
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.4, June 2010

9

High Throughput Multipliers Using Delay Equalization

 Alka Raj N.Kayalvizhi
Amrita Vishwa Vidyapeetham Amrita Vishwa Vidyapeetham

ABSTRACT
 Pipelining is used for increasing the throughput of the system.

Wave pipelining is done by removing the intermediate registers

present in the pipelined circuits so that there will be only an

input register and an output register. Circuit should be modelled

in such a way that all data from one stage should reach the next

stage at the same time so that overlapping of data will not occur.

In wave pipelined system the clock period should be greater

than the difference between maximum delay and minimum

delay + clocking overheads such as setup time, hold time, etc.

Clock period can be reduced by minimizing the difference

between maximum and minimum delay, i.e delay equalization

has to be done. Delay equalization can be done by logic

restructuring combined with Wong’s algorithm and Klass’s

algorithm. Area can be further decreased by using delay element

shifting and delay element sharing.

Keywords
Wave pipelining, Delay equalization, Logic restructuring, Delay

element sharing and shifting

1. INTRODUCTION

 Pipelining is a technique used for increasing the throughput of

the system. Pipelining is done by splitting a task into several

subtasks and inserting registers between these subtasks. There

will be an increase in area due to the presence of these

intermediate registers. In order to boost up the pipelining rate

wave pipelining was introduced.

 In wave pipelining we remove off the intermediate registers so

that there will be only an input register and an output register.

Circuit should be modelled in such a way that all datas from one

stage should reach the next stage at the same time so that

overlapping of data will not occur.

 Fig1 shows a combinational logic block with input and output

register [1]. During each clock cycle input data is loaded into the

input register and computation starts. All the paths will not be

having same delay. This is due to the difference in circuit path

lengths. Minimum delay path and maximum delay path are

represented in fig1.

Between maximum delay and minimum delay the computation

takes place. Therefore output data will be unstable in the shaded

region. During this period there will be an error in output. Non

shaded area represents the stable region .At non shaded area

correct output will be obtained. Hence in order to get the correct

output, output register should be latched in the stable region.

This can be achieved by properly adjusting the clock skew.

Fig. 1 Data flow through combinational logic circuit.

Fig. 2 Temporal/spatial diagram of combinational logic

circuits

 In conventional system the clock period should be greater than

maximum delay and in wave pipelined system the clock period

should be greater than the difference between maximum delay

and minimum delay + clocking overheads such as setup time,

hold time, etc. This shows that in a wave pipelined system there

is reduction in clock period [2].

Tclk > Dmax – Dmin + Ts +Th + 2Δck.

where

Tclk = Clock period

Dmax=Delay of longest path

Dmin= Delay of shortest path

Ts=Set up time

Th=Hold time

Δck= worst case clock skew existing over the whole

circuit

In wave pipelined system by modifying parameters like

maximum delay and minimum delay, minimum value of clock

period can be changed. By minimizing the difference between

maximum and minimum delay, the clock period can be reduced,

i.e. delay equalization has to be done.

R

E

G

Combinational

 Logic

R

E

G

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.4, June 2010

10

2. RELATED WORK

Different algorithms are proposed for delay equalization. In [3]

wave pipelining is done by using CAD algorithms like logic

restructuring, delay buffer insertion and by clock buffer

insertion. By using rough tuning delay equalization is done with

minimum area and by using fine tuning delay equalization is

done with minimum power [4]. By including delay element

shifting and delay element sharing area can be further reduced

[5]. If LUTs are used for delay equalization it gives a circuit

with high throughput and minimum latency but power

consumption will be increased [6]. Linear Programming

techniques were used to minimize the overall power dissipation

and over all circuit delay can be reduced by using Integer

Programming techniques using branch and bound algorithm [7].

3. DELAY EQUALIZATION

The main aim of this paper is to equalize all the path delays and

to reduce the area. The delay equalization can be achieved by

Logic restructuring combined with Wong’s algorithm and

Klass’s algorithm. For performing delay equalization the circuit

has to be converted to directed acyclic graph (DAG).

For converting a circuit to DAG each node represents a gate and

is denoted by un, where n ranges from 1 to g. g is the total

number of gates. Delay of each gate is written inside its

corresponding node and it is represented by w(un).Connection

between gates are represented by edges with weight w(e). w(e)

corresponds to the wire delays between the corresponding gates.

To the graph a source node and sink node are added. u0 is the

source node and uN is the sink node. u0 is connected to all the

primary inputs and all the primary outputs are connected to uN.

Sequence of nodes and edges are called path. A path from u0 to

uN can be represented as u0→uN. Delay of the path is the sum

of all the edge weights and node weights that exist between u0

and uN, i.e. the sum of all the gate delays and wire delays that

are present in the path.

In the circuit given in fig 3(a) has four gates- two NOT gates,

one NOR gate and one NAND gate [5]. While converting the

circuit to DAG as shown in fig 3(b) NOT gates are represented

by nodes u1 and u4, NAND gate by u2 and NOR gate by u3.

Edges are drawn wherever there is a connection between the

gates. u1, u2 and u3 have primary inputs and u4 and u2 have

primary outputs. Source node u0 is connected to u1, u2 and u3.

u4 and u2 are connected to sink node uN. Gap is the delay

difference between the two paths having same starting and

ending node.

3.1. Logic Restructuring

 By logic restructuring delay equalization is done by changing

the structure of the circuit without changing the functionality of

the
circuit. For logic restructuring the circuit has to be decomposed

to canonical form. In canonical form the input should have only

two inputs. This is followed by node collapsing and

decomposition. In node collapsing several nodes are collapsed

into single node. Decomposition of collapsed node is done by

kernel division method[3]. Delay equalization is further done

by Wong’s algorithm combined with Klass’s algorithm.

3.2. Wong’s Algorithm

In Wong’s algorithm the gaps are reduced by inserting delay

elements along fastest path. In this first we find out the critical

path and delay of all the non critical path is made equal to the

critical path delay.

(a)

 (b)

Fig. 3(a,b) Conversion of a circuit to DAG

3.3. Klass’s Algorithm

 Construct the longest path by including all the nodes. That

means longest spanning tree is constructed. The edges which are

not present in the longest spanning tree belongs to set S. Close

every loop in the spanning tree by taking edges from set S. Find

out the gaps of the loop. If two sides of the loop are having same

delay the gap will be 0(gap is balanced). If a gap exists between

two sides of the loop, insert delay elements in fastest path

inorder to reduce the gap. The length of the padding delay

element can be varied between Bmin and Bmax. If the delay

difference is less than Bmin the gap cannot be balanced

properly.

u0

 u3 u4

 uN

 u2 u1

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.4, June 2010

11

4. AREA MINIMIZATION

To further decrease the delay elements added use delay element

sharing and delay element shifting along with this so that area

can be minimized

4.1. Delay Element Sharing

 Delay element sharing can be done to all nodes starting from a

single node.

 Steps involved in delay element sharing are:

1. Draw the gate which has maximum gap

2. The gaps of other gates are obtained from the

intermediate points in the longest path

(a)

(b)

Fig. 4(a,b) Example of delay elements sharing

In the DFG shown in fig 4(a) ui has five fan outs – u0, u1, u2,

u3 and u4. Five gaps starting from ui are 2, 5, 6, 3 and 7.

Implement the maximum delay gap, 7. Then all other delay gaps

are taken from the intermediate points. Fig 4(a) has 23 delay

elements. By performing delay element sharing the delay

elements are reduced to 7 as shown in fig 4(b).

4.2. Delay Element Shifting

If there is no gap for single fan out edge from a gate, delay

element shifting cannot be performed. Delay element shifting

can be done only if all the fan outs edges of the gate have gap

and the minimum gap can be shifted from the output side to the

input side.

In fig 5(a) uk has two fan outs - uk+1 and uk+2. Fan out edge of

uk has a gap of two and five. The minimum gap, two is shifted

from output side to input side. Fig 5(a) has 13 delay elements.

By performing delay element shifting the delay elements are

reduced to 12 as shown in fig 5(b).

 (a)

 (b)

Fig. 5(a,b) Example of delay elements shifting

5. MULTIPLIERS

There are different types of multipliers like Shift and add

multiplier, Serial/Parallel multiplier, Array multiplier etc. For

Shift and add multiplier and Serial/Parallel multiplier adders

with feedbacks are used and for array multipliers there is no

feedback. Delay equalization task will be difficult in a wave

pipelined circuit if a feedback exists. So in order to make delay

equalization simple we use array multipliers. Array multiplier is

well known due to its regular structure. Multiplier circuit is

based on add and shift algorithm. Each partial product is

generated by the multiplication of the multiplicand with one

u1

u0

u2

u3

u4

ui

2

5

7

3

6

 uj d=2 d=3 uj+1

 uk d=2 d=3 uk+2

 ui d=2 d=1 ui+1

uk+1

 uj d=4 d=1 uj+1

ui+1 uk+ 1

 ui d=3 d=1 uk d=3 uk+2

 ui d=2 d=1 d=2 d=1 d=1 u4

 u1

 u0

u2

u3

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.4, June 2010

12

multiplier bit. The partial product are shifted according to their

bit orders and then added. The addition can be performed with

normal carry propagate adder. Fig 6 shows an array multiplier.

Y and X are the inputs. The block shaded with blue colour has

two input bits. These two bits are multiplied. The block shaded

with black colour has three input bits. Two input bits are

multiplied and added with the third input bit. The block shaded

with grey colour has four input bits. Two input bits are

multiplied and added with the other two input bits and the

block shaded with brown colour represents half adder. The

operation of array multiplier are splitted into 8 stages and each

stage is represented by numbers 1-8.

6. IMPLEMENTATION
The proposed algorithm is used for implementing high

throughput low area wave pipelined multiplier. Steps involved

during implementation are as follows. Write the verilog code for

multiplier . Construct the corresponding direct acyclic graph

by

 Fig. 6 Array multiplier

using all the required information of the gate obtained from

the net-list and connection between the gates. From the net-list

gate’s type, inputs, outputs, internal delay, fan-ins, fan-outs are

obtained. Perform Wong’s algorithm for each block and Klass’s

algorithm for each stage with and without logic restructuring

This gives rise to a new DAG with all the path delays equal by

inserting minimum delay elements. Write new verilog code for

the modified DAG.

As mentioned earlier for proper working of wave pipelined

circuits output should be latched in the stable region. This can

be done by only trial-and-error. Manual procedures are adopted

for the choice of the optimum value of clock frequency and

clock skew between the input and output registers of wave-

pipelined circuits. Clock frequency and clock skew are manually

adjusted until we get correct output. This is a time consuming

procedure. Automating the above procedure can make this task

easier.

7. RESULTS

4-bit array, carry save, wallace tree and carry ripple multipliers

are used for conducting experiments. Table1 shows the number

of delay elements added for each block by Wong’s algorithm

and Table 2 shows the number of delay elements added for

each stage by Klass’s algorithm for array multiplier. Table 3 and

4 shows the total number of delay elements added for

multipliers along with the reduction of delay elements by using

sharing + shifting algorithm without and with logic

restructuring.

 Table 1. Delay elements added for each block by wong’s

algorithm without logic restructuring for array multiplier

Block Number of delay elements

added

Blue 0

Black 4

Grey 17

Brown 0

Table 2. Delay elements added for each stage by klass’s

algorithm without logic restructuring for array multiplier

Stage Number of delay elements

added

1 10

2 31

3 55

4 10

5 0

6 0

7 0

8 0

Table 3. Delay elements added for multipliers without logic

restructuring

Type of multiplier Combining

Wong’s and

Klass’s algorithm

After delay

element sharing

and shifting

Array 220 148

Carry save 342 284

Carry ripple 289 248

Wallace tree 383 354

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.4, June 2010

13

Table 4. Delay elements added for multipliers with logic

restructuring

Type of multiplier Combining

Wong’s and

Klass’s algorithm

After delay

element sharing

and shifting

Array 135 59

Carry save 203 179

Carry ripple 189 114

Wallace tree 304 228

8. CONCLUSION

By wave pipelining the multiplier clock period can be reduced

and throughput can be increased. But due to the addition of

delay elements there will be an increase in area. By using the

method mentioned here area of the array multiplier can be

decreased. Thus a highly efficient multiplier is obtained.

9. REFERENCES

[1] G.Lakshminarayanan,B.Venkataramani, “Optimization

techniques for FPGA based wave-pipelined DSP blocks”,

in Proc IEEE Transactions on VLSI

Systems,vol.13,number7,pp.783-793,July 2005 .

[2] K. K. Parhi, VLSI Signal Processing Systems. New York:

Wiley, 1999.

[3] W. P. Burleson, M. Ciesielski, F. Klass, and F. Liu,

“Wave-pipelining: a tutorial and research survey” in IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 3,

pp. 464–474, Sep. 1998.

[4] D.C Wong,G. DeMicheli,and M.J Flynn, “Designing High-

Performance Digital Circuits Using Wave Pipelining:

Algorithms and Practical Experiences”, in IEEE Trans

Comput Aided Des Integr . circuits syst.,vol. 12, no. 1, pp

25-46, Jan 1993.

[5] Rui Tang,Yong-Bin Kim, “A novel delay balancing

methodology for wave pipelined circuits”, 48th midwest

symposium on Circuit and systems, pp. 1035-1038, vol 2

,Aug 2005 IEEE

[6] E.I.Boemo, S.Lopez-Buedo, J.M.Meneses, “Wave

pipelining via look-up tables” in Proc IEEE

Int.Symp.circuits systems,vol 4,1996, pp185-1884.

[7] Srivastav Sethupathy,Nohpill Park,Marcin Paprzycki ,

“Logic restructuring for delay balancing in wave-pipelined

circuits: an integer programming approach”, in proceedings

of the seventh international symposium on symbolic and

numeric algorithms for scientific computing,2005 IEEE.

