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ABSTRACT 

Microarray technology demands the development of data mining 

algorithms for extracting useful and novel patterns. A bicluster of 

a gene expression dataset is a local pattern such that the genes in 

the bicluster exhibit similar expression patterns through a subset 

of conditions. In this study biclusters are detected in two steps. In 

the first step high quality bicluster seeds are generated using K-

Means clustering algorithm. These seeds are then enlarged using 

a multistart metaheuristic method Greedy Randomized Adaptive 

Search Procedure (GRASP).In GRASP there are two phases, 

construction and local search. The Experimental results on the 

benchmark datasets demonstrate that GRASP is capable of 

identifying high qua;ity biclusters compared to many of the 

already existing biclustering algorithms. Moreover far better 

biclusters are obtained in this algorithm compared to the already 

existing algorithms based on the same GRASP metaheuristics. In 

this study GRASP is applied for the first time to identify 

biclusters from Human Lymphoma dataset.  

Categories and Subject Descriptors 

H.2. [Database Management] Database applications: Data 

Mining, J.3 [Computer Applications]: Life and Medical 

Sciences  

  

General Terms 
Algorithms, Measurement, Experimentation.  

Keywords 

Gene expression data, greedy randomized adaptive search 

procedure, K-Means clustering, biclustering, data mining.  

1. INTRODUCTION 
The relative abundance of mRNA of a gene is called the 

expression level of a gene. This is measured using DNA 

microarray technology which revolutionized gene expression 

study by simultaneously measuring the expression levels of 

thousands of genes in a single experiment. The data generated by 

these experiments high dimensional matrix contain thousands of 

rows (genes) and hundreds of conditions. The experimental 

conditions can be patients, tissue types, different time points etc.  

particular gene under a specific condition. Each entry in this 

matrix is a real number which denotes the expression level of a 

gene. Genes participating in the same biological process will 

have similar expression patterns. Clustering is the suitable 

mining method for identifying these patterns.  

Mining various patterns from microarray data is a vital research 

problem in bioinformatics and clinical research. Being typically 

high-dimensional, mining functional and class information from 

such large volumes of data is a crucial event. Hence it calls for 

appropriate mining strategies. Data Mining techniques in gene 

expression data comprise of clustering genes by their expression 

under multiple conditions, classification of a new gene given the 

expression of other genes with known classification, clustering of 

conditions based on the expression of many genes, and the 

classification of a new sample given the expression of genes 

under that experimental condition. Clustering is the most widely 

used data mining technique for analyzing gene expression data to 

group similar genes or conditions. Clustering of co-expressed 

gene into biologically meaningful groups assists in inferring the 

biological role of an unknown gene that is co-expressed with a 

known gene. 

However clustering has got its own limitations. Clustering is 

based on the assumption that all the related genes behave 

similarly across all the measured conditions. It may reveal the 

genes which are very closely co-regulated along the entire 

column. Based on a general understanding of the cellular 

process, the subsets of genes are co-regulated and co-expressed 

under certain experimental conditions. But they behave almost 

independently under other conditions. Moreover clustering 

partitions the genes into disjoint sets i.e. each gene is associated 

with a single biological function, which is in contradiction to the 

biological system [1]. 

 

In order to make the clustering model more flexible and to 

overcome the difficulties associated with clustering the concept 

of biclustering was introduced. Biclustering is clustering applied 

in two dimensions, i.e. along the row and column, 

simultaneously. This approach identifies the genes which show 

similar expression levels under a specific subset of experimental 

conditions. The objective is to discover maximal subgroups of 

genes and subgroups of conditions. Such genes express highly 

correlated activities over a range of conditions. Biclustering was 

first introduced by Hartigan who called it direct clustering [2]. 
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Cheng and Church were the first to apply biclustering to gene 

expression data [3]. Biclustering is a powerful analytical tool 

when some genes have multiple functions and experimental 

conditions are diverse. 

 

In this work an algorithm is developed for biclustering gene 

expression data using GRASP which is a semi-greedy, multi-start 

metaheuristics which alternates between construction and local 

search phase to find a globally optimal solution. Initially high 

quality bicluster seeds are generated using K-Means and they are 

enlarged using GRASP.  

 

2. BICLUSTERS WITH COHERENT 

VALUES 
A bicluster is a submatrix of the gene expression data matrix. A 

bicluster of a gene expression dataset is a subset of genes which 

exhibit similar expression patterns along a subset of conditions. 

Let X={I1,I2,....IN} be the set of genes and Y={J1,...JM} be the 

set of conditions in the gene expression dataset. The dataset can 

be viewed as an NxM matrix A of real numbers. A bicluster is a 

submatrix B of A and if the size of B is IxJ, then I is a subset of 

rows X of A, and J is a subset of the columns Y of A. The rows 

and columns of the bicluster B need not be contiguous as in the 

expression matrix A. There are four types of  biclusters namely 

biclusters with constant values, biclusters with constant values 

on rows or columns, biclusters with coherent values, and 

biclusters with coherent evolutions.Biclusters with coherent 

values are identified in this work. They are biologically more 

relevant than biclusters with constant values .The degree of 

coherence is measured by MSR or Hscore. It is the sum of the 

squared residue score. The residue score of an element bij in a 

submatrix B is defined as RS(bij)=bij-bIj-biJ+bIJ. 

 Hence Hscore or MSR of bicluster B is  

          MSR(B)  = 2  

where I denotes the row set, J denotes the column set, bij 

denotes the element in a submatrix, biJ denotes the ith row 

mean, bIj denotes the jth column mean, and bIJ denotes the mean 

of the whole bicluster. If the MSR of a matrix is less than certain 

threshold δ then it is a bicluster and called δ bicluster where δ is 

the MSR threshold. The value of δ depends on the dataset. For 

Yeast dataset the value of δ is 300 and for Lymphoma dataset the 

value of δ is 1200. There is correlation in the matrix if the MSR 

value is low. The volume of a bicluster or the bicluster size is the 

product of number of rows and the number of columns in the 

bicluster. The larger the volume and the smaller the MSR of the 

bicluster, greater is the quality of the bicluster.  

2.1 Encoding of Bicluster 

Each bicluster is represented by a binary string of fixed length 

n+m, where n and m are the number of genes and conditions of 

the microarray dataset, respectively. The first n bits is associated 

to n genes, the following m bits to m conditions. If a bit is set to 

1, it means that the corresponding gene or condition belongs to 

the bicluster; otherwise it does not. This encoding presents the 

advantage of having fixed size [4]. 

3. DESCRIPTION OF THE ALGORITHM 

In this study biclustering problem is solved using    the multistart 

metaheuristic method greedy randomized adaptive search 

procedure (GRASP).  The algorithm has two major phases. In the 

first phase, an initial set of seed biclusters are generated using K-

Means one way clustering algorithm. The second phase is used to 

enlarge the seeds by adding more rows and columns using 

GRASP. Greedy seed growing strategy makes a choice that 

optimizes a local gain in the hope that this choice will lead to a 

globally good solution. This will produce only local optimal 

solutions. Metaheuristic methods have the potential to escape 

from local minima. Moreover GRASP is semi-greedy. Hence it 

can combine the advantages of both greedy and random solution 

constructions. 

 

3.1 Seed Finding 

A good seed of a bicluster is a small bicluster with a possibility 

of accommodating more genes and conditions within the given 

Hscore threshold. In this algorithm a simple seed finding 

technique is used [5]. For finding seeds K-Means clustering 

algorithm is used.  K-Means is a partitional clustering algorithm 

that generates a specific number of disjoint, flat or non-

hierarchical clusters. In K-Means clustering algorithm distance 

measure is a parameter that specifies how the distance between 

data points in the clustering input is measured. The various 

distance measures used are Euclidean, Manhattan, Mahanbolis, 

Cosine angle distance, Hamming distance etc. Here cosine angle 

distance is selected as the distance measure. First of all gene and 

condition clusters are obtained from the K-Means one way 

clustering algorithm.  

 

That is genes in the dataset are partitioned into n gene clusters. 

Some of the clusters will contain more than 10 genes. They are 

further divided into groups based on cosine angle distance from 

the cluster centre so that each group contains at most 10 genes. 

Similarly conditions in the dataset are partitioned into m clusters 

and each cluster containing more than 5 conditions is further 

divided based on cosine angle distance from the cluster center so 

that each group contains at most 5 conditions. Assume that there 

are p gene clusters and q condition clusters. All combinations of 

these p gene clusters and q condition clusters are found. Hscore 

value for all these combinations are calculated and those with 

hscore value below a certain threshold is selected as seeds. Thus 

the gene expression data matrix is partitioned into fixed sized 

tightly co-regulated submatrices. The Lymphoma dataset is 

partitioned into 200 gene clusters and 15 condition clusters. The 

Yeast dataset is partitioned into 140 gene clusters and 3 

condition clusters [4]. 

3.2 Seed Growing using Greedy Randomized 

Adaptive Search Procedure (GRASP) 

GRASP is a multi-start metaheuristics to solve combinatorial 

Optimization problems. GRASP is an iterative randomized 

sampling method consisting of two phases: construction and local 

search. The construction phase will generate a feasible solution, 

whose neighborhood will be investigated until a local minimum 
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is identified during the process of local search phase. The best 

overall solution will be reserved as the result. In the construction 

phase a feasible solution is iteratively developed by adding one 

element at a time. During each iteration in the construction phase 

a group of candidate elements are generated by all the elements 

that can be incorporated into the partial solution under 

construction without eliminating feasibility. The choice of the 

next element for incorporation is solved by the evaluation of all 

candidate elements in accordance with a greedy evaluation 

function [6]. 

 

This greedy function stands for the incremental increase in the 

cost function due to the incorporation of this element into the 

solution which is under construction. The evaluation of the 

elements by this function will result in the creation of a restricted 

candidate elements (RCL) produced by the best elements. This 

means that, those elements whose incorporation to the current 

partial solution will result in the smallest incremental costs. This 

makes the greedy aspect of the algorithm.  The element which is 

to be included in the partial solution is randomly chosen from 

those in the RCL.  This makes the probabilistic aspect of the 

heuristic algorithm. Once the selected element is included in the 

partial solution, the candidate list is reconstituted and the 

incremental costs are recalculated.  This makes the adaptive 

aspect of the heuristic algorithm. 

 

The solutions generated by the greedy randomized construction 

are not always optimal even in the case of simple neighborhoods. 

The local search phase can make the constructed solution better. 

A local search algorithm functions in an iterative manner by 

consecutively replacing the current solution by an enhanced 

solution in the neighborhood of the existing solution.  It 

completes its function process when no better solution is 

identified in the neighborhood. 

 

When GRASP is applied to gene expression data, conditions and 

genes are added to the seed in the construction phase. To this 

effect genes or conditions which are not included in the bicluster 

are identified. From this list the candidate list is generated by the 

genes or conditions whose inclusion in the bicluster will not 

exceed the hscore value above the selected threshold. The 

candidate list is dynamic in the sense it varies in accordance with 

the variation of bicluster size. From the candidate lists the best 

elements are chosen and another list is generated which is known 

as the restricted controlled list or RCL. The RCL contains genes 

or conditions which when added result in hscore increment less 

than a threshold known as RCL threshold which in turn is 

calculated by the formula hscoremin+ α (hscoremax-hscoremin). 

Hscoremax is the maximum Hscore value when a candidate is 

added and hscoremin is the minimum Hscore value of the added 

candidate for a particular iteration. The value of α varies from 0 

to1. The case α=0 corresponds to pure greedy algorithm, while 

α=1is equivalent to a random construction. Thus the parameter α 

can control the amounts of greediness and randomness in the 

algorithm.  

 

From the RCL an element is chosen at random and added to the 

bicluster. This requires the updation of candidate list and the 

process is continued. The construction and local search is 

continued alternately till the Mean square residue score of the 

bicluster reaches the given threshold. Here the neighborhood 

search is implemented using best improving strategy. To get 

biclusters having more conditions gene list and condition list are 

maintained separately and construction phase is executed in the 

condition list initially and then followed by the gene list.   

  

Procedure  construct_candidatelist  

(bicluster, δ) 

Bicluster1←bicluster; 

notinlist← the list of Genes or Conditions 

not included in the bicluster 

notinlistcount← noofelements(notinlist) 

For  i=1:notinlistcount 

Hscorelist[i]=hscore(Bicluster1 U 

notinlist[i]) 

End(for) 

Candidatelist={} 

For  i=1:notinlistcount 

If  Hscorelist[i]< δ 

Candidatelist=candidatelist U Notinlist[i] 

End(for) 

end(construct_candidatelist) 

 

 

Procedure BuildRCL(bicluster,C)  

         // C is the candidate list   

      Sminhscore = inf 

             Smaxhscore = -inf 

             nocan=noofelements(C) 

      for  I =1: nocan  do 

           calculate H[i]← MSR{ bicluster  U C[i]} 

      

                if H[i ]<Sminhscore 

                    Sminhscore=H[i] 
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                Endif 

                if  H[i ]>Smaxhscore 

                  Smaxhscore=H[i] 

                Endif 

     Endfor 

       

   RCLthresh=Sminhscore+α*(Sminhscore-             

                                               Sminhscore 

        RCL={} 

        For i=1:nocan 

             If  H[i]<RCLthresh  

             RCL=RCL U{ C[i]} 

            endif 

      end(for) 

     end BuildRCL 

 

 

Procedure Greedy_Randomized_Construct (Seed) 

bicluster←seed; 

While solution construction notdone 

cand←construct _candidatelist (bicluster, δ) 

RCL←BuildRCL (bicluster,cand) 

Select an element S from RCL at random 

bicluster=bicluster U{S} 

Update G or C 

End(while) 

End(Greedy_Randomized_Construct) 

 

Procedure Local_Search(bicluster) 

While there exists sє genelist or conditionlist  

such that  hscore(biclusterU s)<hscoer(bicluster) do 

 

bicluster={bicluster U s}  

 

 end(while) 

end(Local_Search) 

 

4. RESULTS  

4.1 Datasets Used 
We have implemented the proposed algorithm in Matlab and 

tested on bench mark data set namely Yeast Saccharomyces 

Cerevisiae cell cycle expression dataset. The yeast dataset is 

based on Tavozoie et al [7]. The expression values were 

transformed by scaling and logarithm x→100 log (105x) and the 

result was matrix of integers in the range 0 and 600. Missing 

values are represented by -1. Human B-cell Lymphoma 

expression data contain 4026 genes and 96 conditions. The 

dataset was downloaded from the website for supplementary 

information for the article by Alizadeh et al. (2000) [8]. The 

expression levels were reported as log ratios. After scaling by a 

factor of 100 the values in the dataset are integers in the range -

750 to 650. There are 47,639 (12.3%) missing values in the 

Lymphoma dataset. Missing values were represented by 999. In 

the Lymphoma dataset missing values are replaced by random 

numbers between -800 and 800 as in ref [3].The datasets are 

obtained from http://arep.med.harvard.edu/biclustering 

 

4.2 Bicluster Plots for Yeast Dataset  

Eight biclusters obtained using GRASP is shown in Figure 1.  

Here biclusters with all 17 conditions are obtained. From the 

bicluster plots which show strikingly similar upregulation and 

down regulation it is concluded that GRASP is an ideal method 

to identify  biclusters of large volume from gene expression data. 
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Figure 1. Six biclusters found for the Yeast dataset. Bicluster labels are 

(a), (b), (c), (d), (e) and (f) respectively. In the bicluster plots X axis contains 

conditions and Y axis contains expression values. The details about 

biclusters can be obtained from Table 1 using bicluster label. All the means 

squared residues are lower than 215. 

 

Table 1. Information about biclusters of Figure 1 

    Label      Rows   Columns Volume     MSR 

(a) 783  8 6264 215.0790 

(b)  42 17   714 121.6900 

(c)  12 17   204   69.9591 

(d) 208 13 2704 193.6400 
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(e) 108 17 1836 200.7372 

(f) 140 17 2380 200.0088 

(g)   47 17   799 145.3612 

(h)   44 17   748 163.9544 

In the above table the first column contains the label of each 

bicluster. The second and third columns report the number of 

rows (genes) and of columns (conditions) of the bicluster 

respectively. The fourth column reports the volume of the 

bicluster and the last column contains the mean squared residue 

of the bicluster.  

4.3 Bicluster Plots for Human Lymphoma 

Dataset 

In Figure 2 eight biclusters obtained using GRASP are shown.  A 

biclusters with maximum 89 conditions is obtained using this 

method. From the bicluster plots it is clear that biclusters show 

strikingly similar up-regulation and down regulation. 
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Figure 2. Eight  biclusters found for the Lymphoma Dataset. 

Bicluster labels are (p), (q), (r), (s), (t), (u), (v) and (w) 

respectively. In the bicluster plots X axis contains conditions and 

Y axis contains expression values. The details about the 

biclusters can be obtained from Table 2 using bicluster label. All 

the means squared residues of the biclusters are lower than 1200. 

 

Table 2. Information about biclusters of Figure 2 

Label Rows Columns Volume MSR 

(p1) 16 89 1424 1196.9 

(q1) 38 74 2812 1189.8 

(r1)     175 50 8750 1075.2 

(s1) 10 83   830 1182.1 

(t1) 62 82 5084 1197.3 

(u1) 34 74 2516 1019.5 

(v1) 24 73 1752 1197.9 

(w1)     132 32 4224   751.9 

 

In the table given above the first column contains the label of 

each bicluster. The second and third columns report the number 

of rows (genes) and of columns (conditions) of the bicluster 

respectively. The fourth column reports the volume of the 

bicluster and the last column contains the mean squared residue 

or Hscore of the bicluster.  

 

5. BIOLOGICAL SIGNIFICANCE  

         Biclusters can be evaluated using prior biological 

knowledge [9]. Existence of biclusters comprising a significant 

proportion of those genes that considered similar biologically is a 

proof that a specific biclustering technique produces biologically 

relevant results. Biological relevance of biclusters obtained using 

GRASP algorithm is verified using a  bicluster of size 30x17.  

GO annotation database can be used to determine the biological 

significance of biclusters.  In this database genes are assigned to 

three structured controlled vocabularies. Gene products are 

described in terms of associated biological process, components 

and molecular functions in a species-independent manner.  To 

evaluate the statistical significance for the genes in each bicluster 

p-values are used. P-values indicate the extent to which the 

genes in the bicluster match with the different GO categories. 

Smaller p-values indicates better match. . P-values can be 

calculated using a cumulative hypergeometric distribution. The 

probability p for finding at least k genes, from a particular GO 

category (function, process or component) within a cluster of size 

n, is calculated as          

 
where f is the total number of genes within a category and g is 

the total number of genes within the genome. Yeast genome gene 

ontology term finder [10] is a database available in the Internet 

which can be used to evaluate the biological significance of 

biclusters. In the bicluster selected for testing the biological 

significance there are 30 genes namely YAL003W, YAL038W, 

YBL072C, YBL092W, YBR009C, YBR031W, YBR048W, 

YBR084C-A, YBR106W, YBR118W, YBR189W,YCR013C 

YCR031C, YDL061C, YDL075W, YDL081C, YDL083C, 

YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, 

YDL228C, YDL229W, YDR012W, YDR025W, YDR050C, 

YDR064W, YDR382W, YDR385W. 

Figure 3 shows the significant GO terms for the set of 30 genes 

along with their p values. It shows the branching of a generalized 

molecular function into sub-functions like structural molecule 

activity, binding and enzyme regulator activity. These activities 

are clustered using genes to produce the final result. Figure 3 is 

obtained when gene ontology database [10] is searched by 

entering the names of genes and selecting function ontology.  
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Figure 3.  Sample of 30 genes for Yeast data, with 

corresponding GO terms and their parents for    function 

ontology 

 

The Table 3 given below shows the significant GO terms used to 

describe the set of 30 genes of the bicluster for the process, 

function and component ontologies. The common terms are 

described with increasing order of p-values or decreasing order 

of significance.  In Table 2 the first entry of the second column 

with the title process contains the tuple Translation (22,8.73e-

15) which means that 22 out of the 30 genes of the bicluster are 

involved in the process of translation and their p-value is 8.73e -

15. The 22 genes are YAL003W, YBL072C, YBL092W, 

YBR031W, YBR048W, YBR084C-A, YBR118W, YBR189W, 

YCR031C, YDL061C, YDL075W, YDL081C, YDL083C, 

YDL130W, YDL136W, YDL191W, YDL229W, YDR012W, 

YDR025W, YDR064W, YDR382W and YDR385W. Second 

entry indicates that 23 out of 30 genes are involved in cellular 

protein metabolic process. In the table the first entry of the 

column with the title Function contains the entry structural 

constituent of ribosome (18,4.61e-19).That means 18 genes are 

annotated to this fuction. This proves that the bicluster contains 

biologically similar genes and the method used here is capable of 

identifying biologically significant biclusters.  

 

Table 3. Significant shared GO terms (process, function, 

component) of the 30 genes in a bicluster obtained using 

GRASP algorithm 

No.of 

genes   
Process Function Component 

 

30 

Translation 

(22, 8.73e-15) 

 

Cellular protein 

metabolic 

process        

(23, 3.16e-09) 

 

protein 

metabolic 

process  

(23, 6.81e-09) 

 

Macromolecule 

metabolic 

Process 

(26, 7.53e-06) 

 

structural 

constituent of 

ribosome      

(18, 4.61e-

19) 

 

structural 

molecule 

activity         

(18, 1.02e-

15) 

 

Translation 

elongation 

factor 

 (3, 0.00024) 

 

cytosolic 

ribosome  

(18,1.15e-

20) 

 

 ribosome 

(21,6.55e-

20) 

 

ribonucleo 

protein 

complex 

(23,1.81e-

16) 

 

Cytoplasmic  

Part 

(25,3.08e-

05) 

 

6. COMPARISON 

Results obtained by related algorithms such as GRASP[11], 

RGRASP[12], CGRASP[13], SEBI [14], Cheng and Church’s 

algorithm (CC) [3], and the algorithm FLOC by Yang et al. [15] 

and DBF [16] etc compared with GRASP in this study on Yeast 

dataset are given in   Table 4.  All the algorithms listed in Table 

4 are having MSR value more or less equal to 200, even though 

the maximum limit of δ is 300. SEBI (Sequential Evolutionary 

Biclustering) is based on evolutionary algorithms. CC algorithm 

used greedy approach by removing rows and columns from the 

from the gene expression data matrix to find a bicluster. The 

model of bicluster proposed by Cheng and Church was 

generalized by Yang et al (2003). They developed FLOC which 

is a probabilistic algorithm that can discover a set of possibly 

overlapping biclusters simultaneously. Zhang et al proposed 

Deterministic Biclustering with frequent pattern mining (DBF). 

In DBF good quality biclusters seeds are generated using 

http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=EFB1
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS8A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL32
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL4A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS11B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL19A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=TEF2
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS9B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS14A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS29B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL31A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPP1A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS16B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPP1B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL35B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL35A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=SSB1
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPL4B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS11A
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPS13
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=RPP2B
http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=EFT2
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=3735
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=3735
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=3735
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=5198
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=5198
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=5198
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=5829
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=22626
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frequent pattern mining. These seeds are then enlarged by adding 

more genes or conditions. 

In the case of GRASP algorithm presented here all fields are 

better than GRASP in [11], RGRSP [12], CGRASP [13], SEBI, 

CC, FLOC and DBF except that DBF is having lower value for 

average residue score. For Yeast dataset biclusters with all 17 

conditions are obtained in this method. Maximum number of 

conditions obtained for Lymphoma dataset is 89. In metaheuristic 

methods like multi-objective evolutionary computation [17] the 

maximum number of conditions obtained is only 11 for Yeast 

dataset and 49 for the Lymphoma dataset. For the Yeast dataset 

the maximum number of genes obtained for this algorithm in all 

the 17 conditions is 140 with Hscore value 200.0088. The 

maximum number of genes for 17 conditions is obtained by 

multi-objective PSO [18] is the maximum available in the 

literature published so far. They obtained 141 genes for 17 

conditions with Hscore value 203.25.  

Table 4. Performance comparison between GRASP and other 

algorithms for Yeast Dataset 

Algori 

thm 

Avg. 

Residue 

Avg. 

Num. 

Genes  

Avg. 

Num. 

Cond. 

Avg. 

Vol. 

Largest 

Bicluster 

GRASP in 

this study 

166.85  215.50 

 

14.83 

 

2350.33  6264 

GRASP 

[11] 

188.57   30.00 14.00   

430.33 

 1335 

RGRASP                

[12] 

182.34   21.25 13.13   

283.38 

  854 

 

CGRASP 

[13] 

187.05   18.20 12.20   

215.40 

  319 

 

SEBI 205.18   13.61 15.25   

209.92 

 1394 

 

CC 204.29 166.71 12.09 1576.98  4485 

 

FLOC 187.54 195.00 12.80 1825.78  2000 

 

DBF 114.70 188.00 11.00 1627.20  4000 

 

 

As is clear from the above table the average mean squared residue, the 

average number of genes and conditions, average volume and largest 

bicluster size are compared for various algorithms. For the average mean 

squared residue field lower values are better where as higher values are better 

for all other fields. 

The Table 5 given below provides comparison of results obtained 

by various biclustering algorithms for the Human lymphoma 

dataset. In this study GRASP is applied for the first time to 

Human Lymphoma dataset. Cardinality based GRASP [19] and 

reactive GRASP [20] are applied to find biclusters from 

Lymphoma data.  

Table 5. Performance comparison between GRASP and other 

algorithms for Human Lymphoma dataset 

Algorithm 
 

Avg. gene. 

Num. 

Avg. 

cond.num

. 

Avg. Volume 
Avg. 

MSR 

GRASP     61.38 69.63  3424.00 1101.35 

SEBI    14.07 43.57    615.84 1028.84 

CC  269.22 24.50 4595.98   850.04 

 

7.  CONCLUSION 

In this paper the GRASP metaheuristics is uaed for finding 

biclusters in gene expression data. In the first step K-Means 

algorithm is used to group rows and columns of the data matrix 

separately. Then they are combined to produce small tightly 

coregulated submatrices. Then these seeds are enlarged using 

GRASP. The algorithm is implemented on both benchmark 

datasets.  The results obtained for Yeast dataset prove that the 

GRASP algorithm performs better than the other approaches. 

Here the biclusters discovered are larger having more genes and 

conditions with low Hscore value. In short GRASP method 

identifies high quality biclusters which manifest strikingly 

similar up-regulations and down-regulations under a set of 

experimental conditions that can be inspected visually by using 

the bicluster plots. The quality of the biclusters identified by the 

GRASP metaheuristics in this study is far better than the already 

existing biclustering algorithms. Moreover far better biclusters 

are obtained in this algorithm compared to the already existing 

algorithms based on the same GRASP metaheuristics. In the 

already existing works based on the same GRASP metaheuristics 

not even a single bicluster is identified with all 17 conditions. On 

the other hand in this work many biclusters with all 17 

conditions are identified. Furthermore in this study GRASP is 

applied for the first time to the Human Lymphoma dataset. 
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