
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

89

Secured Encryption - Concept and Challenge

Govind Singh Tanwar

Department of Information
Technology

Govt. Engineering College
Bikaner, Bikaner (Raj), India

Ganesh Singh

Department of Master of
Computer Application

Govt. Engineering College
Bikaner, Bikaner (Raj), India

Vishal Gaur
Department of Master of

Computer Application
Govt. Engineering College

Bikaner, Bikaner (Raj), India

ABSTRACT
This paper contains a complications related to access systems and
their functionality. Several cryptographic algorithms were
implemented using the public library Lib-Tom-Crypt and
benchmarked on an ARM7-processor platform. The common
coding schemes in use were ECC and RSA (asymmetric coding
schemes), AES, 3DES and two fish (symmetric algorithms). The

benchmark considered both code size and speed of the algorithms.
The two asymmetric algorithms, ECC and RSA, are possible to be
used in an ARM7 based access system. Although, both
technologies can be configured to finish the calculations within a
reasonable time-frame of 10 Sec.

Key Words
Cryptography, Public ARM7-processor, ECC, RSA.

1. INTRODUCTION

When designing and implementing a multi-user access system
there are several factors to consider, of which key management is
one of the most important and most difficult to solve. Key
management is the problem of making sure that each user has the
correct key with the proper security level, at the right time. The

access system has to distribute and keep track of the keys, making
sure that no keys are lost or compromised. The simplest and most
common access system is the traditional mechanical lock cylinder,
which is a simple and very reliable system. However, key
management in a mechanical multi-user system is a momentous
task and therefore several electronic solutions exist solving this
problem. These electronic solutions are mostly based on online
networked lock-terminals communicating with a centrally

managed key server. The decision of who to grant access is made
by the server. This is practical and secure when all lock units are
gathered in the same geographical area, such as a building or
within company grounds. The mechanical lock system lacks
several important features compared to its electronic counterpart.
The system is not suited for a multi-user environment since all
authorized users have a copy of the same key (from the lock unit’s
viewpoint). Lost keys cannot be blocked and have unlimited

lifespan. The keys can also easily be copied by corrupt users with
physical access to the key. Or even within visual range of the key,
according to a recent thesis work in Linköping University [1],
which showed that it is possible to reproduce a key from a single
photo. Some companies deal with hundreds of keys daily, which
results in a highly complex key management solution requiring
large resources, both in additional work done by employees and in
maintenance costs. This also often leads to security flaws due to

the complexity of the system, mostly related to the human factor.

The system has to determine which employee to give which key,

and often multiple employees have to access the same location. It
also has to detect lost keys in the system and issue replacement
cylinders whenever needed. If a key is knowingly compromised
this results in a time consuming and expensive task changing the
cylinder in the lock and distributing new keys to each user. When
there is a security breach due to a compromised key in this
mechanical system there is no trace to which employee was
responsible, since everyone has the same key and the keys can
easily be copied. Therefore the focus of this thesis work will be on

the problems associated with access systems with geographically
distributed objects and locations.

1.1 Limitations of resources

There are two project members. The project ranges over
a period of 20 weeks with a contracted deadline on November 30

in 2007. The budget is approximately 10.000 SEK which is
invested by Combitech AB. The project has four mentors, two
provided by Combitech and two from the University of Linköping.
Combitech AB provides a workplace equipped with computers,
stationery and lab equipment.

2. ACCESS SYSTEMS

The description of general access systems and their

functions. Furthermore are current access system solutions
presented and how to improve their functionality. The suggestive
improvements presented as concept requirements are based on the
market investigation and personal experiences. The aim of this
chapter is to present information of the requirements of a new
system.

2.1 The principle of an access system

When discussing access systems, it is important to
clarify their intended function and purpose. An access system is a
system meant to protect locations within a domain against
unauthorized access, while still granting access to authorized users.

2.1.1 Basic functionality

The primary function of an access system is, as
mentioned, to keep unauthorized people out and to grant access to
valid users. To make difference if the user is valid or not, the

system must use some form of authentication. The authentication is

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

90

done by analyzing information provided by the user. This
information can be divided into three different categories, identity

codes, which are presented as circles in Figure 2.1. These are often
used in different combinations and the four most common are
described below. Although the use of passport and driving licenses
are common, they are not considered within this description of
general access systems.

Figure 2.1: The figure is describing the three different identity
methods used in access systems. More information about these
methods can be found in a Securitas document [2]

a.) Memory code - In this case the user memorizes the code

and only the code is required to get access. This type of
identity control is weak and is only used in areas where there
are many users who need to be able to delegate access to
others, such as an entrance to an apartment building.

b.) Carried code - In this system the user brings a physical

token, often a key card, although other solutions exist. The
token contains information loaded by the access system to
grant access.

c.) Carried code with memory code - This method is a

combination of the two previous methods. The token’s
information includes the memory code which the user has to

provide each time an access is requested.

d.) Biometric code - The most common form of biometric

codes is the visual inspection of the photograph on an
identification card, such as a driving license.

2.1.2 Additional functions

Some additional functions which are desirable in an
access system include:

a.) Time-lock - Limiting the validity period of the key. A user

can be restricted to certain hours of the day, or the key
lifespan could be limited.

b.) Logging - An important feature in access systems, which

has authentication, is to keep a log-file of all access events by
all users. This provides tracking functionality if a key and/or a

user is compromised.

c.) Authorization level - This enables the system to have a

hierarchy among the users. A certain security clearance can be
required to access a certain location. This can also be
implemented as a system where users can be mapped to which
locations they have access to.

2.1.2 Security

The security is a measurement of how difficult it is to
break into the object which the system protects. Due to the
complexity of all the possible factors affecting the total security, it

is only feasible to estimate the security of the specific access
system. The goal for an attacker of an access system is to get
access. This could be done by going around the actual access
system and through some other weaker point of the total defense,
e.g. breaking a window or subverting a valid user. A way of
modeling the threats is to use an attack tree [3].

2.2 Available solutions

Available solutions based on the four methods used

for identification are presented in this chapter. The solutions

can be categorized in three different groups of access

systems; unintelligent off-line systems, intelligent off-line
systems and online systems.

2.2.1 Unintelligent off-line systems

These systems are mostly based on the ordinary lock
cylinder system widely used within many different areas. Another
access system within this category is the key pad.

a.) Mechanical lock cylinder - The mechanical lock

cylinder is as mentioned frequently used in geographical
distributed areas. The primary advantage of such systems is
the dependability. It is robust and well tested and it works in

all kinds of weather in contrast to other systems. Other
systems often need a backup system and they often require
electricity. The mechanical lock cylinder is also very easy to
use, since it is the most common system; generally everybody
knows how to use it. Disadvantages of this system are for
example the maintenance of the system.

b.) Keypad - The keypad is another unintelligent off-line

system which is quite common. It has the same verification
problem though it only controls the dialed code.

2.2.2 On-line systems

These systems are connected to some central unit of
intelligence. The most common use of such a system is the use of
the entry cards. This system is more suited for multi-user
environments than the other solutions. There are several solutions
which are based on the same concept, e.g. radio-frequency

identification (RFID) tags, although the entry cards is the most
common and thereby used for this description.

Card + code Key. Card etc

Biometry Code, password etc

Passport,

driving license

etc with a photo

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

91

3. CRYPTOGRAPHY

Cryptography is a large subject which can be confusing

at best sometimes. The term cryptography (or cryptology derived
from Greek kryptós “hidden” and gráfo “write”) is the study of
message secrecy. The opposite is cryptanalysis which is the study
of methods of how to reverse the encrypted message. This chapter
aims to give some background on the encryption techniques and
application areas considered during the design process of the
system.

3.1 Basic Cryptography

There is a tradition within the area of cryptography of
using the names Alice, Bob and Eve to represent the different roles
played by the communicating devices on a communication
channel. By definition Alice sends messages to Bob and Eve is

assumed to be eavesdropping on all messages sent on the
communication channel.

Figure 3.1: The figure describes the relationship between Alice,
Bob and Eve and the generic settings for encryption. These roles,
representing the different parts affecting the communication, are
common within the area of cryptography. More figures and

description about the different roles can be found in “Practical
Cryptography” by Bruce Schneier and Niels Ferguson [4].

3.1.1 Encryption

Encryption is used to communicate securely over an insecure
communication channel. Consider Alice communicating with Bob.
Any message from Alice to Bob is also received by Eve. To

prevent Eve from understanding the message an encryption
function E (Kenc, m) is used to transform the so called Plaintext, m,
into the unreadable Ciphertext, c, where Kenc represents the
encryption key which is to be known only by the authorized
communicants and not by Eve. In order for Bob to be able to read
the message, a decryption function D (Kenc, c) is used to make the
reverse transformation from Ciphertext into Plaintext, see figure
3.1. Both these transformations require a cipher which is an
algorithm used for performing encryption and decryption. The key

is as mentioned to be kept secret although the algorithm can and
should be public.

3.1.2 Authentication

Using hash functions in communication enables the

recipient to verify the integrity of the message against the hash-
digest sent along with the message. However, how can Bob be sure
the message really is from Alice? Eve could have changed the
message and recalculated a new hash-digest. A solution is to use

message authentication codes, MAC, which is basically a hash
function with an authentication key, Kauth. The fixed length MAC-

digest is calculated using the MAC function h(Kauth, m) and is sent
together with the message. When Alice wants to send a message
she computes the MAC, a = h(Kauth, m) and sends the complete
message as (m||a). When Bob receives the message (mrcv||arcv) he
calculates his own MAC abob = h(Kauth, mrcv) and verifies abob =
arcv. If the codes are different he discards the message. When Bob
does this he verifies the integrity and the authenticity of the
message. Since Kauth is a shared secret, Bob can verify the

authenticity of the message. This means he can verify the sender
really is Alice, since only she has the other key.

3.1.3 Asymmetric encryption

Previous sections have described symmetric encryption,

where Alice and Bob share the same secret key, Kenc. However,
they can not send the key over the communication channel. Since
Eve is listening in, they have to meet in person to synchronize
keys. Keys have a limited lifespan and Alice may have many
people to communicate with, so exchanging keys is a tedious task.
A solution to the problem of key distribution is asymmetric
cryptography, commonly known as Public-Key cryptography. In
asymmetric encryption both Alice and Bob have two paired keys, a

public key, P, with a corresponding secret or private key, S. Both
publish their public keys somewhere for everyone to see, while
they keep the private key secret. The encryption technique is
basically a one-way function, so a message encrypted with a public
key can only be decrypted with the corresponding private key.

3.1.4 Digital signatures

A digital signature is the way to check data integrity with
asymmetric cryptography. It works in a similar way as message
authentication codes, MAC. The signing process uses a hash
function producing a fixed sized hash-digest. The signing function
encrypts the hash-digest using the private key into a signature and
the signature can be verified by anyone with the sender’s public

key. When Alice signs a message for Bob, she uses an appropriate
hash function to generate the hash-digest, hd = HASH(m). She then

signs hd using her private key, SAlice, giving s = (SAlice, hd) and

transmits the signature, s, together with the message. Bob can then
verify the signature by computing his own hash-digest of the
received message, hd,comp = HASH(mrcv). The result should be the
same as returned from the signature verification algorithm, hd,rcv =
v(PAlice, srcv). If hd,comp equals hd,rcv the message integrity is verified,
otherwise it has been tampered with. Since the message is signed
with a private key and a message is encrypted with a public key the
same key-pair should never be used for both applications. Each
user has to have at least two separate key-pairs, one for encrypting
messages and one for signing them.

3.1.5 Public key infrastructure

The problem with asymmetric keys is authentication.

How can Alice find Bob’s public key when she wants to send him a
message? Alice may never have met Bob, but she wants to send
him a secure message. How can she be sure that the public key she
finds really belongs to Bob and not Eve posing as Bob? They have
to rely on a trusted third party, which both trust, to supply them

 Eve

Alice Bob

 c

c

c,m=D(ke,c) m,c=E(ke,m

)

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

92

with the correct keys. The trusted third party is called a certificate
authority, CA, and maintains a public key infrastructure, PKI. The

CA collects user information and the public key from a user it
recognizes into a file which is signed by the CA. This signed file is
called a certificate.

3.1.6 Bits of security

To be able to compare the security level between

different cryptography technologies, the concept of work factor is
defined and is measured in bits of security. It describes the amount
of work the fastest currently available attack would require on the
algorithm with the specific key. The fastest attack on an algorithm
with N bits of security would require 2N calculated steps.

3.2 Symmetric Cryptography

Symmetric key encryption was briefly mentioned in the
previous section 3.1. This section describes the symmetric
encryption, its algorithms and variations in more detail.
Furthermore, the ciphers and their modes will be presented and
data encryption standards will be described. In symmetric key
encryption the sender and the receiver use the same key, Kenc (or

rarely different keys, but related in an easily computable way).
Other names for symmetric key encryption are one-key, single-key
and private-key encryption.

3.2.1 Stream ciphers

Stream ciphers are used for encrypting a continuing
stream of data for transmission on a communication channel. In the

stream cipher the bit stream of the Plaintext is ciphered using a
stream of key bits. The output of the cipher depends on the internal
state of the cipher algorithm. Therefore the same text string will
result in different Ciphertext every time it’s encrypted. The
advantages of this cipher are high speed and low hardware
complexity.

3.2.2 One-time-pad ciphers

In general a symmetric key cipher is considered secure if
the most effective attack has approximately the same workload as a
brute force attack. However, they can be broken since the same
key is used multiple times. The one-time-pad ciphers solve this

problem and give perfect secrecy to the messages sent. This is
done by always encrypting the message using a fresh new random
key. For example a four letter message, encrypted using a one-time
pad, is impossible for the attacker to decrypt since every possible
four letter Plaintext could be the true message. The true message is
just as likely to be “fast”, “kiss” or “stop” from the attacker’s
viewpoint [5].

3.2.3 Block ciphers

Block ciphers encrypt the Plaintext by dividing the data
into fixed sized blocks and processing each block at a time. Each
block is processed with a block cipher encryption algorithm. The
algorithm processes the fixed size Plaintext block of length n,

together with a fixed size key and sometimes along with an

initialization vector. The output is a fixed size Ciphertext block of
the same length n. The substitution box, s-box, is commonly used

in block ciphers and are therefore briefly described. S-boxes are
tables which present the specific substitute that is to be done to
encrypt the input.

A simple example is a 3 × 2 S-box table found in table
3.1. Given a 3 bit input, the 2 bit output is found by selecting the
row using the outer bit, and the column by using the inner 2 bits.

Table 3.1: S-BOX

 Inner 2 bits

00 01 10 11

Outer bit 0 10 11 01 00

1 11 10 00 01

The table shows a simple example of an S-box. It takes a 3 bit input
and substitutes it to 2 bits which is the output.

In this section some block ciphers which are relevant to
this thesis will be described.

3.2.3.1 Data encryption standard

Data Encryption Standard, DES is a block cipher and
was selected in United States in November 1976 to be a Federal
Information Processing Standard (FIPS). DES uses a block size of

64 bits. These days DES is considered to be insecure for many
applications. DES key sizes of 56 bit have been broken in less than
24 hours [6]. Therefore not be used for any new application. One
attempt to enhance the security was to upgrade the algorithm to
3DES, TDES or TDEA (Triple Data Encryption Algorithm).

3.2.3.2 Advanced encryption standard

The Advanced Encryption Standard, AES, was the new
standard replacing DES. The AES was decided by a design-contest
were several candidates where contributed. The contest was held

by The National Institute of Standards and Technology, NIST, and
resulted in the new AES standard on October 2, 2000 [7]. The final
five candidates were; Rijndael, Twofish, RC6, Serpent and MARS.
The final winner was the Rijndael cipher, invented by Joan
Daemen and Vincent Rijmen. Rijndael can be specified by a key
and block size of any multiple of 32 bits from 128 bits to 256 bits.
However, AES is specified only to operate on a fixed block size of
128 bits using a key size of 128, 192 or 256 bits [8]. The CTR

mode was standardized in 2001 [9] although it has been around
since the DES came in 1980.

3.2.3.3 Twofish

Twofish, one of the five finalists in the AES-contest, is a

block cipher with a block size of 128 bits supporting key sizes up
to 256 bits. It is related to the earlier Blowfish. Instead of using
fixed tables as S-boxes, values are generated dynamically using
information from the key. One half of the key is used in encryption

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

93

and the other is used generating the S-boxes. It is slower than
Rijndael using a key of 128 bits, although faster when using a 256
bit key.

4. SYMMETRIC ALGORITHMS

The symmetric algorithms tested on the test platform
were AES, DES, 3DES and Twofish. The measurements of the
different algorithms done using 10 KiB data and will be presented
in the unit [ms/KiB].

4.1 Symmetric Encryption And Decryption

Both encryption and decryption routines were
implemented on the board for the measurements on the symmetric
algorithms. The test was performed using several key sizes for the

algorithms, wherever this was possible. The software algorithm
test was based on the cryptographic library Lib Tom Crypt and did
not require any mathematical library. The library is configured for
size rather than speed wherever possible.

Table 4.1: Symmetric Encryption And Decryption

LibTomCrypt

Hardware

module

Algo

rith

m

Bloc

k size

Key

size

Encry

ption

Decry

ption

Encry

ption

decry

ption

 [bits] [bits] [bits] [bits] [bits] [bits]

AES 128 128 92 9.2 0.57 0.57

AES 128 256 115 11.5

DES 64 56 150 15.0 0.55 0.55

3DES 64 168 37.6 37.6 0.88 0.88

Two
fish

128 128 9.1 9.1

Two
fish

128 256 9.1 9.1

The table shows the encryption- and decryption time taken, for the
listed symmetric ciphers, to compute 1 KiB.

Table 4.2: Symmetric Algorithm’s Different Memory
Requirements

Symmetri
c cipher

Memory

requirements

of the

algorithm’s

code

Memory

requirements

of the

algorithm’s

tables

Total

FALASH

required

[Byte] [Byte] [Byte]

AES 7304 4436 11740

DES/3DE
S

6028 2588 8616

Twofish 9888 392 10280

The table show symmetric algorithm’s different memory
requirements.

For AES, DES and 3DES it was possible to use the

hardware acceleration modules on the processor. This was also
tested and the results are listed as a comparison in table 4.1. Note

that by using the hardware implementation in all three algorithms,
there was a large improvement in speed. The AES cipher was 16.1

times faster than the software implementation, and 3DES was 42.7
times faster.

4.2 Asymmetric Algorithms

In the test of the asymmetric algorithms, RSA was
compared to ECC. Due to the large amount of memory required by

the asymmetric cryptography there was insufficient memory left to
implement a PRNG, which is required to perform encrypt and
signature-operations. Therefore the implemented operations were
limited to decryption and verification. The two different algorithms
were benchmarked with the previously determined key sizes. ECC
was also implemented with the two different mathematical
libraries, LibTomMath and TomsFastMath. The TomsFastMath
library could not be used in combination with RSA due to lack of
memory.

4.2.1 Asymmetric decryption

The two following tables, 4.4 and 4.5, shows the

different decryption times for ECC and RSA respectively using
their private keys. The data used in this test was a symmetric key

of 128 bits, encrypted by the corresponding public key. In the first
table, describing ECC decryption, both LibTomMath and
TomsFastMath libraries are used and compared to each other. The
improvement factor of implementing the TomsFastMath library is
increasing with the security level. The largest improvement is
therefore with the 521 bit key, resulting in an improvement factor
of nearly 4 times faster decryption.

Table 4.4: Decryption In Ecc

Key size

With

LibTomMath

With

TomFastMath

Decryption time Decryption time

Improve

d by

factor

[bits] [Sec] [Sec]

ECC 112 0.808 0.765 1.06

ECC 128 0.980 0.834 1.18

ECC 160 1.233 0.938 1.31

ECC 192 1.570 1.064 1.48

ECC 224 1.972 1.187 1.66

ECC 256 2.829 1.375 2.06

ECC 384 6.329 2.277 2.78

ECC 521 12.940 3.248 3.98

The table shows the decryption time taken for different key sizes in
both LibTomMath and TomsFastMath.

CONCLUSIONS

This paper presents the consisted of implementing
cryptographic algorithms on an ARM7 based test platform. Here
the conclusions from the benchmarks of the cryptographic
algorithms will be presented, including a summary of the
constraints related to the limited performance of the embedded

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

94

system. The aim of this paper was to answer the question of
weather it is feasible to implement advanced cryptography on an

embedded platform to be used in an access system and if the
resulting performance would be usable. The comparison of ECC
and RSA in this implementation showed that it is feasible to
implement asymmetric cryptography algorithms with very high
security, RSA key sizes up to 3076 bits and ECC key sizes up to
521 bits, on an embedded platform. The ECC algorithm
outperformed the RSA implementation with a large margin. ECC
with a 521 bit key was able to do both decryption and verification

in a very reasonable time of 10 seconds. The same operations on
RSA with a 3076 bit key required 45.7 seconds, this compares in
security to a 256 bit ECC key which only required 3.3 seconds.

REFERENCES

[1] Linus Fredriksson and Martin Gyllensten. Modellering av
delvis kända bilder med hjälpav bilder.
URL:http://www.divaportal.org/diva/getDocument?urn_nbn_
se_liu_diva-67241__fulltext.pdf, 2007.

[2] Securitas AB. Passersystem - generelltom passersystem.
URL: http://www.securitassystems.se/97888027-1404-4b55-
b007-5c51bb545b26.fodoc, 2007.

[3] Bruce Schneier. Attack trees - modeling security threats.
URL:http://www.schneier.com/paper-ttacktrees-ddj-ft.html,
1999.

[4] Bruce Schneier Niels Ferguson. Practical Cryptography.
Number ISBN 0-471-22357-3.

[5] David Kahn. The Code-Breakers. Number ISBN 0-684-
83130-9.

[6] Keshava P. Subramanya. Brute force searches in
cryptography.
URL:http://www.cs.ucsb.edu/∼keshava/bruteforce/bruteforce.
html, 2007.

[7] National Institute of Standards, Technology, and the agency
of Commerce Department´s Technology Administration.

Commerce department announces winner of global
information security competition. URL:
http://www.nist.gov/public_affairs/releases/g00-176.htm,
2007.

[8] Federal Information Processing Standards Publications.
Announcing the advanced encryption standard (aes), fips 197.
URL:http://www.csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, 2001.

[9] National Institute of Standards and Morris Dworkin
Technology. Recommendation for block cipher modes of
operation methods and techniques, nist special publication
800-38a. URL: http://csrc.nist.gov/publications/nistpubs/800-
38a/sp800-38a.pdf, 2007.

