
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.5, June 2010

9

Testability Estimation Framework

Mohd Nazir

Deprtament of Computer Science

Jamia Millia Islamia
New Delhi, India

Dr. Raees A. Khan

Deprtament of IT

BBA University

Lucknow, India

Dr. K. Mustafa
Deprtament of Computer Science

Jamia Millia Islamia
New Delhi, India

ABSTRACT

Testability has always been an elusive concept and its correct

measurement or evaluation a difficult exercise. Most of the

studies measure testability or more precisely the attributes that

have impact on testability but at the source code level. Though,

testability measurement at the source code level is a good

indicator of effort estimation, it leads to the late arrival of

information in the development process. A decision to change the

design in order to improve testability after coding has started

may be very expensive and error-prone. While estimating

testability early in the development process may greatly reduce

the overall cost. This paper provides a roadmap to industry

personnel and researchers to assess, and preferably, quantify

software testability in design phase. A prescriptive framework

has been proposed in order to integrate testability within the

development life cycle. It may be used to benchmark software

products according to their testability.

Categories and Subject Descriptors

D.3.3 [Software Testability]: Testability Estimation, Testability

Factors, Software Design

General Terms

Testability Metrics, Testability Models, Testability Index.

Keywords

Software Testability, Testability Estimation Framework,

Software Design, Software Quality

1. INTRODUCTION

In today‟s world, the importance of delivering quality software is no

longer an advantage but a necessary factor. However, with the

growing complexity, pervasiveness and criticality of software,

major factor of assuring that it behaves according to the desired

level of quality and dependability has become more crucial,

increasingly difficult and expensive. Moreover, the complexity of

applications and environments has substantially increased in the last couple

of decades. Unfortunately, most of the software industries not only

fail to deliver a quality product to their customers, but also do

not understand the relevant quality attributes [21]. The

development of quality software still remains a matter of

guidelines, best practices and undocumented expert knowledge.

In the highly competitive IT industry, consumer pressure causes

companies to accelerate the speed to market software products.

Schedules are often tightly restricted; developers are forced to

weigh the importance of quality against the possibility of missing

deadlines. For meeting the target, „on time delivery’, testing time

is generally reduced, which increases the potential for defects,

leading to problems with the software. This includes incomplete

design, poor quality, high maintenance costs, and the risk of

loosing customer satisfaction. According to a statistical report,

more than 80% of all software released in the United States is

not reviewed for defects, at a cost to the state economy of tens of

billions of dollars each year [26]. Under these circumstances,

software quality tends to suffer leading to severe consequences.

It is an inevitable fact that software must be verified. It is true

not only for critical systems where a failure might lead to loss of

lives or great economical values, but also for non-critical

systems. A system that deviates from the expected behavior is

often worse than no system at all. Many things go into the release

of high quality software. The software needs to be well

conceived, well-designed, well-coded and well-tested. Design is

the process of trade-offs between qualities. The flaws of design

structure have a strong negative impact on quality attributes.

Complex design often leads to poor testability, which may in turn

leads to ineffective testing that may result to severe penalties and

consequences. However, structuring a high-quality design

continues to be an inadequately defined process [19]. Indeed, like

all human activities, the process of designing software is also

error prone and object-oriented design makes no exception.

However, object orientation has proved its value for systems that

must be maintained and modified. It has the capability to

naturally lend itself to an early assessment and evaluation; it

facilitates software design to be modeled at a higher level of

abstraction. Consequently, any potential problem with the design

can be fixed at the right time.

The process of Software Engineering evolves with a unique issue

of testability. It is an external software attribute that assesses the

complexity and effort required for testing software. The insight

provided by testability is valuable during design, coding, testing

and quality assurance [4]. Testability suggests testing intensity,

and provides the degree of difficulty which will be incurred

during testing of a particular location to detect a fault. Improving

software testability is an important objective in order to reduce

the number defects that result from poorly designed software

[25]. It is an inevitable fact that testability information is useful

that may be complementary to testing. Higher test coverage may

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.5, June 2010

10

be achieved by making a system more testable for the same

amount of effort. Achieving testability is mostly a matter of

separation of concerns, coupling between classes and

subsystems, and cohesion [24]. Dino Esposito argued that

testability should be considered as a key attribute in order to

guarantee the software quality [12]. Practitioners frequently

advocate that testability should be planned early in the design

phase. Rest of the paper is organized as follows. Section 2 briefly

describes testability estimation. Section 3 summarizes the

relevant work. Section 4 presents theoretical basis of the

framework. Section 5 describes the framework. Section 6

concludes the paper and highlights the future work.

2. SOFTWARE TESTABILITY ESTIMATION
Testability is one of the most important quality indicators. Its

measurement leads to the prospects of facilitating and improving

a test process. However, testability has always been an elusive

concept and its correct measurement or evaluation a difficult

exercise [1]. There is no clear definition to „what aspects of

software are actually related to testability’ [11]. Several

approaches, including prominently the Program-based Testability

Measurement, Model-based Testability Measurement, and

Dependability-based Testability Assessment have been proposed

[13]. Further, several internal metrics on testability

measurement have been published so far [18]. But, most of the

metrics are applicable only at the later stage in the system

development life cycle i.e. during implementation. Researchers

and Practitioners suggested different ways of measuring and

improving testability of software design. Wang argued that

testability at class and system levels can be quantitatively

modeled and analyzed [20]. John Hunt considers testability as a

key design criterion, while Soumar et al advocated that

measuring testability based on design artifacts can yield highest

payoffs [1, 15]. Hence, it seems highly desirable and significant

to implement testability at the design stage. Practitioners

emphasize on the need of having a systematic approach for

testability estimation. Therefore, there is a potential to develop a

more systematic solution for testability estimation. Hence, the

techniques for measuring testability that can be applied at the

design stage are most likely preferable.

3. RELEVANT WORK
Software testability analysis has been an important research

direction since 1990s and became more pervasive in 21st century

[11]. A number of researchers addressed software testability, but

in the context of conventional structured design. The question of

testability [6] has been revived with the object-orientation [7, 8].

Despite the fact that object oriented technology has now been

widely accepted by the software industry, only a few research

studies have been devoted to explore the concepts of testability

in object oriented systems. Several developments on the

measurement of testability, design for testability have been

reported in the literature [9, 10, 16, 17, 18]. Unfortunately, these

achievements have not been widely accepted and hence, not been

adopted in practice by industry [11]. Following sections briefly

summarize some of the relevant efforts made by researchers in

the area.

Voas and Miller [5] proposed testability metric based on the

inputs and outputs domains of a software component. To measure

testability, they proposed PIE (propagation, infection and

execution) analysis technique [6]; but estimating testability via

the PIE technique was a difficult and computationally expensive

process. Hence, to obtain an indication of the testability of a

program early in the software development process and without

actually performing the PIE analyses, they suggested use of a

semantic metric, the domain-to-range ratio (DRR): the ratio of

the cardinality of the possible inputs to the cardinality of the

possible outputs. Binder did a novel work highlighting the need

and significance of software testability in system development

[8]. He argued that a more testable system may provide increased

reliability for a fixed testing budget. He proposed a fishbone

model representing the key factors of testability. These factors

are only described at a high level of abstraction, which lead to no

clear relationship with the metrics that are based on design

artifacts and the implementation. Bruce and Haifeng Shi [3]

explored the factors of object oriented software that affect

testability. Based on the fault-failure model of software testing,

they proposed a framework that estimates total testability from

the individual testability factors of its components.

Bruntink and van Deursen [2] defines a set of metrics for

assessing the testability of classes of a Java system, and

testability was characterized using source code metrics.

Jungmayr [18] takes an integration testing point of view, and

focuses on dependencies between components. He presented a

novel approach that allows identifying local dependencies which

are critical for global testability. Further, the notion of test-

critical dependencies was proposed to identify these

dependencies. The reduction metric was used to evaluate the

impact of particular dependency on testability with respect to a

given testability metric. Baudry et al. discussed the impact of

specific types of class interactions on testability and suggested

the use of various coupling and class interaction metrics that

characterizes testability [14]. For measuring testability, Jerry and

Ming proposed the quantifiable approach that is based on a

pentagon model [13]. Samar et al proposed a framework to

assess testability of design modeled with the UML [1]. They also

proposed a set of operational hypotheses for each attribute that

can explain its expected relationship with testability; but the

hypotheses are not empirically validated. Mulo presented a

report strengthening the integration of testability throughout

development process [9].

Several approaches have proposed in the literature for measuring

software testability. A survey of the relevant literature reveals

that maximum efforts have been devoted at the later stage of

development life cycle. In fact, testability measures give an

indicator so as to the effectiveness and efficiency of testing. A

decision to change the design in order to improve testability after

coding has started may be very expensive and error-prone.

Therefore, it is an obvious fact that assessing testability early in

the development process may greatly reduce testing time, efforts

and costs.

4. THEORITICAL BASIS
A number of researchers had addressed the notion of software

testability and proposed various approaches for testability

measurement. The mechanisms available for testability

measurement may be used in later phases of the development life

cycle. Though, testability assessment at the source code level is a

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.5, June 2010

11

good indicator of effort estimation, it leads to the late arrival of

information in the development process. A decision to change the

design in order to improve testability after coding has started

may be very expensive and error-prone.

A critical review of relevant literature reveals that existing work

on the topic either takes a very specific viewpoint or remains at a

very general level [1, 22]. Furthermore, software testability as a

field has not matured enough. Even processes, guidelines and

tools related to testability are missing, but advocated generally to

be inevitable. Researchers and practitioners frequently advocated

that testability should be measured based on the design artifacts.

The early estimation of testability, exclusively at design phase

can yield the highest payoffs. On the other hand, the lack of

testability at design stage may not be compensated during

subsequent development activities.

Practitioners strongly felt and recommended that a systematic

approach, which can incorporate testability at the design stage, is

highly desirable and significant [1, 9]. It may guide to avoid

wastage of resources and to enable continuous improvement. It is

evident from the literature survey that there is no known

comprehensive and complete model or framework for evaluating

the testability of designs developed using a object oriented

approach based on its internal design property[1][22][23].

Aforementioned discussion and facts forms a strong theoretical

basis to formulate a testability estimation roadmap to be

integrated during design phase. Further, such a framework or

road map, which can quantify testability of object oriented

software at design stage, seem to be worthwhile and fruitful.

5. THE FRAMEWORK
As a matter of fact, researchers and practitioners highly

recommend an efficient and accurate measure of software

testability early in design phase. There is a common consensus

among industry professionals and academicians in integrating

testability within the development life cycle in order to deliver

quality software. Unfortunately, there is no standard

methodology or guideline available to quantify software

testability. Therefore, such a roadmap or framework, which can

be followed by industry personnel and researchers to quantify

testability early in design phase, appears highly desirable and

significant. A prescriptive framework as depicted in figure 5.0

(a) has been proposed to estimate testability of object oriented

software at design level. Moreover, a fishbone model shown in

figure 5.0 (b) has been presented in order to emphasize the

importance of estimating testability at design stage, and to more

clearly elaborate „the idea illustrated in the framework‟. The

framework comprised of seven phases including a common phase

of ‘Design Review’. A brief description of the framework

components is given as follows.

5.1 Testability Factorization
Testability is a high level factor to software quality. In order to

quantify testability, its direct measures are to be identified. In

this phase, the commonly accepted set of factors to testability is

to be identified. Design level factors will also be investigated

keeping in view their impact on the overall testability.

5.2 Software Characterization
Different software characteristics have their impacts on

testability and quality as well. Object oriented software

characteristics will be identified in this phase. The contribution

of each characteristic to improve the design will also be

analyzed.

5.3 Metric Selection
The metrics are the calculation of the skill of the development

team in making their classes testable. Metric selection is an

important step in estimating testability. In the absence of any

testability metric in design phase, a suite of testability metrics is

to be proposed that may serve the purpose.

5.4 Correlation Establishment
This is also the key step of the proposed framework, where the

identified testability factors are to be correlated with the OO

design characteristics. A regression line will be established to

quantify testability factors in terms of design characteristics with

the help of design metrics.

5.5 Testability Quantification
Established regression will be used to quantify testability factors

using design metric values. A design hierarchy will be used as an

input to the set formulation. Metric values are to be computed

using the given hierarchy and these values are to be used to

quantify testability factors.

5.6 Qualitative Assessment
On the basis of the quantitative values obtained, a qualitative

assessment of testability factors is performed. A contextual

finding will be discussed and used for review and revision of the

given design. This phase will help in benchmarking software

products according to their testability.

5.7 Design Review
On the basis of the results obtained from the qualitative

assessment phase, the given design is to be reviewed and revised

to achieve better level of testability. Design constructs are to be

critically examined and may be adjusted accordingly in order to

achieve the index value.

6. CONCLUSION
The framework proposed in the paper will address testability

during software development life cycle. It may help putting

testability benchmarking of software projects. The framework is

generic in nature, and may be used by industry practitioners to

quantify testability in order to make design decisions early in the

development life cycle. Strong theoretical basis presented in the

paper supports the claim of the framework‟s usability to estimate

testability of object oriented software at design phase.

Framework‟s implementation is in progress, and will come out as

our future work.

7. REFERENCES
[1] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A

measurement framework for object-oriented software
testability”, Info. and Software Technology, Volume 47,
Issue 15, December 2005, Pages 979-997.

[2] M. Bruntink and A. V. Deursen, Predicting class estability
using object-oriented metrics, in Proc. IEEE international

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.5, June 2010

12

Workshop on Source Code Analysis and Manipulation,
2004, pp. 136-145.

[3] Bruce W.N.Lo and Haifeng Shi, A preliminary testability
model for object-oriented software, in Proc. International
Conf. on SoftwareEngineering, Education, Practice, Pages
330{337. IEEE. 1998.

[4] Voas and Miller, Improving the software development
process using testability research, IEEE Software, pp. 114-
121, 1992.

[5] Voas and Miller, Semantic metrics for software testability,
Journal of Systems and Software, Vol. 20 (3), pp. 207-216,
1993.

[6] Voas and Miller, "Software Testability: The New
Verification". IEEE Software. Vol. 12(3), p. 17-28, 1995.

[7] J.M. Voas. "Object-Oriented Software Testability". In
proceedings of International Conference on Achieving
Quality in Software, January 1996

[8] R.V. Binder, "Design for testability in object-oriented
systems". Communications of the ACM. Vol. 37(9), p. 87-
101, 1994.

[9] E. Mulo, “Design for Testability in Software Systems”,
Master‟s Thesis, 2007.

URL:swerl.tudelft.nl/twiki/pub/Main/ResearchAssignment/
RA-Emmanuel-Mulo.pdf

[10] S. Jungmayr, “Design for Testability”, CONQUEST 2002,
pp. 57-64.

[11] L. Zhao, “A new approach for software testability analysis”,
International Conference on Software Engineering,
Proceeding of the 28th international conference on Software
Engineering, Shanghai, 2006, pp. 985–988.

[12] Dino Esposito, “Design Your Classes for Testability”, 2008.

URL:http://dotnetslackers.com/articles/n net/Design-Your-
Classes-for- Testability.aspx

[13] J. Gao and Ming-Chih Shih, A component testability model
for verification and measurement, In Proc. of the 29th
Annual International Computer Software and Applications
Conference, pages 211–218. IEEE Comp Society 2005.

[14] Baudry and Traon, Measuring Design Testability of a UML
Class Diagram. Information and Software Technology,
47(13):859–879,2005.

[15] J. Hunt, “Designing Software for Testability”, Oct 2007.

URL:http://www.theregister.co.uk/2007/10/29/design_for_te
stability/

[16] Pettichord, B. Design for Testability. In Proc. of Pacific
Northwest Software Quality Conference, 2002.

[17] Jimenez, G., Taj, S., and Weaver, J. Design for Testability.
in Proceedings of the 9th Annual NCIIA Conference, 2005.

[18] Jungmayr, S. Testability Measurement and Software
Dependencies. In Proceedings of the 12th International
Workshop on Software Measurement, pp. 179–202, October
2002.

[19] C. Valdaliso, O. Eljabiri, F.P. Deek, “Factors Influencing
Design Quality and Assurance in Software Development: An
Empirical Study”, Electronic Proceedings of the First
International Workshop on Model-based Requirements
Engineering (MBRE 01), San Diego, California, 2001.

[20] Y. Wang, “Design for Test and Software Testability”,
University of Calgary, 2003.

URL:http://www.ucalgary.ca/~ageras/wshop/abstracts/2003/
design-for-estability.htm

[21] R. A. Khan, K. Mustafa, I Ahson, “An Empirical Validation
of Object Oriented Design Quality Metrics, Journal King
Saud University, Computer & Information Science, Vol. 19,
pp. 1-16, Riyadh (1427H/2007).

[22] M. Nazir, R. A. Khan, “Testability Estimation of Object
Oriented Software: A Critical Review”, in the proceeding of
International conference on Information and Communication
Technologies”, Dehradun, 2007.

[23] R A Khan & K Mustafa, “A Model for Object Oriented
Design Quality Assessment”, Proceedings, Integrated
Design and Process Technology Symposium, Kusadasi,
Izmir, Turkey, June 28-July 2, 2004.

[24] D. Jeremy Miller, “Designing for Testability”, the Shade
Tree Developer, Jun 29 2007.

URL:http://codebetter.com/blogs/jeremy.miller/archive/2007
/06/29/designing-fortestability.aspx

[25] “Design for Testability”, An e-newsletter published by
Software Quality Consulting,Inc. 3[3], March 2006.

URL:http://www.swqual.com/newsletter/vol3/no3/vol3no3.h
tml

[26] Light, Matt., “Use Good Practices in Software Quality and
Testing or Pay the Price”, Gertner Toolkit Tutorial, August,
2007.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.5, June 2010

13

Figure 5.0 (a) Testability Estimation Framework at Design Level

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.5, June 2010

14

Figure 5.0 (b) Testability Fishbone Model

