones and

smart cards.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the

elliptic curve analogue of the DSA. ECDSA was first proposed in

1992 by Scott Vanstone [1] in response to NIST’s (National

Institute of Standards and Technology) request for public

comments on their first proposal for DSS. It was accepted in

1998 as an ISO (International Standards Organization) standard

(ISO 14888-3), accepted in 1999 as an ANSI (American National

Standards Institute) standard (ANSI X9.62), and accepted in

2000 as an IEEE (Institute of Electrical and Electronics

Engineers) standard (IEEE 1363-2000) and a FIPS standard

(FIPS 186-2)

Digital signature schemes can be used to provide the following

basic cryptographic services:

 data integrity (the assurance that data has not been

altered by unauthorized or unknown means)

 data origin authentication (the assurance that the source

of data is as claimed)

 non-repudiation (the assurance that an entity cannot deny

previous actions or commitments)

In this paper, first we start with the cryptography schemes based

on integer factorization (IF) and discrete logarithm (DL) in

section 2. In section 3, we discuss ECC in detail. In section 4, we

show the implementation and results. Further in section 5 and 6

we compare and conclude respectively.

2. CRYPTOGRAPHIC SCHEMES

2.1 Integer Factorization
In Integer factorization, given an integer n which is the product of

two large primes p and q such that:

n = p * q (1)

It is easy to calculate n for given p and q but it is computationally

infeasible to determine p and q given n for large values of n.

One of the famous algorithms is RSA. The RSA Algorithm is

shown below:

1. Choose two large prime numbers, p and q (1024 bits)

2. Compute n = p * q and z = (p-1) * (q-1).

3. Choose a number, e, less than n, which has no common

factors (other than 1) with z.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

22

4. Find a number, d, such that e * d -1 is exactly divisible

(i.e., with no remainder) by z.

The public key is the pair of numbers (n, e), private key is the

pair of numbers (n, d).

The encryption is done as follows:

c = me mod n

(2)

To decrypt the received cipher text message, c

m = cd mod n (3)

which requires the use of the private key, (n, d).

Its security depends on the difficulty of factoring the large prime

numbers. The best known method for solving Integer

Factorization problem is Number Field Sieve which is a sub-

exponential algorithm and having a running time of

exp[1.923*(log n)1/3*(log log n)2/3] [2].

2.2 Discrete Logarithm
Discrete logarithms are ordinary logarithms involving group

theory. An ordinary logarithm loga(b) is a solution of the

equation ax = b over the real or complex numbers. Similarly, if g

and h are elements of a finite cyclic group G then a solution x of

the equation gx = h is called a discrete logarithm to the base g of

h in the group G, i.e. logg(h). A group with an operation * is

defined on pairs of elements of G. The operations satisfy the

following properties:

1. Closure: a * b ε G for all a, b ε G.

2. Associativity: a * (b * c) = (a * b) * c for all a, b ε G.

3. Existence of Identity: There exists an element e ε G,

called the identity, such that e * a = a * e = a for all a ε G.

4. Existence of inverse: For each a ε G there is an element b

ε G such that a * b = b * a = e. The element b is called

the inverse of a.

Moreover, a group G is said to be abelian if a * b = b * a for all

a, b ε G. The order of a group G is the number of elements in G.

The discrete logarithm problem is to find an integer x, 0 ≤ x ≤ n-

1, such that gx ≡ h (mod p), for given g ε Z*p of order n and

given h ε Z*p. The integer x is called the discrete logarithm of h

to the base g.

Digital Signature Algorithm (DSA), Diffie Hellman (DH) and El

Gamal are based on discrete logarithms.

The best known method for solving Discrete Logarithm problem

is Number Field Sieve which is a sub-exponential algorithm,

having a running time of exp[1.923*(log n)1/3*(log log n)2/3] [2].

2.2.1 Comparison with Integer Factorization
While the problem of computing discrete logarithms and the

problem of integer factorization are distinct problems they share

some properties:

 both problems are difficult (no efficient algorithms are

known for non-quantum computers),

 for both problems efficient algorithms on quantum

computers are known,

 algorithms from one problem are often adapted to the

other, and

 difficulty of both problems has been exploited to

construct various cryptographic systems.

2.2.2 Elliptic Curve Discrete Logarithm
An elliptic curve Ek, [3] defined over a field K of characteristic ≠

2 or 3 is the set of solutions (x, y) ε K' to the equation

y2 = x3 + ax + b (4)

a, b ε K (where the cubic on the right has no multiple roots).

Two nonnegative integers, a and b, less than p that satisfy:

4a3 + 27b2 (mod p) ≠0 (5)

Then Ep (a, b) denotes the elliptic group mod p whose elements

(x, y) are pairs of nonnegative integers less than p satisfying:

y2 ≡ x3 + ax + b (mod p) (6)

together with the point at infinity O.

The elliptic curve discrete logarithm problem can be stated as

follows. Fix a prime p and an elliptic curve.

Q= xP

(7)

where xP represents the point P on elliptic curve added to itself x

times. Then the elliptic curve discrete logarithm problem is to

determine x given P and Q. It is relatively easy to calculate Q

given x and P, but it is very hard to determine x given Q and P.

ECC is based on ECDLP. ECDH and ECDSA are cryptographic

schemes based on ECC. The best known algorithm for solving

ECDLP is Pollard-Rho algorithm which is fully exponential

having a running time of √(∏*n /2) [2].

3. ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curve cryptosystems (ECC) were invented by Neal

Koblitz [3] and Victor Miller [4] in 1985. They can be viewed as

elliptic curve analogues of the older discrete logarithm (DL)

cryptosystems in which the subgroup of Zp
* is replaced by the

group of points on an elliptic curve over a finite field. The

mathematical basis for the security of elliptic curve

cryptosystems is the computational intractability of the elliptic

curve discrete logarithm problem (ECDLP) [5].

ECC is a relative of discrete logarithm cryptography. An elliptic

curve E over Zp as in Figure 1 is defined in the Cartesian

coordinate system by an equation of the form:

y2 = x3 + ax + b (8)

where a, b ε Zp, and 4a3 + 27b2≠0 (mod p), together with a

special point O, called the point at infinity. The set E(Zp)

consists of all points (x, y), x ε Zp, y ε Zp, which satisfy the

defining equation, together with O.

Each value of a and b gives a different elliptic curve. The public

key is a point on the curve and the private key is a random

number. The public key is obtained by multiplying the private

key with a generator point G in the curve.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

23

The definition of groups and finite fields, which are fundamental

for the construction of elliptic curve cryptosystem are discussed

in next subsections.

Figure 1. An Elliptic Curve

3.1 Groups

A group with an operation * is defined on pairs of elements of G.

The operations satisfy the following properties:

 Closure: a * b ε G for all a, b ε G.

 Associativity: a * (b * c) = (a * b) * c for all a, b ε G.

 Existence of Identity: There exists an element e ε G,

called the identity, such that e * a = a * e = a for all a ε G.

 Existence of inverse: For each a ε G there is an element b

ε G such that a * b = b * a = e. The element b is called

the inverse of a.

Moreover, a group G is said to be abelian if a * b = b * a for all

a, b ε G. The order of a group G is the number of elements in G.

3.2 Finite Field

A finite field consists of a finite set of elements together with

two binary operations called addition and multiplication, which

satisfy certain arithmetic properties. The order of a finite field is

the number of elements in the field. There exists a finite field of

order q if and only if q is a prime power. If q is a prime power,

then there is essentially only one finite field of order q; this field

is denoted by Fq. There are, however, many ways of representing

the elements of Fq. Some representations may lead to more

efficient implementations of the field arithmetic in hardware or

in software. If q=pm where p is a prime and m is a positive

integer, then p is called the characteristic of Fq and m is called

the extension degree of Fq..

3.2.1 Prime Field Fp

Let p be a prime number. The finite field Fp called a prime field,

is comprised of the set of integers {0,1,2,….,p-1} with the

following arithmetic operations:

 Addition: If a, b ε Fp then a+b=r, where r is the

remainder when a+b is divided by p and 0 ≤ r ≤ p-1 known

as addition modulo p.

 Multiplication: If a, b ε Fp then a.b=s, where s is the

remainder when a.b is divided by p and 0 ≤ s ≤ p-1 known

as multiplication modulo p

 Inversion: If is a non-zero element in Fp, the inverse of

 modulo a modulo p_, denoted by a-1, is the unique integer

c ε Fp for which a.c=1

3.2.2 Binary Field F2
m

The field F2
m, called a characteristic two finite field or a binary

finite field, can be viewed as a vector space of dimension m over

the field F2 which consists of the two elements 0 and1. That is,

there exist m elements α0, α1,…, αm-1 in F2
m such that each

element α can be uniquely written in the form:

α= a0 α0+a1 α1+……….+am-1 αm-1, where ai ε{0,1}

Such a set {α0, α1,…, αm-1} is called a basis of F2
m over F2.

Given such a basis, a field element α can be represented as the

bit string (a0 a1 ……….+am-1) Addition of field elements is

performed by bitwise XOR-ing the vector representations. The

multiplication rule depends on the basis selected. ANSI X9.62

permits two kinds of bases: polynomial bases and normal bases.

3.2.3 Domain Parameters

The domain parameters for ECDSA consist of a suitably chosen

elliptic curve E defined over a finite field Fq of characteristic p,

and a base point G ε E(Fq). Domain parameters may either be

shared by a group of entities, or specific to a single user. To

summarize, domain parameters are comprised of:

1. a field size q, where either q=p, an odd prime, or q=2m

2. an indication FR (field representation) of the representation

used for the elements of Fq

3. (optional) a bit string seedE of length at least 160 bits

4. 4. two field elements a and b in Fq which define the

equation of the elliptic curve E over Fq' (i.e., y2 = x3 + ax + b

in the case p>3, and y2 + xy = x3 + ax + b in the case p=2)

5. two field elements xG and yG in Fq which define a finite

point G=(xG, yG) of prime order in E(Fq)

6. the order εof the point G, with n>2160 and n>4√q and

7. the cofactor h= #E(Fq)/n

3.3 Elliptic Curves Operations over Finite

Fields [6]

The main operation is Point multiplication is achieved by two

basic elliptic curve operations.

1. Point addition, adding two points J and K to obtain another

point L i.e. L= J + K, require 1 inversion and 3 multiplication

operation.

2. Point doubling, adding a point J to itself to obtain another

point L i.e. L = 2J, requires 1 inversion and 4 multiplication

operation.

3.3.1 Point Addition

Point addition is the addition of two points J and K on an elliptic

curve to obtain another point L on the same elliptic curve.

Consider two points J and K on an elliptic curve as shown in

Figure 2. If K≠ -J then a line drawn through the points J and K

will intersect the elliptic curve at exactly one more point –L.

The reflection of the point –L with respect to x-axis gives the

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

24

point L, which is the result of addition of points J and K. Thus

on an elliptic curve L = J + K. If K = -J the line through this

point intersect at a point at infinity O. Hence J + (-J) = O. A

negative of a point is the reflection of that point with respect to

x-axis [7].

Figure 2. Point Addition

3.3.2 Point doubling

Point doubling is the addition of a point J on the elliptic curve to

itself to obtain another point L on the same elliptic curve To

double a point J to get L, i.e. to find L = 2J, consider a point J on

an elliptic curve as shown in Figure 3. If y coordinate of the

point J is not zero then the tangent line at J will intersect the

elliptic curve at exactly one more point –L. The reflection of the

point –L with respect to x-axis gives the point L, which is the

result of doubling the point J, i.e., L = 2J. If y coordinate of the

point J is zero then the tangent at this point intersects at a point

at infinity O. Hence 2J = O when yj=0. Figure 3 shows point

doubling [7].

Figure 3. Point Doubling

3.3.3 Algebraic Formulae Over Fp

 P+O=O+P=P for all P ε E(Fp)

 If P=(x, y) ε E(Fp) then (x, y)+(x,-y)=O. (The point (x,-y) is

denoted by –P, and is called the negative of P, observe that

–P is indeed a point on the curve.

 Point addition Let P=(x1, y1) ε E(Fp) and Q=(x2, y2) ε E(Fp) ,

where P≠ ± Q. Then P+Q=(x3, y3) where

x3= {(y2-y1)/(x2-x1)}
2 – x1-x2 and y3= {(y2-y1)/(x2-x1)}(x1-

x3) –y1

 Point doubling Let P=(x1, y1) ε E(Fp) where P≠ -P. Then

2P=(x3, y3) where

x3={(3x1
2+a)/2y1}

2-2x1 and y3={(3x1
2+a)/2y1}

2 (x1-x3) –y1

3.3.4 Algebraic Formulae Over F2
m

 P+O=O+P=P for all P ε E(F2
m)

 If P=(x, y) ε E(Fp) then (x, y)+(x, -y)=O. (The point (x, -y)

is denoted by –P, and is called the negative of P, observe

that –P is indeed a point on the curve.

 (Point addition) Let P=(x1, y1) ε E(F2
m) and Q=(x2, y2) ε

E(F2
m) , where P≠ ± Q. Then P+Q=(x3,y3) where

x3= {(y2+y1)/(x2+x1)}
2 + {(y2+y1)/(x2+x1)}+ x1 + x2 +a

and y3= {(y2+y1)/(x2+x1)}(x1+x3) +x3 + y1

 (Point doubling) Let P=(x1,y1) ε E(F2
m) where P≠ -P. Then

2P=(x3,y3)

where x3=x1
2+(b/ x1

2) and y3=x1
2+{x1+(y1/x1)}x3 + x3

4. IMPLEMENTAION AND RESULTS

Elliptic Curve Digital Signature Algorithm is implemented over

elliptic curve P-192 as mandated by ANSI X9.62 in C language.

The Project contains necessary modules for domain parameters

generation, key generation, signature generation, and signature

verification over the elliptic curve.

ECDSA has three phases, key generation, signature generation,

and signature verification.

ECDSA Key Generation:

An entity A’s key pair is associated with a particular set of EC

domain parameters D= (q, FR, a, b, G, n, h). E is an elliptic

curve defined over Fq , and P is a point of prime order n in E(Fq),

q is a prime. Each entity A does the following:

1. Select a random integer d in the interval [1, n- 1].

2. Compute Q = dP.

3. A’s public key is Q, A’s private key is d.

ECDSA Signature Generation:.

To sign a message m, an entity A with domain parameters D= (q,

FR, a, b, G, n, h) does the following:

1. Select a random or pseudorandom integer k in the interval [1,

n-1].

2. Compute kP =x1, y1 and r= x1 mod n (where x1 is regarded as

an integer between 0 and q-1). If r= 0 then go back to step 1.

3. Compute k-1mod n.

4. Compute s= k-1 {h (m)+ dr} mod n, where h is the Secure

Hash Algorithm (SHA-1). If s = 0, then go back to step 1.

5. The signature for the message m is the pair of integers (r, s).

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

25

ECDSA Signature Verification:

To verify A’s signature (r, s) on m, B obtains an authenticated

copy of A’s domain parameters D = (q, FR, a, b, G, n, h) and

public key Q and do the following

1. Verify that r and s are integers in the interval [1, n-1].

2. Compute w = s-1mod n and h (m)

3. Compute u1 = h(m)w mod n and u2 = rw mod n.

4. Compute u1P + u2Q =(x0, y0) and v= x0 mod n.

5. Accept the signature if and only if v = r

Figure 4. Signature Generation

Figure 5. Signature Verification

Results

The following results are brought to highlight for given set of

values.

The SHA-1 result are shown along with the private and public

set of keys

SHA–1

Input: “a”

SHA Output: 86f7e437faa5a7fce15d1ddcb9eaeaea377667b8

Input: “ABC”

SHA Output: 3c01bdbb26f358bab27f267924aa2c9a03fcfdb8

Key Pair Generation:

198 bit random private key and corresponding public key:

Private A=

3410708343957475413710496549104959138812316708511486831983

98465

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

26

Public x of A=

3089182225850909019933101519334356466906901301271156815371

Public y of A=

2934312592567055080539106109257350191706192298057173813254

Private A=

9784754507269478441147399409938745992633565457803056150961

4891

Public x of A=

5794350039132556514670158969918976743409250716115312636030

Public y of A=

1009024622477364832125741509919741456473929964192222324391

Further for a given input file containing text had been taken and

signature is generated and then verified by the values of r and s.

Signature Generation:

Input file="abcd"

Private:0xd43fb7ff56a7486859d87f785db45b043129f6468ccff4

2d0001

Signature:

r=0xb8d06fa44816c92b8b26f797e5f3cc07984d8b7f7e49a339

s=0xd74f17a1e19139d77558c6b2d16dcb1f4bb31da2ded25733

Proof of verification

If a signature (r, s) on a message m was indeed generated by A,

then s = k -1 (h (m)+dr) mod n. Rearranging gives k ≡ s-1 (e+dr) ≡

s-1e + s-1 rd ≡we +wrd ≡ u1+u2d (mod n).

Thus u1G +u2Q = (u1 +u2d) G = kG and so v=r as required.

5. COMPARISON WITH RSA and DSA

In all cryptography systems discussed so far, there is a

comparative difficulty of doing two types of operations-a forward

operation which must be tractable [8], and an inverse operation

which must be intractable. The degree of difference between the

difficulties of these operations depends on the size of the key

pairs. The inverse operation increases exponentially whereas the

forward operation increases linearly as the key size increases as

in Figure 6. Increase in key length give rise to complexity issues

in both operations. Thus ECC is preferred as it provides same

level security at 160 bit key length as of 1024 bit key length in

RSA.

Figure 6. Difficulty of forward, inverse operation against key

length

Table 5.1 shows the comparison of ECC with RSA, DSA, and

DH in terms of key length and time to break on machine running

1 MIPS [9].

Table 1 Key comparison of Symmetric, RSA/DSA/DH, ECC

Symmetric RSA/DSA/DH ECC Time to break in MIPS

years

80 1024 160 10
12

112 2048 224 10
24

128 3072 256 10
28

192 7680 384 10
47

256 15360 512 10
66

5.1 Comparison of ECC with RSA

1. RSA takes sub-exponential time and ECC takes full

exponential time. For example, RSA with key size of 1024

bits takes 3x1011 MIP years with best known attack where

as ECC with 160 bit key size takes 9.6x 10^11 MIP

years[10].

2. ECC offers same level of security with smaller key sizes.

3. DATA size for RSA is smaller than ECC.

4. Encrypted message is a function of key size and data size for

both RSA and ECC. ECC key size is relatively smaller than

RSA key size, thus encrypted message in ECC is smaller.

5. Computational power is smaller for ECC.

5.2 Comparison of ECDSA with DSA

1. Both algorithms are based on the ElGamal signature scheme

and use the same signing equation: s = k-1{h (m) + dr} mod

n.

2. In both algorithms, the values that are relatively difficult to

generate are the system parameters(p, q and g for the DSA;

E, P and n for the ECDSA).

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

27

3. In their current version, both DSA and ECDSA use the

SHA-1 as the sole cryptographic hash function.

4. The private key d and the per-signature value k in ECDSA

are defined to be statistically unique and unpredictable

rather than merely random as in DSA [11].

5.3 Advantages of ECC

Thus, the ECC offered remarkable advantages over other

cryptographic system.

1. It provides greater security for a given key size.

2. It provides effective and compact implementations for

cryptographic operations requiring smaller chips.

3. Due to smaller chips less heat generation and less power

consumption.

4. It is mostly suitable for machines having low bandwidth,

low computing power, less memory.

5. It has easier hardware implementations.

So far no drawback of ECC had been reported.

6. CONCLUSION

Elliptic Curve Digital Signature Algorithm (ECDSA) which is

one of the variants of Elliptic Curve Cryptography (ECC)

proposed as an alternative to established public key systems such

as Digital Signature Algorithm (DSA) and Rivest Shamir

Adleman (RSA), have recently gained a lot of attention in

industry and academia.

The main reason for the attractiveness of ECDSA is the fact that

there is no sub exponential algorithm known to solve the elliptic

curve discrete logarithm problem on a properly chosen elliptic

curve. Hence, it takes full exponential time to solve while the

best algorithm known for solving the underlying integer

factorization for RSA and discrete logarithm problem in DSA

both take sub exponential time. The key generated by the

implementation is highly secured and it consumes lesser

bandwidth because of small key size used by the elliptic curves.

Significantly smaller parameters can be used in ECDSA than in

other competitive systems such as RSA and DSA but with

equivalent levels of security.

Some benefits of having smaller key size include faster

computation time and reduction in processing power, storage

space and bandwidth. This makes ECDSA ideal for constrained

environments such as pagers, PDAs, cellular phones and smart

cards. These advantages are especially important in other

environments where processing power, storage space, bandwidth,

or power consumption are lacking.

7. REFERENCES
[1] Vanstone, S. A., 1992. Responses to NIST’s Proposal

Communications of the ACM, 35, 50-52.

[2] Vanstone, S. A., 2003. Next generation security for wireless:

elliptic curve cryptography. Computers and Security, vol.

22, No. 5.

[3] Koblitz, N., 1987. Elliptic curve cryptosystems.

Mathematics of Computation 48, 203-209.

[4] Miller, V., 1985. Use of elliptic curves in cryptography.

CRYPTO 85.

[5] Certicom ECC Challenge. 2009. Certicom Research

[6] Hankerson, D., Menezes, A., Vanstone, S., 2004. Guide to

Elliptic Curve Cryptography. Springer.

[7] Botes, J.J., Penzhorn, W.T., 1994. An implementation of an

elliptic curve cryptosystem. Communications and Signal

Processing. COMSIG-94. In Proceedings of the 1994 IEEE

South African Symposium, 85 -90.

[8] An intro to Elliptical Curve Cryptography[On-Line].

Available:http://www.deviceforge.com/articles/AT42341544

68.html [2010].

[9] Gupta, V., Stebila, D., Fung, S., Shantz, S.C., Gura, N.,

Eberle, H., 2004. Speeding up Secure Web Transactions

Using Elliptic Curve Cryptography. In Proceedings of the

11th Annual Network and Distributed System Security

Symposium (NDSS 2004). The Internet Society, 231-239.

[10] Raju, G.V.S., Akbani, R., 2003. Elliptic Curve

Cryptosystem And Its Application. In Proceedings of the

2003 IEEE International Conference on Systems Man and

Cybernetics (IEEE-SMC), 1540-1543.

[11] Johnson, D.B., Menezes, A.J., 2007. Elliptic Curve DSA

(ECDSA): An Enhanced DSA. Scientific Commons.

http://www.deviceforge.com/articles/AT4234154468.html
http://www.deviceforge.com/articles/AT4234154468.html
http://www.deviceforge.com/articles/AT4234154468.html

