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ABSTRACT 

Is the newly born quantum cryptography the ultimate 
solution for information security? A technique needs to 
be both theoretically strong and practically viable. But 
quantum cryptography comes to naught in the latter. 
Unlike many of the classical cryptosystems in use today, 

whose security often draws on unproven assumptions 
about the computational complexity of mathematical 
problems, the security of quantum cryptography is based 
on—and employs—the laws of physics. The term 
―unconditional security‖is used to emphasize the fact that 
it does not rely on the presumed, yet unproven hardness 
of somemathematical problem. In this Paper, we present 
the proof of the unconditional security of the BB84 

protocol, as devised by Peter Shor and John Preskill [1]. 
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1.INTRODUCTION 

Quantum cryptography uses quantum mechanics to 

guarantee secure communication. It enables two parties 

to produce a shared random bit string known only to 

them, which can be used as a key to encrypt and decrypt 

messages. An important and unique property of quantum 

cryptography is the ability of the two communicating 

users to detect the presence of any third party trying to 

gain knowledge of the key. This results from a 

fundamental part of quantum mechanics: the process of 

measuring a quantum system in general disturbs the 

system. A third party trying to eavesdrop on the key must 

in some way measure it, thus introducing detectable 

anomalies. By using quantum superpositions or quantum 

entanglement and transmitting information in quantum 

states, a communication system can be implemented 

which detects eavesdropping. If the level of 

eavesdropping is below a certain threshold a key can be 

produced which is guaranteed as secure, otherwise no 

secure key is possible and communication is aborted. 

The security of quantum cryptography relies on the 
foundations of quantum mechanics, in contrast to 
traditional public key cryptography which relies on the 

computational difficulty of certain mathematical 

functions, and cannot provide any indication of 
eavesdropping or guarantee of key security. Quantum 
cryptography is only used to produce and distribute a 
key, not to transmit any message data. This key can then 
be used with any chosen encryption algorithm to encrypt 
and decrypt a message, which can then be transmitted 

over a standard communication channel. The algorithm 
most commonly associated with QKD is the one-time 
pad, as it is provably secure when used with a secret, 
random key. 

2. QUANTUM CRYPTOGRAPHY 
Rather than depending on the complexity of factoring 
large numbers, quantum cryptography is based on the 
fundamental and unchanging principles of quantum 
mechanics. In fact, quantum cryptography rests on two 
pillars of 20th century quantum mechanics –the 
Heisenberg Uncertainty principle and the principle of 
photon polarization. According the Heisenberg 
Uncertainty principle, it is not possible to measure the 

quantum state of any system without disturbing that 
system. Thus, the polarization of a photon or light 
particle can only be known at the point when it is 
measured. This principle plays a critical role in thwarting 
the attempts of eavesdroppers in a cryptosystem based on 
quantum cryptography. Secondly, the photon polarization 
principle describes how light photons can be oriented or 
polarized in specific directions. Moreover, a polarized 

photon can only be detected by a photon filter with the 
correct polarization or else the photon will be destroyed. 
It is this ―one-way-ness‖ of photons along with the 
Heisenberg Uncertainty principle that make quantum 
cryptography an attractive option for ensuring the 
privacy of data and defeating eavesdroppers. Charles H. 
Bennet and Gilles Brassard developed the concept of 
quantum cryptography in 1984 as part of a study between 

physics and information. Bennet and Brassad stated that 
an encryptionkey could be created depending on the 
amount of photons reaching a recipient and how 
theywere received. Their belief corresponds to the fact 
that light can behave with the characteristics of particles 
in addition to light waves. These photons can be 
polarized at various orientations, and these orientations 
can be used to represent bits encompassing ones and 
zeros. These bits can be used as a reliable method of 

forming onetime pads and support systems like PKI by 
delivering keys in a secure fashion. The representation of 
bits through polarized photons is the foundation of 
quantum cryptography that serves as the underlying 
principle of quantum key distribution. 
Thus, while the strength of modern digital cryptography 
is dependent on the computational difficulty of factoring 
large numbers, quantum cryptography is completely 

dependent on the rules of physics and is also independent 
of the processing power of current computing 
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systems.Since the principle of physics will always hold 
true, quantum cryptography provides an answerto the 
uncertainty problem that current cryptography suffers 
from; it is no longer necessary to make assumptions 
about the computing power of malicious attackers or the 

development of a theorem to quickly solve the large 
integer factorization problem. 

3. QUANTUM KEY DISTRIBUTION 

 
Fig 1 Quantum Key Distribution 

The following is an example of how quantum 
cryptography can be used to securely distribute keys. 

This example includes a sender, ―Alice‖, a receiver, 
―Bob‖, and a malicious eavesdropper, ―Eve‖. 
Alice begins by sending a message to Bob using a photon 
gun to send a stream of photons randomly chosen in one 
of four polarizations that correspond to vertical, 
horizontal or diagonal in opposing directions (0,45,90 or 
135 degrees). For each individual photon, Bob will 
randomly choose a filter and use a photon receiver to 

count and measure the polarization which is either 
rectilinear (0 or 90 degrees) or diagonal (45 or 135 
degrees), and keep a log of the results based on which 
measurements were correct vis-à-vis the polarizations 
that Alice selected. While a portion of the stream of 
photons will disintegrate over the distance of the link, 
only a pre-determined portion is required to build a key 
sequence for a onetime pad. Next, using an out-of-band 

communication system, Bob will inform Alice to the type 
of measurement made and which measurements were of 
the correct type without mentioning the actual results. 
The photons that were incorrectly measured will be 
discarded, while the correctly measured photons are 
translated into bits based on their polarization. These 
photons are used to form the basis of a onetime pad for 
sending encrypted information. It is important to point 

out that neither Alice nor Bob are able to determine what 
the key will be in advance because the key is the product 
of both their random choices. Thus, quantum 
cryptography enables the distribution of a one-time key 
exchanged securely.        

 
Fig 2 Basic QKD Protool 

1.  Alice sends a random sequence of photons 
 polarized horizontal (↕), vertical (↔), right- 

 circular (↻) and left-circular (↺); 

2.  Bob measure the photon’s polarization in a 
 random sequence of bases, rectilinear (+) and 
 circular (O); 
3.  Results of bob’s measurements (some photons 
 may not be received at all); 
4.  Bob tells Alice which basis he used for each 

 photon he received; 
5.  Alice tells him which bases were correct; 
6. Alice and Bob  keep only the data from these 
 correctly-measured photons, discarding all the 
 rest; 
7.  This data is interpreted as a binary sequence 

 according to the coding scheme ↔ = ↺ = O 

 and ↕ = ↻ = 1. 

Now let us suppose that a malicious attacker attempts to 
infiltrate the cryptosystem and defeat the quantum key 
distribution mechanisms. If this malicious attacker, 
named Eave, tries to eavesdrop, she too must also 
randomly select either a rectilinear or diagonal filter to 
measure each of Alice’s photons. 

Hence, Eve will have an equal chance of 
selecting the right and wrong filter, and will not be able 

to confirm with Alice the type of filter used. Even if Eve 
is able to successfully eavesdrop while Bob confirms 
with Alice the protons he received, this information will 
be of little use to Eve unless she knows the correct 
polarization of each particular photon. As a result, Eve 
will not correctly interpret the photons that form the final 
key, and she will not be able to render a meaningful key 
and thus be thwarted in her endeavors. In sum, there are 

three significant advantages of this system. First, the 
Heisenburg Uncertainty principle means that information 
regarding photons cannot be duplicated because photons 
will be destroyed once they are measured or tampered 
with. Since photons are indivisible, once it hits a 
detector, the photon no longer exists. Secondly, Alice 
and Bob must calculate beforehand the amount of 
photons needed to form the encryption key so that the 
length of the one-time pad will correspond to the length 

of the message. Since mathematically Bob should receive 
about 25 percent of transmitted photons, if there is a 
deviation for the pre-determined fixed number, Bob can 
be certain that traffic is being sniffed or something is 
wrong in the system. This is the result of the fact that if 
Eve detects a photon, it will no longer exist to be 
detected by Bob due to Eve’s inability to copy an 
unknown quantum state. If Eve attempts to create and 

pass on to Bob a photon, she will have to randomly 
choose its orientation, and on average be incorrect about 
50 percent of the time –enough of an error rate to reveal 
her presence. 

 

4. SECURITY IN QKD 
We divide the proof into three parts: 

 
• In the first part, we present the so-called entanglement-
based version of the BB84 protocol. In contrast, the 
scheme presented in the previous section is called a 
prepare-and-measure scheme, for obvious reasons. In the 
entanglement-based version, Alice and Bob’s aim is to 
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share a special entangled state that allows them to obtain 
perfectly correlated bits upon measuring their half of the 
state. We will see how they can construct such a state, 
how they can check whether they were successful, and 
how they can detect Eve’s attempted attack. 

 
• In the second part, we will show that the equivalent 
entanglement-based version is secure. In contrast to 
earlier work by Shor and Preskill [1], which is based on a 
proof by Lo and Chau [2], we use the universally 
composable definition of unconditional security [3]. This 
general security definition refers to the overall 
cryptosystem, with any number of subprotocols, 

including the quantum and the classical stages. 
 
• In the third part, we show that the two schemes are 

equivalent indeed. 

4.1 The Entanglement-Based Version of 

BB84 
The entanglement-based version of the BB84 protocol 
that we now present is similar to the protocol introduced 
by Ekert [4] and follows ideas of Bennett et al. [5]. In 
this version of the protocol, Alice and Bob aim at 
creating a special entangled state. 
 Where Alice holds the first particle and Bob 
holds the second one. An important property of this state 

is that it has the same form in the  rectilinear (+) and 
circular (O). This means that Alice’s and Bob’s 
measurement results are completely correlated whenever 
they measure the state  in one of those bases. (Moreover, 
their results are random.) Since the state is pure, it cannot 
be entangled with anything else, in particular not with 
anything under Eve’s control. Thus, whenever Alice and 
Bob are sure they share a state, they know that (a) 
measuring in the same basis generates a shared random 

bit, and (b) Eve has no knowledge about this bit. To 
generate the whole key, Alice and Bob prepare a large 
number of these states, and measure each qubit 
separately.  
We will now show how they can achieve this. 
We need to take a brief detour to quantum error 
correction first. In contrast to a classical bit, a qubit can 
undergo three different errors: bit flips, phase errors, and 

combinations of these two: 
• When a bit flip occurs, the state rectilinear (+) becomes 
circular (O), and vice versa. This error is described by the 
Pauli matrix. 
• Phase errors transform the state ( ↻ ) into (↺), but leave 

rectilinear (+)  unchanged. Such an error is described by 
the Pauli matrix 
• Both these errors can also occur combined. For 

example, changing (↕) to (↺) and ( ↻ ) to (↔).  

 
Let us now recall some elements of classical error 
correction. A (classical) linear [n, k] code  C  that 
encodes  k   bits of information by an  n  bit string is a set 
of  2k  codewords. Each codeword is an  n-dimensional 

binary vector. The whole code can be described by an (n 
× k)-dimensional generator matrix G that maps each 
message x to the encoded message Gx. Thus, the set of 
all possible codewords is the vector space that is spanned 
by the columns of G. We require those vectors to be 
linearly independent. Error correction for linear codes 

can be easily described by means of the parity check 
matrix H. This is an  ( (n−k) × n) matrix with the 
property that Hx = 0 for all codewords x. 

Suppose now that a message x is encoded as  y 
= Gx .  Due to an error e, one obtains  y’ = y+e. Since we 

have Hy = 0 for all codewords, it follows that Hy’ = He, 
which is called the (error) syndrome. Thus, if the 
syndrome is 0, no error has occurred. Otherwise, H is 
constructed such that the syndrome contains information 
about the error that should make it possible to correct it.  

Finally, we introduce the concept of duality: 
Let C be a linear [n, k] code with generator matrix G and 
parity check matrix H. Then we can define the dual code 

C┴ of C, which is the set of all codewords that are 
orthogonal to each codeword in C. The dual code C┴ is 
an [n − k, n] code which is generated by HT and has a 
parity check matrix GT . Dual codes play an important 
role in the construction of  CSS codes. 
We have now collected all the ingredients to describe the 
entanglement-based version of the BB84 protocol: 
1. Alice creates 2n qubit pairs. 

2. She randomly selects n of those qubits which will later 
serve as check qubits. 
3. Alice selects a random 2n bit string b and applies the 
Hadamard transformation to her half of each qubit pair 
whenever the corresponding bit of b is ―1.‖ 
4. She sends the other half of all qubit pairs to Bob. 
5. Alice announces b and which qubits are to serve as 
check qubits. 

6. Bob performs a Hadamard transformation on those of 
his qubits where b is ―1.‖ 
7. Alice and Bob measure the check qubits in the 
rectilinear (+) and circular (O). basis to estimate the error 
rate. If more than l results differ, they abort the protocol. 
8. For the remaining qubits, Alice and Bob measure the 
syndromes for the codes C1 and C2, and correct the 
errors. 
9. They measure this state in the rectilinear (+) and 

circular (O) basis to obtain a shared secret key. 
The point of performing the Hadamard transformation on 
half of the qubits is that this operation effectively 
changes the basis, in which the qubits are prepared, from 

{(↕),(↻)} to { (↔),(↺)}. 

 
This is necessary because if Eve knew the 

basis, she could launch the intercept-resend attack 
presented in the previous section and break the protocol.   

4.2 Security of the Entanglement-Based 

Version 

Up to this point, we often used the term ―security‖ 
without providing a rigorous definition. In this section, 
we will make up for this. Additionally, we need to 

provide a mathematical framework to cover all possible 
eavesdropping strategies, in particular those where the 
adversary stores a quantum system that contains 
information about the classical bit strings obtained by 
Alice and Bob upon measuring their quantum states. 
Such a situation, where a quantum system is correlated 
with classical data, can be described by so-called 
classical-quantum states (cq-states, for short).  

In the ideal case, Alice’s and Bob’s keys are identical 
and uniformly distributed, i.e., each possiblekey occurs 
with equal probability. Moreover, the state of Eve’s 
quantum system should be completely independent of the 
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key.We can now prove the unconditional security of the 
entanglement-based version of the BB84protocol. Recall 
that the aim of this protocol is to distribute the state 
rectilinear (+) and circular (O). In the real world, Alice 
and Bob are of course not able to exactly achieve this; 

rather, at the end of the protocol, they will hold a state, 
which hopefully is very similar to previous one. The 
―distance‖ to a pure state is measured by means of the so-
called fidelity, which is defined as F. If F = 1, the two 
states are identical. Since we do not make any restrictions 
about the eavesdropper’s strategy, we consider the worst 
case in which Eve holds a purifying system of state This 
scenario corresponds to the case where the adversary has 

full control over the quantum channel. 
 
To summarize, we have shown that by random sampling 
the fidelity of the state shared by Alice and Bob can be 
lower-bounded, with an exponentially small probability 
of error. Moreover, this bound directly defines how 
secure a key generated by measuring this state will be. 
 

4.3 Equivalence of the Two Schemes 
We prove the equivalence of the entanglement-based and 
prepare-and-measure versions of the BB84 protocol by 
successive simplifications. Each step is very simple, so it 
is easy to verify that the security of the protocol is not 

compromised. 
 A major simplification is that all measurements 
done by Alice after transmitting the particles can already 
be done at the very beginning: If Alice measures her part 
of the state rectilinear (+) , she obtains a random bit as a 
result, but on the other hand, Bob’s part of the state 

collapses onto the correlated state (↕) or (↺). Thus, 

instead of sending entangled qubits for the check, Alice 
can as well prepare single qubits randomly in one of the 

states (↕) or (↺) , and send those states to Bob.  

 Of course, it is crucial for the security of the 
protocol that Eve does not know a priori which qubits 
will serve as check qubits and which as ―key qubits‖; 
otherwise, she could treat them differently and thus fudge 
the error estimation. 
 Another measurement Alice can do at the 
beginning is the measurement of her syndrome and her 

key qubits. This is not very obvious, so let us give some 
more detail: Given a CSS code CSS(C1,C2), we can 
define a family of equivalent codes CSSv,w(C1,C2), in 
the sense that they  have the same error correcting 
properties.  
As an intermediate result, we rephrase the entanglement-
based protocol including all simplifications 
introduced so far: 

1. Alice creates n random check qubits, each in the state  
rectilinear (+) and circular (O), a random n bit string k, 
which will serve as the key, and two random n bit strings 
v and w. She prepares the state according to k and 
encodes it using CSSv,w(C1,C2). 
2. She randomly selects n positions for the check qubits 
and puts the encoded qubits in the remaining positions. 
3. Alice selects a random 2n bit string b and applies the 

Hadamard transformation to her half of 
each qubit pair where b is ―1.‖ 
4. She sends the other half of all qubit pairs to Bob. 
5. Alice announces b, v, and w, and which qubits are to 
serve as check qubits. 

6. Bob performs a Hadamard transformation on those of 
his qubits where b is ―1.‖ 

7. Bob measures the check qubits in the {(↕),(↻)} basis. 

If he finds more than l results that disagree with Alice’s 
prepared states, they abort the protocol. 
8. Bob decodes the key qubits from CSSv,w(C1,C2) and 
obtains the state of k. 

9. He measures the state of k in the {(↕),(↻)} basis and 

obtains the key k as the result. 
 
We will now simplify this protocol even further: Note 
that in the original version, Alice and Bob do not care 
whether they shared the state rectilinear (+) becomes 

circular (O) because measuring both states provides them 
with correlated, random bits; the relative phase is 
irrelevant. Thus, it is unnecessary to send the phase 
correction information v to Bob. This is why CSS codes 
are used: 
They decouple the bit flip error correction from the phase 
error correction. If now Bob were to measure his key 
qubits before the decoding, he would obtain xk + y + w + 

e, where e denotes the bit errors that occurred during the 
transmission (or that were introduced by Eve). He can 
now classically decode this bit string by subtracting w, 
which was announced by Alice, and correct it to the 
codeword xk + y, if e did not introduce too many errors.  
Bob finds the key by computing the coset to which xk + y  
belongs.  
 

The whole protocol so far looks as follows: 
1. Alice creates 2n random qubits, each in the state  
rectilinear (+) and circular (O), and a random codeword 
xk ϵ  C1. 
2. She randomly selects n positions to be check qubits 
and the remaining n positions to define the key qubits. 
3. Alice selects a random 2n bit string b and applies the 
Hadamard transformation to her half of 

each qubit pair where b is ―1.‖ 
4. She sends the other half of all qubit pairs to Bob. 
5. Alice announces b and y − xk, and which qubits are to 
serve as check qubits. 
6. Bob performs a Hadamard transformation on those of 
his qubits where b is ―1.‖ 

7. Bob measures the check qubits in the {(↕),(↻)}basis. 

If he finds more than l results that disagree with Alice’s 
prepared state, they abort the protocol. 
8. Bob measures the key qubits and gets y + e, subtracts 
y − xk, and corrects xk + e to xk. 
9. He calculates the coset to which xk belongs to get the 
key k. 

Finally, we can remove the Hadamard transformation, 
and let Alice choose randomly one of the four states in 

{(↕),(↻), (↔),(↺)}Then Bob, instead of waiting for b to 

be announced, simply chooses one basis at random and 

measures the arriving qubits. As he will choose the 
wrong basis in roughly half the cases, Alice should 
double the number of input qubits to 4n. After his 
measurement, Alice announces which basis she used and 
both discard all instances where they used a different 
basis. With this last modification, we finally arrived at 
the prepare-and-measure version of the BB84 protocol, 
only up to some small twists. 

 

5. CONCLUSION  
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While there have been substantial advancements in the 
field of quantum cryptography in the last decade, there 
are still challenges ahead before quantum cryptography 
can become a widely deployed key distribution system 
for governments, businesses, and individual citizens. 

Namely, these challenges include developing more 
advanced hardware to enable higher quality and longer 
transmission distances for quantum key exchange. The 
security of quantum key distribution relies on the 
inviolable laws of quantum mechanics: nonorthogonal 
quantum states are used as signal states in the BB84 
protocol. The impossibility of perfect cloning of 
nonorthogonal states implies the security of this protocol. 

In the security proof for the BB84 protocol, we have 
employed an equivalent entanglementbased protocol. The 
main idea is that local measurements on a maximally 
entangled state, shared by Alice and Bob, have perfectly 
correlated outcomes that can be used as the key. A 
maximally entangled state is necessarily pure, and a pure 
state cannot be entangled with an eavesdropper’s state—
thus Eve cannot learn anything about the key. The idea 

for quantum cryptography with entangled states goes 
back to Artur Ekert [4], who suggested to confirm the 
existence of quantum correlations in the state of Alice 
and Bob by a Bell inequality test. 
However, the advances in computer processing power 
and the threat of obsolescence for today’s cryptography 
systems will remain a driving force in the continued 
research and development of quantum cryptography. In 

fact, in is expected that nearly $50 million of both public 
and private funds will be invested in quantum 
cryptography technology over the next three years3. 
Quantum cryptography is still in its infancy and so far 
looks very promising. This technology has the potential 
to make a valuable contribution to e-commerce 
andbusiness security, personal security, and security 
among government organizations. If quantum 
cryptography turns out to eventually meet even some of 

its expectations, it will have a profound and 
revolutionary affect on all of our lives. 
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