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ABSTRACT 

An important consideration for neural hardware is its sensitivity 

to input and weight errors. In this paper, an empirical study is 

performed to analyze the sensitivity of feedforward neural 

networks for Gaussian noise to input and weight. 30 numbers of 

FFANN is taken for four different classification tasks. Least 

sensitive network for input and weight error is chosen for further 

study of fault tolerant behavior of FFANN. Weight stuck-at zero 

fault is selected to study error metrics of fault tolerance. 

Empirical results for a WSZ fault is demonstrated in this paper.  

General Terms 

Artificial Neural Network 

Keywords 

Artificial Neural Network, Fault models, Sensitivity analysis.  

1.  INTRODUCTION 

Sensitivity analysis provides ability to analyze faulty behavior of 

neural hardware [3]. Error/fault in feedforward artificial neural 

network FFANN is classified as [20]: 

1) node error/fault 

(a) Output node error/fault 

(b) Hidden layer node error/fault  

2) weight error/fault 

3) Input error/fault 

Study of fault tolerance and robustness in neural networks needs 

following three areas to be explored [18]: 

1) The capability of neural networks to performs in 

case of failure of internal components 

(node/weight) 

2) Tolerance capability of FFANN to input noise 

3) Tolerance capability of FFANN to noise in weight 

Design of fault tolerant neural network for failure of an internal 

component is studied in [19], where redundancy technique has 

been proposed. Another technique to design fault tolerant neural 

networks is given in [21], where magnitude of weight is initially 

kept low, so that any error due to weight will be negligible. 

While fault tolerance networks for the noise perturbed in input 

data and weight requires understanding the effects due to small 

error in input and weight.  

Sensitivity analysis is required to study the effect of noise in 

input and weight [1][4][22]. In [10], Alippi et. at. have studied 

the effect of error in input and weight in the neural networks. In 

a similar way, further research has been made in [5] to compute 

effect of noise perturbation in weight and input by Choi and 

Choi. Zeng and Yeung have demonstrated in [2], where 

sensitivity of a neural network also depends on the structural 

configuration of the network.  

Sensitivity analysis is widely used for the pruning of the 

network. Redundant inputs can easily be deleted by analyzing the 

effect of the input on the network output [23]. Zurada et al. [6] 

[8] and Engelbrecht et al. [7], used sensitive analysis results to 

delete redundant inputs and prune the architecture of the MLP. 

Deletion of unimportant weight from a network using sensitive 

analysis is given in [9].  

In this paper, we analyze the sensitivity for an input error and 

weight error of a feedforward neural network and demonstrated a 

fault metric for weight stuck-at zero fault. In section II, 

architecture of feedforward artificial neural network is described. 

Sensitivity is explained in section III, fault model to be 

considered in this paper is explained in section IV. Section V 

explained experiments and results and paper is concluded in 

section VI. 

2. ARCHITECTURE OF FFANN 
 

 

Figure 1. Architecture of FFANN 
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The networks considered in this paper are one hidden layer 

networks with a single output. The net input to the ith hidden 

layer node is given by 
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Where, 

wij is the ijth element of the matrix W representing the 

connection strength between jth input and the ith hidden layer 

node. Өi is the threshold/bias of the ith hidden layer node. The 

output from the ith hidden layer node is given by  
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We have used tan hyperbolic tangent sigmoidal function for the 

transformation from hidden layer node to output node.   

The net input to the output node may be defined similarly to (1) 

as follows: 
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Where, αi represents the connection strength between the ith 

hidden layer node and the output node, while γ is the 

threshold/bias of the output node. 

Inclusion of auxiliary input node x0 = 1 allows the redefinition of 

(1) as below 
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Where Wi  is the weight vector wi augmented by the zeroth term 

corresponding to the bias. And, similarly introducing an auxiliary 

hidden node (i=0) such that h0 = 1 for any input allows us to 

redefine (3) as follows: 
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The notations are explained in figure 1. The figure 1 represents a 

m-input, n-hidden node and one-output FFANN.  

3. DEFINITION OF SENSITIVITY 
 

Sensitivity analysis of the network can be done with reference to 

various input parameters of neural networks which affect 

performance of output of the network. A definition of sensitivity 

in BP-networks has been suggested in [16] [17].  

Sensitivity analysis is based on the measurement of the effect 

that is observed in the output yk due to the change that is 

produced in the input xi. Thus, the greater the effect observed in 

the output, the greater the sensitivity present with respect to 

input. 

Obtaining the Jacobian matrix [11] by the calculation of the 

partial derivatives of the output yk, with respect to the input xi ,  

 i.e. 
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eq.(6) constitute the sensitivity analysis of the network, where S ik 

represents the sensitivity of the percentage change of the output 

yk due to percentage changes in the input variable xi. 

The values for the Jacobian matrix [11] do not depend only on 

the input-output but it also depends on the value stored in a 

hidden node and layer connection. It also depends on the 

activation function of the neuron of the hidden layer. Since 

different input pattern can provide different values for the slope, 

the sensitivity is generally found by calculating mean squared 

error (MSE) and mean absolute percentage error (MAPE). The 

same procedure is required to be followed for the study of weight 

sensitivity due the fact that each input pattern provides different 

new weight updated value. 

4.  FAULT MODELS AND FAULT 

METRICS 

Framework to study fault tolerance of a FFANN is given in [14]. 

Broad classifications of faults of a FFANN are input, weight and 

node faults. Sensitive analysis for a single network on four 

classification problem for various fault models is given in [15].  

Missing link of interconnection between two nodes is called 

weight fault. The weight and node faults are often modeled as 

stuck-at-0 fault. Any incorrectness in the input to the adaptive 

machine is defined as an input fault/error. These faults occur due 

to external disturbance or noise. Mainly these types of fault 

affect input vector of the machine. Effect of input error on a 

network is an important parameter to study sensitive analysis of a 

FFANN. 

Node fault is a similar type of fault as weight fault. Node faults 

are categorized in two types of node faults, namely hidden node 

faults and output node faults. Three types of node faults happen 

in node faults. Node fault categorized as follows: 

1. Node stuck at zero 

2. Node stuck at one 

3. white noise in node 

In this paper, we consider only weight stuck-0 fault to measure 

fault metric for the chosen least sensitive network.  

To measure the effect of faults/errors on the network output 

enumerated above, the following types of error/fault/parameter 

sensitivity measures may be defined: 

4. 1  MSE, MAPE and Other Global Measures: 

The mean squared error (MSE) and the mean absolute 

percentage error (MAPE) should be used to measure the effect of 

all types of faults if the output of the FFANN is real. The 

percentage of misclassification is suggested as a measure of 
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fault/error, for classification problem. Error of the network is 

reported as term of minimum (MIN), maximum (MAX), mean 

(MEAN), median (MEDIAN) and standard deviation (STD) error 

for MSE and MAPE both. 

 

5.  EXPERIMENTS AND RESULTS 

In this section we apply sensitivity analysis to four approximation 

tasks. A small experiment was conducted to demonstrate the 

performance of the network for the weight suck-0 fault. 

Networks were trained for the following function approximation 

tasks [12]. 

Fn1: )*sin( 21 xxy                   ;x1,x2 uniform in [-2,2] 

Fn2: )*sin(*exp( 21 xxy     ; x1,x2 uniform in [-1,1] 
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Performance of the trained network for perturbed input and 

weight is demonstrated in this work. The data set for ANN are 

generated by uniform sampling of the domain of definition of the 

functions. 30 nos. of networks is designed for each of the above 

classification tasks. Best network is selected to demonstrate the 

effect of WSZ fault in this paper.  

The network consists of two input, one hidden layer and one 

output node (Figure 1). The detail of the architecture used is 

summarized in Table 1. The architecture was identified by 

exploratory experiments where the size of the hidden layer was 

varied from 5 to 30 (that is, the number of nodes in the hidden 

layer were varied from 5 to 30 in steps of 5) and the architecture 

that give the minimum error on training was used. All the hidden 

nodes use tangent hyperbolic activation function while the output 

nodes are linear.   

 

Table 1: Architecture of network used.  

Sr. 

No. 

Function  Inputs Hidden 

nodes 

Output 

nodes 

No. of 

weight 

1. Fn1 2 25 1 101 

2. Fn2 2 15 1 61 

3. Fn3 2 20 1 81 

4. Fn4 2 10 1 41 

 

The resilient propagation (RPROP) [13] algorithm as 

implemented in MATLAB 7.2 Neural Network toolbox is used 

with the default learning rate and momentum constant. 200 

random samples were generated from the input domain of the 

functions for training purposes. 1000 epochs of training was 

conducted for each problem 

For each function we have trained 30 networks. An initial data 

set of 200 input–target pairs were generated to create trained set 

of network. A random generated new 200 data is given in the 

network for the validation purpose and another 1600 input is 

used for the testing of the network. Sensitivity error is evaluated 

on each type of network i.e. Trained, Validated and testing 

network. 

 

Table 2: Performance of the network in a respective function 

for the perturbation in input 

Function 

Number 

Sensitivity Network 

Number 

Fn1 3412.263352 28 

Fn2 2.456094639 22 

Fn3 8.403130056 29 

Fn4 7.235289441 24 

 

Sensitivity performance is evaluated for 30 networks for all 

functions. The detailed summary of least sensitive network under 

input perturbation for each function is given in Table 2, while 

Table 3 illustrates the least sensitive network for the perturbation 

in weight for each function. 

Table 3: Performance of the network in a respective function 

for the perturbation in weight 

Function Number Sensitivity Network 

Number 

Fn1 5228.975007 22 

Fn2 3.471157934 2 

Fn3 9.753132308 29 

Fn4 8.460312299 24 

 

From Table 2 and 3, it infers that network number 2, 22, 24, 28 

and 29 are least sensitive network for the respective function.  

Figures 2 and 3 depict the sensitivity profile for the small 

perturbation in input and weight respectively for all four 

functions. It is clearly shown that for few networks in various 

functions has very high sensitivity. It shows that, the high 

sensitive network will give bigger error under small error/fault. 

Error of the least sensitive network for respective function is 

reported in Table 4. Error of the network has been evaluated for 

different set of data which has been taken for validation, Testing 

and Training purpose of these networks. 
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Figure 2: Sensitivity Performance for  perturbation in input Figure 3: Sensitivity performance for perturbation in weight 

 

From Table 4 it infers that the network which gives least 

validated error will be the best network for testing and training 

error.  Network no. 22 is the best network under input noise 

and network no. 2 is best network under weight error. Fault 

metric is evaluated for each of the above selected network 

(Table 4)   and summary data for various parameters, defined 

as minimum (MIN), maximum (MAX), average (MEAN), 

MEDIAN, standard deviation (STD) are given in Table 5.  

Table 5 infers that zero error can be achieved for the WSZ fault 

in network no. 29 for the function 3 and 4. 

Table 4: Error of the different network during Validation, Testing and Training data.  

Network 

No.  

Validated 

Error 

Testing 

Error 

Training 

Error 

Network 

No. 

Validated 

Error 

Testing Error 

Training Error 

28 0.01489 0.01205 0.00211 22 0.01096 0.01157 0.00343 

22 0.00083 0.00071 0.00052 2 0.00129 0.00169 0.00092 

29 0.01708 0.02670 0.00668 29 0.01708 0.02670 0.00668 

24 0.04676 0.05336 0.03083 24 0.04676 0.05336 0.03083 

 
Table 5: Error summary data for WSZ fault in best least sensitive network for various functions. 

Functions 

Network No. 

Fn1 Fn2 Fn3  Fn4 

28 22 22 2 29 24 

MSE 

MAX 2.3709355 0.847630137 1.22903257 1.40029995 4.30610395 12.4319445 

MIN 2.57E-05 0.000187753 6.31E-05 1.13E-05 0 0.000277212 

MEAN 0.154443728 0.143512299 0.08686692 0.154132433 0.723229633 1.02186233 

MEDIAN 0.066829645 0.060372458 0.045210111 0.042621345 0.346940272 0.112749482 

STD 0.309626563 0.191064937 0.165677106 0.301854507 0.923509994 2.23362283 

MAPE 

MAX 1702.96366 788.848961 119.630249 116.780046 80.7444284 0 
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MIN 1.14586119 3.17763977 0.184222094 0.236371538 0 215.436978 

MEAN 295.852227 203.323983 18.7602784 24.3895412 23.3270594 0.454999627 

MEDIAN 145.850795 115.660476 11.5486072 13.6305486 17.657623 35.5177626 

STD 344.509372 209.228319 19.2948895 27.3671241 19.6062565 45.4333725 

 

6.  CONCLUSION  
In this paper, we have demonstrated empirical results of sensitive 

analysis for FFANNs. Least sensitive network is identified from 

30 trained networks for each classification tasks. Sensitivity to 

input and weight error for all the 30 networks and for each 

classification talks is demonstrated. Validated error, testing error 

and training error for selected network is demonstrated in Table 

4. The same network is also placed under WSZ fault and 

empirical result for various errors for the selected network is 

given in Table 5.  
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