
International Journal of Computer Applications (0975 – 8887)
Volume 2 – No.3, May 2010

95

Dynamic Adaptation of Checkpoints and Rescheduling
in Grid Computing

ABSTRACT
Grid is a form distributed computing mainly to virtualilze and
utilize geographically distributed idle resources. A grid is a
distributed computational and storage environment often
composed of heterogeneous autonomously managed subsystems.
As a result varying resource availability becomes common place,
often resulting in loss and delay of executing jobs. To ensure good

performance fault tolerance should be taken into account. Here we
address the fault tolerance in terms of resource failure. Commonly
utilized techniques to achieve fault tolerance is periodic
checkpointing, which periodically saves the jobs state. But an
inappropriate checkpointing interval leads to delay in the job
execution, and reduces the throughput. Hence in the proposed
work, the strategy used to achieve fault tolerance is by
dynamically adapting the checkpoints based on current status and

history of failure information of the resource, which is maintained
in the Information server. The Last failure time and Mean failure
time based algorithm dynamically modifies the frequency of
checkpoint interval, hence increases the throughput by reducing
the unnecessary checkpoint overhead. In case of resource failure,
the proposed Fault Index Based Rescheduling (FIBR) algorithm
reschedules the job from the failed resource to some other
available resource with the least Fault-index value and executes

the job from the last saved checkpoint. This ensures the job to be
executed within the deadline with increased throughput and helps
in making the grid environment trust worthy.

Keywords: Grid Computing, Fault-Tolerance, Checkpointing.

1. INTRODUCTION

Grid computing or the use of a computational grid, is

applying the resources of many computers in a network to a single
problem at the same time - usually to a scientific or technical
problem that requires a great number of computer processing
cycles or access to large amounts of data. Compared to other
distributed environments, such as clusters, complexity of grid
mainly originates from decentralized management and resource

heterogeneity. These characteristics often lead to strong variations
in availability, which in particular depends on resource and
network failure rates, administrative policies, and fluctuations in
system load. Apparently, runtime changes in system availability
can significantly affect job execution. Since for a large group of
time-critical or time consuming jobs delay and loss are not
acceptable, fault tolerance should be taken into account. Providing
fault tolerance in a distributed environment, while optimizing

resource utilization and job execution times, is a challenging task.
To accomplish it, we use dynamic adaptation of checkpoints
technique, based on current status of the job and failure history of
the resource, which overcomes the checkpoint overhead that is

caused by unnecessary checkpoints incase of periodic

checkpointing. And hence achieves fault tolerance with increased
throughput.

Here we consider two dynamic checkpoint adaptation
method: Last Failure time based Checkpoint Adaptation (LFCA),
Mean Failure time based Checkpoint Adaptation (MFCA), which
is mainly to change the checkpoint frequency dynamically, based
on the last failure time and mean failure time of each resource.
The failure time of each resource is stored in the Information
Server, these failure time suggest both stability and probability of

failure of each resource based on which checkpoint frequency can
be varied accordingly.

In case of resource failure, the proposed Fault Index Based
Rescheduling (FIBR) algorithm reschedules the job from failed
resource to some other available resource with the least fault
index value, and executes the job from the last saved checkpoint.

The rest of this paper is organized as follows: section 2

contains the description about the related work. Section 3 explains
about the proposed work. Section 4 concludes the paper.

2. RELATED WORK

Fault tolerance is an important property in grid

computing, since the resources are geographically distributed.
Moreover the probability of failure is much greater than in
traditional parallel systems. Therefore fault tolerance has become
a crucial area of interest. A large number of research efforts have
already been devoted to fault tolerance. Various aspects that have
been explored include design and implementation of fault

detection services as well as the development of failure prediction
and recovery strategies. The latter are often implemented through
job checkpointing in combination with migration and job
replication. Although both methods aim to improve system
performance in the presence of failure, their effectiveness largely
depends on tuning runtime parameters such as the checkpointing
interval and the number of replicas. Determining optimal values
for these parameters is far from trivial, for it requires good

knowledge of the application and the distributed system at hand.
The work on Grid fault tolerance can be divided into pro-active
and post-active mechanisms. In pro-active mechanisms, the
failure consideration for the Grid is made before the scheduling of
a job, and dispatched with hopes that the job does not fail.
Whereas, Post-active mechanisms handles the job failures after it
has occurred. Of those that look into these issues, many works are
primarily post-active in nature and deal with failures through [8]

Grid monitoring.

In an agent oriented, pro-active fault tolerant grid
framework was used in which faults are divided into six classes:
(a) Hardware faults, (b) Application and operating system faults,
(c) Network faults, (d) Software faults, (e) Response faults and (f)

Antony Lidya Therasa.S
Sri Venkateswara college of

Engineering,
Sriperumbudur

Sumathi.G
Sri Venkateswara college of

Engineering,
Sriperumbudur

Antony Dalya.S
Aringar Anna Institute of
Science and Technology,

Sriperumbudur

International Journal of Computer Applications (0975 – 8887)
Volume 2 – No.3, May 2010

96

Timeout faults. These are further divided into different sub-
classes, where agents deal with individual faults proactively.
Agents maintain information about hardware conditions,
executing process memory consumption, available resources,
network conditions and component mean time to failure. Based on
this information and critical states, [7] agent enables the grid

system to tolerate faults.

In Failure-Aware Grid Resource Management system [6] the
Virtual Resource Manager (VRM) which supports QoS by means
of SLAs. In this work it addresses the problem of remapping
reservation to other resources when the originally selected
resource fails. It mainly focuses on those jobs that are scheduled
to a failed resource and not yet started its execution, which is the

so called in-active jobs. Instead of dealing with fault tolerance of
active jobs which usually requires checkpointing and migration. It
computes a remapping interval during which it remaps those jobs
that are assigned to a faulty resource and are inactive to some
other resource in advance before it begins its execution. A min-
max checkpoint placement method [1] is introduced that
determines the suboptimal checkpoint sequence under uncertain
circumstances in terms of the system failure time distribution.

However, even if the (sub)optimal checkpointing interval is
computed beforehand, the distributed system or application
parameters upon which the interval is based will presumably
change over time. Therefore, new forms of checkpointing
optimization were recently considered in literature. One of them is
the so-called cooperative checkpointing concept, which addresses
system performance and robustness issues by allowing the
application programmer, the compiler and the runtime system to
jointly decide on the necessity of each checkpoint. The

checkpointing algorithms used in this paper are based on this
concept and thus are cooperative (adaptive) heuristics.

3. PROPOSED WORK

In the proposed work fault tolerance is achieved by

dynamically adapting the frequency of checkpoints mainly to
increase the throughput, and in case of resource failure, the
proposed FIBR Algorithm reschedules the job from failed
resource to some other available resource based on fault
occurrence history, and then the job is executed from the last

saved checkpoint. The grid model (Figure 1) considered in this
paper consists of [1]: geographically distributed computational
sites with many computational resources (r) at each site. The latter
include a user interface (UI) through which the jobs are submitted
into the system; a Resource Broker (RB) which is used to identify
all the available resources, a scheduler(S) to schedule the job to
the available resources. A checkpoint server (CS) where
Checkpointing data is made persistent. An Information server (IS)
which collects the job and resource status information required

by the scheduler and checkpoint server. It maintains the history of
information about each and every resource. Assume the scheduler,
Information server, checkpoint server are protected against
failure and only the computational resources are unstable.

Figure 1: Grid Architecture: CS(Checkpoint Server),UI (User
Interface),WAN (Wide Area Network), IS (Information Server).
Each site with 32 computational resources r.

The work in this paper can be broadly divided into two
parts: 1. Dynamic adaptation of checkpoints, 2.Rescheduling in
case of resource failure.

3.1 Dynamic Adaptation of Checkpoints

This approach mainly concentrates on achieving fault

tolerance by reducing unnecessary checkpoint overhead which

will reduce the job throughput. Hence to reduce the unnecessary
checkpoints the two algorithms differentiates the checkpointing
interval based on the history of failure frequency of the resource
and current status of a particular job. Here we consider two
parameters: the last failure time of a resource, and the mean
failure time of resource. These parameters suggest the stability of
the resource based on which the checkpointing interval is omitted
or modified.

By dynamically changing the checkpoint frequency [1],
we will, on one hand, eliminate unnecessary checkpoints and, on
the other hand, introduce extra job state savings, where the danger
of failure is considered to be severe. More specifically, the
optimal checkpointing interval for a job j (Ij

opt) running on the
computational node r depends on the following parameters: Ej

r is
the execution time of j on the resource r. Fr is the average time
between failures of r. Additionally, the value of Ij

opt should satisfy

the inequality C < Ij
min < Ij

opt to be sure that jobs make execution
progress despite of periodic checkpointing. C is the runtime
overhead which is the time delay resulting from interruption of
job execution to perform checkpointing. Ij

min is the minimum

UI

SITE C

UI

UI

UI

SITE A

WAN

CS

SCHEDULER

RESOURCE

BROKER

UI

IS

SITE B

SITE D

International Journal of Computer Applications (0975 – 8887)
Volume 2 – No.3, May 2010

97

checkpointing interval of j, which should be initialized with a
default value, for example, a small percentage of Ej

r. Here we
assume the total execution time of the job is exactly determined in
advance.

3.2 Last Failure Time Based Checkpoint

Adaptation

The main aim of this Last Failure time based

Checkpoint Adaptation (LFCA) algorithm[1] is to omit
unnecessary checkpoint in-order to reduce the checkpoint
overhead on a relatively stable resource. This unnecessary
checkpoints are omitted mainly to reduce the overhead and to
increase the job throughput. This algorithm considers the last
failure time (Lfr) of the resource, which is one of the parameter

that suggests the stability of a resource. The operation of this
algorithm on a resource, executing a single job is
diagrammatically represented in Figure 2 which is explained
below:

Step1. The job is submitted to the resource (r), and after an
execution interval I, the job running on an active resource
generates a checkpoint request.

Step 2. For each resource the algorithm gets the last failure time

(Lfr) from the information server, when no failure has occurred,
the Lfr is initiated with the system start time.

Step3. The checkpoint request generated by the job is evaluated
by the scheduler (S) and it is allowed only if the comparison of
tc-Lfr <= Ej

r evaluates to true, where tc is the current system time.
If the tc–Lfr > Ej

r it is assumed that the resource is stable and the
checkpoint is omitted to avoid the overhead.

Step 4: To prevent too many checkpoint omissions, a maximum

number of omission limit should be defined. Thus this approach
reduces the checkpoint overhead by omitting the unnecessary
checkpoint.

Figure 2: Operation of LFCA on a resource running a single job.

3.3 Mean Failure Time Based Checkpoint

Adaptation

The Mean Failure based Checkpoint Adaptation (MFCA)
algorithm [1] dynamically modifies the checkpointing frequency

and deal with inappropriate checkpointing intervals. The
checkpointing frequency is modified based on the Remaining job
execution time (REj

r) and mean failure interval of the resource
(Mfr) where r is the resource and j is the job assigned to that
resource.

The use of mean failure time instead of last failure time, reduces

the effect of individual failure event. The operation of this
algorithm on a resource running on a single job is
diagrammatically represented in Figure 3 which is explained
below:

Step 1:Once the job starts its execution and after an execution
interval ti, the job j issues a checkpoint request.

Step 2: If REj
r < Mfr and Ij

r < α*Ej
r, where α<1, then the frequency

of checkpointing will be reduced by increasing the checkpointing

interval, Ij
rnew=Ij

rold+I.

Where REj
r is the remaining execution time of the job, Ij

r is the
customized checkpoint interval, I is the time interval that is added
to increase or decrease the checkpoint interval. The first
inequality in the condition ensures that either r is sufficiently
stable or the job is almost finished, while the second limits the
excessive growth of Ij

r compared to the job length. The latter can
particularly be important for short jobs, for which the first

condition almost always evaluates to true.

Step 3: Else the checkpointing frequency is increased by reducing
the checkpoint interval, Ij

rnew=Ij
rold-I. while reducing the

checkpoint interval, the following constraint should be taken into
account: C<Imin<=Ij

rnew.

This ensures the time between the consecutive checkpoints is
never less than time overhead added by each checkpoint. This
reduces the unnecessary checkpoints by increasing the checkpoint
interval for relatively stable resource.

Figure 3: Operation of MFCA on a resource running a single job.

3.4. Rescheduling

The job running on a resource is rescheduled to some other
resource in case of resource failure. The proposed Fault Index
Based Rescheduling (FIBR) algorithm is explained below:

Step 1: The user submits the job with its deadline, and estimated
execution time. After allocating the job to the resource, the
Resource Broker expects a response of job execution within a
time interval. This time interval is a function of the speed of a

International Journal of Computer Applications (0975 – 8887)
Volume 2 – No.3, May 2010

98

resource and communication latency between Resource Broker
and the resource.

Step 2: If the resource could not get the result of execution within
that time interval as specified by the grid manager, it realizes the
fault has occurred, and increments the fault index of that resource
by 1, or decrements by 1 on successful completion. This value is

updated and stored in the Information Server.

Step 3: When there is a resource failure, the job executed on the
failed resource is rescheduled by checking the fault index value of
the available resources from the information server. The fault
index value suggests the rate of tendency of resource failure.
Lesser the fault index value, lesser is the failure rate of the
resource

Step 4: Based on the fault index value the job is rescheduled to

some other available resource with least fault index value and
executed from the last saved checkpoint. Thus increases the
percentage of job execution.

On combining the checkponting method with FIBR rescheduling,
and when we compare the two methods, the MFCA along with
FIBR proves to be effective than LFCA with FIBR.

4. PERFORMANCE ANALYSIS

When comparing the two dynamic checkpoint adaptation
techniques: The Last failure time based adaptation(LFCA), Mean
failure time based adaptation (MFCA). The Mean failure time

based adaptation of checkpoints proves to be effective in terms of
number of number of successful job execution, average number of
checkpoints and average job execution time.

When comparing LFCA and MFCA in terms of Average job
execution time Figure 4 the average job execution time of MFCA
is less when compared to LFCA, which inturn increases the job

throughput.

Figure 4: Average Job Execution Time.

When comparing LFCA and MFCA in terms of number of
successful job execution,Figure 5, MFCA has higher number of
successful job execution when compared to LFCA

0
100
200
300
400
500

0
.0

1

0
.0

8

0
.5 1 5

#
J O

B
 S

CHECKPOINT INTERVAL (h)

LFCA

MFCA

Figure 5: Jobs successfully executed.

When comparing the average number of checkpoints in both
LFCA and MFCA Figure 6 as the checkpoint interval increases
the average number of checkpoints in MFCA is comparatively
higher than LFCA.

Figure 6: Average number of checkpoints.

5.CONCLUSION

Fault tolerance forms an important problem in all distributed

environments. Here we address the problem of fault tolerance in
terms of resource failure. Thus the proposed work achieves fault
tolerance by dynamically adapting the checkpoint frequency,
based on history of failure information and job execution time,
which reduces checkpoint overhead, and increases the throughput.
And in case of resource failure, the proposed Fault Index Based
Rescheduling (FIBR) algorithm effectively reschedules the job
from failed resource to some other available resource with least

fault index value based on the history of fault occurrence
information which is available in the information server. Hence
the Dynamic adaptation of checkpoint method, dynamically varies
the checkpoint frequency, increases the job throughput, and thus
makes the grid environment trustworthy.

International Journal of Computer Applications (0975 – 8887)
Volume 2 – No.3, May 2010

99

6. REFERENCES

[1]. Chtepen, M.; Claeys, F.H.A.; Dhoedt, B.; De Turck, F.;
Demeester, P.; Vanrolleghem, P.A. Adaptive Task
CHECKPOINTING and Replication: Toward Efficient Fault-
Tolerant Grids Parallel and Distributed Systems, IEEE
Transactions on Volume 20, Issue 2, Feb. 2009 Page(s):180 – 190
Digital Object Identifier 10.1109/TPDS.2008.93

[2]. Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov,
Eucalyptus: A Technical Report on an Elastic Utility Computing
architecture Linking Your Programs To Useful Systems.UCSB
computer science technical report number 2008-2010

[3] Favarim, F.; da Silva Fraga, J.; Lung Lau Cheuk; Correia, M.
.GRIDTS: A New Approach for Fault- Tolerant Scheduling in
Grid Computing Network Computing and Applications, 2007.

NCA 2007. Sixth IEEE International Symposium on Volume
,Issue,12-14 July 2007 Page(s):187–194 Digital ObjectIdentifier
10.1109/NCA.2007.27

[4]. Fangpeng Dong and Selim G. Akl January 2006 Scheduling
Algorithms for Grid Computing:State of the Art and Open
Problems. Technical Report No. 2006-504 School of Computing,
Queen’s University Kingston, Ontario

[5] Foster,I.; Yong Zhao; Raicu,I.; Lu,S; Grid computing and

Grid computing 360-degree compared. Grid computing
environments workshop,2008.GCE’08 12-16 Nov.2008 pages:1-
10.

[6]Lars-Olof Burchard, C´esar A. F. De Rose, Hans Ulrich Heiss,
Barry Linnert and J¨org Schneider. VRM: A Failure-Aware Grid
Resource Management System. Proc. of the 17th Intl: Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD’05). IEEE. 2005

 [7]Mohammad Tanvir Huda, Heinz W. Schmidt and Ian D.
Peake. An Agent Oriented Proactive Fault tolerant Framework for
Grid Computing. First International Conference on e-Science and
Grid Computing (e-Science’05).IEEE. 2005

[8]R. Medeiros, W. Cirne, F. Brasileiro and J. Sauve, .Faults in
Grids: Why are they so bad and What can be done abut it? in the

proceedings of the Fourth Intl: Workshop on Grid Computing
(GRID'03), 2003.

[9] Nazir, B.; Khan, T.Fault Tolerant Job Scheduling in
Computational Grid. Emerging Technologies, 2006. ICET
apos;06. International Conference on Volume , Issue, 13-14
Nov.2006 Page(s):708–713 Digital Object Identifier
10.1109/ICET.2006.335930

[10] D. Feitelson, Parallel Workloads Archive,

http://www.cs.huji.ac.il/labs/parallel/workload/, 2008

[11] Jang-uk In,Paul Avery, Richard Cavanaugh. SPHINIX:A
fault tolerant system for scheduling in dynamic
environments,proceedings of the 19th IEEE international parallel
and distributed processing symposim.

[12]www.gridbus.org/gridsim/

[13] grid simulator.http://www.buyya.com/gridbus/gridsim/,
released on Apr 08, 2009

[14] S. Agarwal, R. Garg, M. Gupta, and J. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems,”
Proc.18th Ann. Int’l Conf. Supercomputing (SC ’04), Nov. 2004.

[15] A. Subbiah and D. Blough, “Distributed Diagnosis in
Dynamic Fault Environments,” Parallel and Distributed Systems,
vol. 15, no. 5,pp. 453-467, 2004.

http://www.citeulike.org/user/dmeister/author/Nurmi:D
http://www.citeulike.org/user/dmeister/author/Wolski:R
http://www.citeulike.org/user/dmeister/author/Grzegorczyk:C
http://www.citeulike.org/user/dmeister/author/Obertelli:G
http://www.citeulike.org/user/dmeister/author/Obertelli:G
http://www.citeulike.org/user/dmeister/author/Obertelli:G
http://www.citeulike.org/user/dmeister/author/Soman:S
http://www.citeulike.org/user/dmeister/author/Youseff:L
http://www.citeulike.org/user/dmeister/author/Zagorodnov:D

