
International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

33 

 

Mining Association Rules in Large Database by 

Implementing Pipelining Technique in Partition Algorithm 

 
Kanhaiya Lal 
Senior Lecturer 

Department of Computer Sc. & Engg. 
Birla Institute of Technology 

Patna Campus, India 
 

 

 

N.C.Mahanti 
Professor & Head 

Department of Applied Mathematics  
Birla Institute of Technology  

Mesra Ranchi, India 
 

 

 

ABSTRACT 

Mining for association rules between items in a large   database 

of sales transactions has been described as an important database 

mining problem. In this paper   we present an efficient algorithm 

for mining association rules that is faster than the previously 

proposed partition algorithms approximately m times where m is 

the number of stages in pipeline. The algorithm is also ideally 

suited for parallelization. 

General Terms 

Database, Data Mining, Algorithms 

Keywords 

Association rules, Partition, pipeline, parallelization 

1. INTRODUCTION 
 

Association rule mining is to find out association rules that 

satisfy the predefined minimum support and confidence from a 

given database. The problem is usually decomposed into two sub 

problems. One is to find those item sets whose occurrences 

exceed a predefined threshold in the database; those item sets are 

called frequent or large item sets. The second problem is to 

generate association rules from those large item sets with the 

constraints of minimal confidence. Suppose one of the large item 

sets is Lk, Lk = {I1, I2, … , Ik}, association rules with this item 

sets are generated in the following way: the first rule is {I1, I2, … 

, Ik-1}⇒ {Ik}, by checking the confidence this rule can be 

determined as interesting or not. Then other rule are generated 

by deleting the last items in the antecedent and inserting it to the 

consequent, further the confidences of the new rules are checked 

to determine the interestingness of them[7]. Those processes 

iterated until the antecedent becomes empty. Since the second 

sub problem is quite straight forward, most of the researches 

focus on the first sub problem. The first sub-problem can be 

further divided into two sub-problems: candidate large item sets 

generation process and frequent item sets generation process. We 

call those item sets whose support exceed the support threshold 

as large or frequent item-sets, those item sets that are expected 

or have the hope to be large or frequent are called candidate item 

sets [12]. In many cases, the algorithms generate an extremely 

large number of association rules, often in thousands or even 

millions. Further, the association rules are sometimes very large. 

It is nearly impossible for the end users to comprehend or 

validate such large number of complex association rules, thereby 

limiting the usefulness of the data mining results. Several 

strategies have been proposed to reduce the number of 

association rules, such as generating only “interesting” rules, 

generating only “non redundant” rules, or generating only those 

rules satisfying certain other criteria such as coverage, leverage, 

lift or strength[1]. 

 

Increasingly, business organizations are depending on 

sophisticated decision-making information to maintain their 

competitiveness in today's demanding and fast changing 

marketplace. Inferring valuable high-level information based on 

large volumes of routine business data is becoming critical for 

making sound business decisions. For example, customer buying 

patterns and preferences, sales   trends etc can be learned from 

analyzing point-of sales data at supermarkets [13]. This 

information may be used for retaining market leadership by 

tuning to the needs of customers Database mining is motivated 

by such decision support problems and is described as an 

important area of research. One of the most difficult problems in 

database mining is the large volume of data that needs to be 

handled in a medium sized business; it is not uncommon to 

collect hundreds of megabytes to a few gigabytes of data. 

Database mining applications often perform long-running, 

complex data analysis over the entire database. Given the large 

database sizes, one of the main challenges in database mining is 

developing fast and efficient algorithms that can handle large 

volumes of data. Discovering association rules between items 

over basket data was introduced in [4]. Basket data typically 

consists of items bought by a customer along with the date of 

transaction, quantity, Price etc. Such data may be collected, for 

example, at supermarket checkout counters. Association rules 

identify the set of items that are most often purchased with 

another set of items. For example, An association rule may state 

that “95% of customers who bought items A and B also bought   

C and D."This type of information may be used to decide catalog 

design, store layout, product placement, target marketing, etc. 

[4].  

 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

34 

 

2. PROBLEM DESCRIPTION  
 

This section is largely based on the description of the problem in 

[4] and [5]. Formally, the problem can be stated as follows: Let L 

= { i1, i2…... im } be a set of m distinct literals called items . D is 

a set of variable length transactions over L. Each transaction 

contains a set of items Ii,ij……ik   I .A transaction also has an 

associated unique identifier called TID. An association rule is an 

implication of the form X => Y, where X, Y ⊂I, and X Y˄= ;˄ X 

is called the antecedent and Y is called the consequent of the 

rule.  

 

In general, a set of items (such as the antecedent or the 

consequent of a rule) is called an item set. The number of items 

in an item set is called the length of an item set. Item sets of 

some length k are referred to as k -item sets. For an item set 

X.Y, if Y is an m –item set then Y is called an m- extension of 

X.  

 

Each item set has an associated measure of statistical 

significance called support. For an item set X⊂ I, support(X) = s, 

if the fraction of transactions in D containing X equals s .A rule 

has a measure of its strength called the confidence. The 

confidence of a rule X => Y is computed as the ratio support (X 

U Y/ support(X)).  [10] 

 

The problem of mining association rules is to generate all rules 

that have support and confidence greater than some user 

specified minimum support and minimum confidence thresholds, 

respectively. This problem can be decomposed into the following 

sub problems: 

 

 1. All item sets that have support above the user specified 

minimum support are generated.  These item set are called the 

large item sets. All others are said to be small.  

 

 2 .For each large Item set, all the rules that have minimum 

confidence are generated as Follows: For a large item set X and 

any Y ⊂ X, if support(X)/support (X-Y) > minimum confidence, 

then the rule X-Y => Y is a valid rule.  

 

For example, let T1={A,B,C} T2={A,B,D}, T3={A,D,E} and 

T4= {A,B,D} be the only transactions in the database. Let the 

minimum support and minimum confidence is 0.5 and 0.8 

respectively. Then the large item sets are the following: { A } , { 

B } , { D } , { A B } , { A D } and { A B D } The valid rules are 

B => A and D => A. 

 

 The second sub problem, i.e generating rules given all large 

item sets and their supports, is relatively straightforward 

however; discovering all large item sets and their supports is a 

nontrivial problem if the cardinality of the set of items, j Ij and 

the database, D are large. For example if |L| = m, the number of 

possible distinct item sets is 2m .The problem is to identify which 

of these large number of item sets has the minimum support for 

the given set of transactions. For very small values of m, it is 

possible to setup 2m counters, one for each distinct item set, and 

count the support for every item set by scanning the database 

once. However, for many applications m can be more than 10. 

Clearly, this approach is impractical It should be noted that only 

a very small fraction of this exponentially large number of item 

sets will have minimum support .Hence, it is not necessary to 

test the support for every item set. Even if practically feasible, 

testing support for every possible item set results in much waste 

effort. To reduce the combinatorial search space all algorithms 

exploit the following property: any subset of a large item set 

must also be large. For example, if a transaction contains item 

set ABCD, then it also contains A, AB, BC, ABC, etc  

 

Conversely, all extensions of a small item set are also small. 

Therefore, if at some stage it is found that item set ADE is small, 

then none of the item sets which are extensions of ADE, i.e 

ADEF, ADEFG etc .need be tested for minimum support. All 

existing algorithms for mining association rules are variants of 

the following general approach: initially support for all item sets 

of length 1 (1-itemsets) are tested by scanning the entire 

database. The item sets that are found to be small are discarded. 

A set of 2- item sets called candidate item sets are generated by 

extending the large item sets generated in the previous pass by 

one (1-extensions) and their support is tested by scanning the 

entire database. Many of these item sets may turn out to be 

small, and hence discarded. The remaining item sets are 

extended by 1 and tested for support. This process is repeated 

until no larger item sets are found .In general; some kth iteration 

contains the following steps:  

 

1. The set of candidate k-item sets is generated by 1-extensions 

of the large (k-1)-item sets generated in the previous iteration.  

 

2. Supports for the candidate k item sets are generated by a pass 

over the database.  

 

3 The item sets that do not have the minimum support are 

discarded and the remaining item sets are designated large k-

item sets.  

 

Therefore, only extensions of those item sets that are found to be 

large are considered in sub- sequent passes. This process is 

stopped when in some iteration n, no large item sets are 

generated.  The algorithm m in this case, makes n database 

scans.[2] 

 

3. PREVIOUS WORK 

 
The problem of generating association rules was first introduced 

in[4] and an algorithm called AIS was proposed for mining all 

association rules .In [6] ,an algorithm called SETM was proposed 

to solve this problem using relational operations in a relational 

database environment .In[ 4] ,two new algorithms called Apriori 

and AprioriTid were proposed. These algorithms achieved 

significant improvements over the previous algorithms and were 

specifically applicable to large databases. In [4], the rule 

generation process was extended to include multiple items in the 

consequent and an efficient algorithm for generating the rules 

was also presented.  

 

The algorithms vary mainly in 

(a) How the candidate item sets are generated; and 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

35 

 

(b) How the supports for the candidate item sets are counted. In 

[4], the candidate item sets are generated on the fly during the 

pass over the database. For every transaction, candidate item sets 

are generated by extending the large item sets from previous pass 

with the items in the transaction such that the new item sets are 

contained in that transaction. In [5] candidate item sets are 

generated using only the large item sets from the previous pass. 

It is performed by joining the large item set with itself. The 

resulting set is further pruned to exclude any item set whose 

subset is not contained in the previous large item sets. This 

technique produces a much smaller candidate set than the former 

technique.  To count the supports for the candidate item sets, for 

each transaction the set of all candidate item sets that are 

contained in that transaction are identified. The counts for these 

item sets are then incremented by one. Apriori and AprioriTid 

differ based on the data structures used for generating the 

supports for candidate item sets.  

 

In Apriori, bitmaps are generated for transactions as well as the 

candidate item sets. To determine whether a candidate item set is 

contained in a transaction, the corresponding bitmaps are 

compared. A hash tree structure is used to restrict the set of 

candidate item sets compared so that subset testing is optimized. 

In AprioriTid, after every pass, an encoding of all the large item 

sets contained in a transaction is used in place of the transaction. 

In the next pass, candidate item sets are tested for inclusion in a 

transaction by checking whether the large item sets used to 

generate the candidate item set are contained in the encoding of 

the transaction. In Apriori the subset testing is performed for 

every transaction in each pass. However, in AprioriTid, if a 

transaction does not contain any large item sets in the current 

pass, that transaction is not considered in subsequent passes. 

Consequently, in later passes, the size of the encoding of the 

transactions can be much smaller than the actual database. 

However in initial passes the size of the encoding can be larger 

than the database. A hybrid algorithm is proposed which uses 

Apriori for initial passes and switches to AprioriTid for later 

passes [2]. 

 

3.1 Partition Algorithm 

 

The idea behind Partition algorithm is as follows. Recall that the 

reason the database needs to be scanned multiple number of 

times is because the number of possible item sets to be tested for 

support is exponentially large if it must be done in a single scan 

of the database .However, suppose we are given a small set of 

potentially large item sets, say a few thousand item sets Then the 

support for them can be tested in one scan of the database and 

the actual large item sets can be discovered. Clearly, this 

approach will work only if the given set contains all actual large 

item sets. Partition algorithm accomplishes this in two scans of 

the database. In one scan it generates a set of all potentially large 

item sets by scanning the database once this set is a superset of 

all large item sets, i.e. it may contain false positives. But no false 

negatives are reported. During the second scan counters for each 

of these item sets are setup and their actual support is measured 

in one scan of the database.  

 The algorithm executes in two phases. In the first phase, the 

Partition algorithm logically divides the database in to a number 

of non-overlapping partitions. The partitions are considered one 

at a time and all large item sets for that partition are generated at 

the end of phase I, these large item sets are merged to generate a 

set of all potential large item sets. In phase II the actual support 

for these item sets are generated and the large item sets are 

identified The partition sizes are chosen such that each partition 

can be accommodated in the main memory so that the partitions 

are read only once in each phase.  

We assume the transactions are in the form < TID, Ij  ik,……in 

>.The items in a transaction are assumed to be kept sorted in the 

lexicographic order. Similar assumption is also made in [5].It is 

straight-forward to adapt the algorithm to the case where the 

transactions are kept normalized in <TID, item> form. We also 

assume that the TIDs are monotonically increasing. This is 

justified considering the nature of the application. We further 

assume the database resides on secondary storage and the 

approximate size of the database in blocks or pages is known in 

advance the items in an item set are also kept sorted in 

lexicographic order.  

 

                   

 

             Notation                      Meaning                                                                                                       

              CP
K                   A local candidate k-item set in partition 

p 

              LP
K                   A local large k-item set in partition p 

              SP (l)               Support for an item set l within partition 

p  

              CP
K            Set of local candidate k-itemsets in partition 

p  

              LP
K                  Set of local large k-itemsets in partition 

p 

              CG
K                    Set of global candidate k-item sets  

              CG                     Set of all global candidate item sets   

              LG
K                    Set of global large k-item sets 

              SG (l)                 Support for a global item set l 

                                       

[3] 

 

Table-1. Notations & Meaning 

 

 

3.1.1 Definition    

 

A partition p  ⊆ D of the database refers to any subset of the 

transactions contained in the database D .Any two different 

partitions are non-overlapping, i.e.  

PI P˄j =  ˄,  I ≠ j. We define local support for an item set as the 

fraction of transactions containing that item set in a partition. We 

define a local large item set as an item set whose local support in 

a partition is at least the user defined minimum support In other 

words ,a local large item set is large only in the context of a 

partition (i.e., consider the entire database as consisting of only 

that partition).  A local candidate item set is an item set that is 

being tested for minimum support within a given partition. A 

local large item set may or may not be large in the context of the 

entire database  

We define the global support, global large item set, and global 

candidate item set as above except they are in the context of the 

entire database D. Clearly our goal is to find all global large item 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

36 

 

sets. We use the notation shown in Table in this paper. 

Individual item sets are represented by small letters and sets of 

item sets are represented by capital letters. When there is no 

ambiguity we omit the partition number when referring to a local 

item set We use the notation c[1],c2,……..c[k] to represent a k-

item set c consisting of items c[1],c2,……c[k]. 

 

[3] 

 

4. PIPELINING TECHNIQUE   

     
Pipelining is a general technique for increasing processor 

throughput without requiring large amount of extra hardware. It  

increases overall throughput of an of an instruction set processor 

.A pipeline‟ s performance can be measured by its throughput  in 

terms of millions of instruction executed per second or MIPS. 

Another   popular measure of performance is the number of clock 

cycles per instruction or CPI. These quantities are related by the 

equation  

CPI=f/MIPS                                                                …… (1)  

Where f is the pipeline‟s clock frequency in MHz and the values 

of CPI and MIPS are average figures that can be determined 

experimentally by processing suits of representative programs. 

The maximum value of CPI for a single pipeline is 1, making the 

pipeline„s maximum possible throughput equal to f. 

This throughput is attained only when the pipeline is supplied 

with a continuous stream of instructions that keeps all the stages 

busy. 

Another general measure of pipeline‟s performance is to speedup 

S (m) defined by  

S (m) =T (1)/T (m).                                                         …. (2) 

     Where T (m) is the execution time for some target workload 

on an m-stage pipeline and T (1) is the execution time for the 

same workload on a similar, non pipelined processor. 

It is reasonable to assume that T (1) <=tm (m), in which case S 

(m) <=m.A pipeline‟s efficiency and speedup are related as 

follows: 

S (m) =m E (m)                                                           ………. 

(3) 

[3] 

 

4.1 OPTIMIZING m:- 

Equation (3) suggest that an easy way to improve a pipeline‟s 

performance  is to increase the number of stages m. this assumes 

that the pipeline‟s processing task can be subdivided into a 

useful ways and that the cost of doing so is acceptable.  Each 

new stage Si   introduces some new hardware cost and delay due 

to buffer register Ri and associated control logic. In particular, we 

will determine the pipeline‟s performance /cost ratio PCR 

defined as 

PCR=f/K                                                                ………… (4)  

Where f is the pipeline‟s clock frequency and K is its hardware 

cost. 

Suppose the pipeline P has m stages and implements a particular 

set of operations (instructions) SI. Let a be the delay of an 

efficient, non pipelined processor that also implements SI. 

It is reasonable to assume that each stage Si of P has delay a/m-

that is ,m times less than the corresponding non- pipelined  

processor – plus some extra delay b due to S I‟s buffer register RI  

. Hence if Tc=1/f is P‟s clock period, we can write  

Tc =a/m+b                                                                             …. 

(5) 

The pipeline‟s hardware cost can be estimated by 

K=cm+d                                                                                 

…..(6) 

Where c is the buffer –register cost per stage and d is the cost of 

the pipeline‟s (combinational) data-processing logic.   

From (4), (5) and (6), we have  

PCR-1=TcK= (a/m+b) (cm+d).                                              … 

(7) 

So 

PCR =m/[bcm2+(ac+bd)m+ad]                                        …(8) 

To maximize PCR with respect to the number of stages m , we 

differentiate  with respect to m and equate the result to zero.  

Using standard differentiation by parts formula 

d/dm(u/v)=1/v(du/dx)-u/v2(dv/dx) 

we obtain  

d/dm (PCR)=1/v-m(2bcm+ac+bd)/v2                             …(9) 

where u=m and v=bcm2+(ac+bd)m+ad 

on equating (9) with zero, we get  

v=m(2acm+ad+bc). 

Substituting for v and solving for m yields the value mopt of m 

that maximizes PCR, namely, 

mopt=√(ab/bc)                                                               …(10)  

the optimum number of stages is the integer closest to mopt .[2] 

 

5. OUR ALGORITHM FOR GENERATING 

LOCAL LARGE ITEMSET 
 

In our algorithm we partition the database according to partition 

algorithm.  After partitioning the database we use the concept of 

pipeline technique. We sequentially put the partitions in an array 

in reverse order i.e   pn, pn-1, pn-2....p3, p2, p1.  (Fig.1) 

Let us take m stage pipeline  

In each ith pipeline stage, we generate item set of i length, 

compares the support of each item set with min. support. Those 

item set whose support is less than min. support are pruned and 

the rest are passed to i+1th stage.  If support of all item set in ith 

stage is less than min. support than all the item sets in that stage 

of pipeline are considered as the local maximum for that 

partition of the database (Lp
k).    



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

37 

 

If even in the last stage of pipeline support of some item sets  

have support larger than min. support then those item sets are 

considered as local large  k-item set in that partition(Lk
p). 

 

 

Fig.1 – Partitioning database & pipeline 

[8] 

 

5.1 ALGORITHM: 

For( i = 1; i < n ; i++ ) 

{ 

Read in partition pi (pi belongs to p); 

Li=gen_i_length_itemsets(pi); 

f(x);//shifting partitions  

f(y);//shifting  contents in pipeline stages to next stage 

} 

 

Procedure for gen_i_length_itemsets(pi) 

L1
p={ large 1- itemsets along with their  tid lists } 

For( k = 1 ; k ≤ m ; k++ ) 

{ 

For all itemsets l1 Lk-1
p do begin 

For all itemsets l2  Lk-1
p do begin 

If ( l1[1]=l2[1] ^l1[2]=l2[2] ^……..l1[k-1]<l2[k-1] ) then 

{ 

c= l1[1].l1[2] .l1[3].l1[4] ……..l1[k-1].l2[k-1]; 

} 

If c cannot be pruned then 

c.tidlist=l1.tidlist ^l2.tidlist 

if( |c.tidlist|/|p|>=min. Sup.) then 

Lk
p= Lk

p ∪ { c } 

End 

End 

} return  ∪k  Lk
p 

For shifting partitions right (f(x)) 

{int array[n] 

for (i=n-1;i>=0;i--) 

{ 

array [i]=array[i-1]; 

}} 

For shifting contents in  pipeline stages to next stage (f(y)) 

{int array[m] 

for (i=m-1;i>=0;i--) 

{ 

array [i]=array[i-1]; 

}} 

 

X={pipeline, partition} 

F(pipeline);(Now shifting algorithm for pipeline) 

F (partition);(shifting of partition to pipeline) 

 

5.1.1 Generation of Local Large Item sets:- 

 

The procedure gen_large_itemsets takes a partition and 

generates all large itemsets (of all lengths) for that partition. The 

procedure is shown in Figure 2. Lines 3-8 show the candidate 

generation process. The prune step is performed as follows: 

  

  Prune (c: k-itemset) 

 Forall (k-1) subsets s of c do 

 If s doesnot belongs to Lk-1 then 

 Return “c can be pruned" 

 

The prune step eliminates extensions of (k-1)-itemsets which are 

not found to be large, from being considered for counting 

support. For example, if Lp
3 is found to be 

 { { 1 2 3 } , { 1 2 4 } , { 1 3 4 } ,{ 1 3 5 } , { 2 3 4 } } the 

candidate generation initially generates the itemsets { 1 2 3 4 } 

and  { 1 3 4 5 }. However , itemset { 1 3 4 5 } is pruned since  { 

1 4  5 }  is not in Lp . This technique is same as the one 

described in [4] except in our case, as each candidate itemset is 

generated, its count is determined immediately.  

The counts for the candidate itemsets are generated as follows. 

Associated with every itemset, we define a structure called as 

tidlist .A tidlist for itemset l contains the TIDs of all transactions 

that contain the itemset l within a given partition. The TIDs in a 

tid list are kept in sorted order. We represent the tidlist for an 

itemset l by l tid list .Clearly, the cardinality of the tid list of an 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

38 

 

itemset divided by the total number of transactions in a partition 

gives the support for that itemset  in that partition. [9, 11] 

Initially, the tid lists for 1-itemsets are generated directly by 

reading the partition. The tid list for a candidate k-itemset is 

generated by joining the tid lists of the two (k-1)-itemsets that 

were used to generate the candidate k itemset. For example, in 

the above case the tid list for the candidate itemset { 1 2 3 4 }  is 

generated by joining the tid lists of itemsets { 1 2 3 }  and   { 1 2 

4 }. 

  

Procedure gen_final_counts  (  CG: global candidate set, pr  

database partition) 

 

1) forall 1-itemsets do 

2)  generate the tid list  

3)  For ( k=2 ; Ck
G  ≠  ˄; k++) do begin 

4)  Forall k –itemset c belongs to CK
G   do begin 

5)  Templist = C[1].tidlist  ˄C[2].tidlist …˄……c[k].tidlist 

6)  C.count = count + | templist | 

7)  End  

8)  End  

            

[2] 

 

 

5.1.1.1 Generation of Final Large Itemsets :- 

 

The global candidate set is generated as the union of all local 

large itemsets from all partitions. In phase II of the algorithm, 

global large itemsets are determined from the global candidate 

set; this phase also takes n (number of partitions) iterations. 

Initially, a counter is setup for each candidate itemsets and 

initialized to zero. Next, for each partition tidlists for all 1-

itemsets are generated. The support for a candidate itemset in 

that partition is generated by intersecting the tidlists of all 1-

subsets of that itemset the cumulative count gives the global 

support for the itemsets  

5.1.1.2 Correctness:- 

    As shown earlier, steps 5-6 generate the support for an itemset 

in the given partition. Since the partitions are non-overlapping, 

accumulative count overall partitions gives the support for an 

item set in the entire database.[2] 

 

5.1.1.3 Discovering Rules  

Once the large itemsets and their supports are determined , the 

rules can be discovered in a straight forward manner as follows : 

if l is a large itemset , then for every subset a of l , the ratio 

support ( l )  / support ( a )  is computed . If the ratio is at least 

equal to the user specified minimum confidence, them the rule a 

=> (l - a) is output. [2] 

6. Experimental Result 
We implemented the algorithms in JAVA on PIII(x-86 Intel) 

processor (single processor), frequency 700 MHz, Memory 64 

MB to check the result clearly and found the efficiency of 

pipelined partitioned is much-2 better than partition algorithm. 

The test was conducted for 10000, 20000, 50000, 100000 and 

200000 transactions with 15 items & 0.36 min. support. 

 

Fig.2 – Comparative Result 

 

7. CONCLUSIONS 
 

If total number of itemset is k, and there are n equal partitions of 

itemsets i.e. k/n itemsets per partition, then in i‟th pipeline stage  

(where itemsets of i length are generated) the number of 

combinations of itemsets generated is k/n-a1-a2-…-a(i-1) c i where ai 

are those itemsets whose support is less than the given minimum 

support and are pruned. 

Number of combinations generated in Apriori algorithm is 2k 

where k is the number of itemsets. 

Since from binomial theorem, 

    (1+x)n = nc0x+nc1x
2+nc2x

3+……….+ncn-1x
n-1+ncnx

n 

 Thus putting x=1, 

nc0+
nc1+

nc2+……….+ncn-1+
ncn = 2n 

also we know that, 

     nck  > n-ack    for any values of a≠0 

so, 

k/nc1+
 k/n-a1c2 + k/n-a1-a2c+…….. + k/n-a1-a2…….-a(m-1)cm < 

nc0+
nc1+

nc2+……….+ncn-1+
ncn ≤ 2k 

i.e.  k/nc1+
 k/n-a1c2 +

 k/n-a1-a2c+…….. + k/n-a1-a2…….-a(m-1)cm≤ 2k 

In first stage of pipeline, 

No of combinations=k/nc1 

Let a1 itemsets have support less than minimum support in first 

stage i.e. they are pruned. 

In second stage of pipeline, 

No of combinations=k/n-a1c2 

Let a2 itemsets have support less than minimum support in 

second stage i.e. they are also pruned. 

For third stage, 

No of combinations= k/n-a1-a2c3 

Similarly some of itemsets are eliminated at every stage. 

At mth stage, 

No of combination=k/n-a1-a2…….-a(m-1)cm 

Total number of combination is the summation of all stages i.e.   



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.4, June 2010 

39 

 

k/nc1+
 k/n-a1c2 +

 k/n-a1-a2c+…….. + k/n-a1-a2…….-amcm ≤ 2k 

which is obviously true. 

This shows that proposed algorithm is better than apriori 

algorithm. 

If we consider t1 as the time taken by partition algorithm to 

generate local large itemset and t2 to generate global large 

itemset i.e. total time taken =t1+t2  

Since the proposed algorithm uses m-stage pipeline to generate 

local large itemset therefore time taken is t1/m+t2. 

Hence the proposed algorithm performs better than the partition 

algorithm.   

 

8. REFERENCES 
[1] Sotiris Kotsiantis, Dimitris Kanellopoulos  “Association 

Rules Mining: A Recent Overview”, GESTS International 

Transactions on Computer Science and Engineering, 

Vol.32 (1), 2006, pp. 71-72. 

[2]  Ashok savasere, Edward Omiecinski, Shamkant  

Navathe-“An Efficcient Algorithm for Mining Association 

Rules in Large Databases”, Technical Report No. GIT-

CC-95-04. 

[3]  John P. Hayes,”Computer Architecture and 

Organizaton”, 3/e, McGraw-HILL INTERNATIONAL 

EDITIONS, Computer Science Series, pp- 275-292           

(1998). 

[4] R.Agrawal,T.Imielinski,and A.Swami. “Mining 

association rules between sets of items in large 

databases”, In Proceedings of the ACM SIGMOD 

International Conference on management of data, 

Washington, DC May 26-8 1993.   

[5] R.Agrawal and R.Srikant. “Fast algorithms for mining 

association rules”, In Proceedings of the 20th VLDB 

Conference Santiago, Chile, 1994. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[6] M.Houtsma and A. Swami. “Mining sequential Patterns- 

Set-oriented mining of association rules”, Technical 

Report RJ 9567, IBM October1993.  

[7] Han J, Kamber M. “Data Mining: Concepts and 

Techniques”. 2/e San Francisco: CA. Morgan Kaufmann 

Publishers, an imprint of Elsevier. Chapter 5,                       

(2006). 

[8] Ying-Hsiang Wen, Jen-Wei Huang and Ming-Syan 

Chen,” Hardware-Enhanced Association rule Mining with 

Hashing and Pipelining”, IEEE Transactions on 

Knowledge and Data Engineering, Vol.(20), No.6, pp784-

794, June 2008. 

[9]  Qihua Lan, Defu Zhang, Bo Wu,” A New Algorithm For 

frequent Itemsets Mining Based On Apriori And FP-

Tree”, Global Congress on Intelligent Systems, 

IEEE, pp-360-363,  2009. 
 

[10]  Liu Hong-min,” Study and Implementation of Association 

Rule Algorithm in Data Mining”, International 

Conference on Signal Processing Systems, IEEE, pp 

821-824, 2009. 

[11]  Fudailah Duemong, Ladda Preechaveerakul and Sirirut 

Vanichayobon,” FIAST: A Novel Algorithm for Mining 

Frequent Itemsets”, International Conference on Future 

Computer and Communication, IEEE, pp – 140-143, 

2009. 

 

[12] Pang-Ning Tan, Michael Steinbach & Vipin Kumar, 

“Introduction to data Mining”, Pearson education, Inc. & 

Dorling Kindersley pub. Inc., 4th Impression, 2009. 

 

[13]  Jun Gao,” An New Algorithm of Association Rule 

Mining”, International Conference on Computational 

Intelligence and Security, IEEE, pp 117-120, 2008. 


