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ABSTRACT 

Consider a single server retrial queueing system with loss and 

feedback under Pre-emptive priority service in which two types of 

customers arrive in a Poisson process with arrival rate λ1 for low 

priority customers and λ2 for high priority customers. These 

customers are identified as primary calls. The service times follow 

an exponential distribution with parameters μ1 and μ2 for both 

types of customers respectively. The retrial, loss and feedback are 

introduced for low priority customers only. Let k be the maximum 

number of waiting spaces for high priority customers in front of 

the service station. The high priorities customers will be governed 

by the Pre-emptive priority principle. The access from the orbit to 

the service facility is governed by the classical retrial policy. This 

model is solved by using Matrix geometric Technique. Numerical 

study have been done for Analysis of Mean number of low 

priority customers in the orbit (MNCO), Mean number of high 

priority customers in the queue (MPQL), Truncation level 

(OCUT), probability of server free and probabilities of server 

busy with low, high priority customers for various values of λ1 , λ2, 

μ1 , μ2, p, q, σ and k  in elaborate manner and also various 

particular cases of  this model have been discussed. 

Keywords 
Retrial queues – pre-emptive priority service – loss and feedback - 

Matrix Geometric Method – classical retrial policy 

1. INTRODUCTION 
 

Queueing systems in which arriving customers who find all 

servers and waiting positions (if any) occupied may retry for 

service after a period of time is called Retrial queues. The detailed 

information, survey of retrial queues and bibliographical 

information have been obtained from Artalejo (1990a, 1990b, 

2010) and Falin and Templeton (1997). Because of the 

complexity of the retrial queueing models, analytic results are 

generally difficult to obtain. There are a great number of 

numerical and approximations methods are available, in this paper 

we will place more emphasis on the solutions by Matrix geometric 

method discussed by M.F. Neuts (1981), Latouche. G and          

V. Ramaswamy (1999). Formulation of queues with feedback 

mechanism was first introduced by Takacs (1963). Choi and 

Kulkarni (1992) have studied M/G/1 retrial queue with feedback.  

Choi et al. (1998) have investigated M/M/c retrial queue with 

geometric loss and feedback. Krishna kumar et al. (2002) have 

studied M/G/1 retrial queue with feedback and starting failures. 

Kalyanaraman and Srinivasan (2004) studied M/G/1 retrial 

queueing system with two types of calls and geometric loss.    

Lee. Y.W (2005) has studied M/G/1 feedback retrial queue with 

two types of customers. Choi and Park (1990) investigated an  

M1, M2/ G/ l retrial queue with two types of calls, infinite priority 

queue (or infinite waiting room) for Type I calls and infinite 

retrial group for Type II and derived the joint generating function 

of the number of calls in the two groups and the mean queue 

lengths by supplementary variable methods. Falin, Artalejo and 

Martin (1993) extended Choi and Park’s results to the case where 

two types of calls may have different service time distributions.  

Choi and Chang (1999) have studied the Single Server Retrial 

Queues with Priority Calls. Artalejo J.R and et al (2001) have 

studied stationary analysis of retrial queues with pre-emptive 

repeated attempts.  

2. MODEL DESRIPTION 
 

Consider a single server retrial queueing system with loss and 

feedback under Pre-emptive priority service in which two types 

of customers arrive in a Poisson process with arrival rate λ1 for 

low priority customers and λ2 for high priority customers. These 

customers are identified as primary calls. The service times 

follow an exponential distribution with parameters μ1 and μ2 for 

both types of customers. The retrial, loss and feedback are 

introduced for low priority customers only. This concept is 

recently (2009) discussed by K. Farahmand and T. Li  for single 

server retrial queueing by analytic method. Let k be the maximum 

number of waiting spaces for high priority customers in front of 

the service station. 

 

2.1 Description of loss and feedback 

The concepts loss and feedback are introduced for low priority 

customers only. If the server is free at the time of the arrival of 

low priority customer, then the arriving call begins to be served 

immediately by the server. After completion of the service, if the 

low priority customer dissatisfied then he may join the orbit with 

probability q and with probability (1-q) he leaves the system. This 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

28 

 

is called feedback in queueing theory. If the server is busy at the 

time of the arrival of low priority customer, then due to impatient 

this low priority customer may or may not join the orbit. This is 

called loss in queueing theory. We assume that p is the probability 

that the low priority customer joins the orbit and (1-p) is the 

probability that he leaves the system without getting service (due 

to impatient).            

 If the server is free at the time of the arrival of high 

priority customer, then the arriving call begins to be served 

immediately by the server and high priority customer leaves the 

system after service completion. If the server is busy then the low 

priority arriving customer goes to orbit with probability p and 

becomes a source of repeated calls. The pool of sources of 

repeated calls may be viewed as a sort of queue. Every such 

source produces a Poisson process of repeated calls with intensity 

σ. If an incoming repeated call finds the server free, then it is 

served and leaves the system after service, while the source which 

produced this repeated call disappears.  

If any one of the waiting spaces is occupied by the high 

priority customers then the low priority customers (as a primary 

call) can not enter into service station and goes to orbit with 

probability p. If the server is busy and there are some waiting 

spaces then the high priority customer can enter into the service 

station and waits for his service. If there are no waiting spaces 

then the high priority customers can not enter into the service 

station and will be lost for the system. Otherwise, the system state 

does not change.  

2.2    Priority Rule 

If the server is engaging with low priority customer and at that 

time the higher priority customer enters then the high priority 

customer will get service immediately and the low priority 

customer who is in service goes to orbit without completion of his 

service. This type of priority service is called the Pre-emptive 

priority service.  

2.3    Retrial Policy: 

Most of the queueing system with repeated attempts assume that 

each customer in the retrial group seeks service independently of 

each other after a random time exponentially distributed with rate 

σ so that the probability of repeated attempt during the interval   

(t, t +∆t)  given that  there were n customers in orbit at time t  is 
nσ ∆t + O(∆t). This discipline for access for the server from the 

retrial group is called classical retrial rate policy. The input flow 

of primary calls (low and high), interval between repetitions and 

service times are mutually independent.  

 

3. MATRIX GEOMETRIC METHOD 

 

Let  N(t) be  the random variable which represents the number of 

low priority customers in the orbit  at time  t  and  H(t) be the 

random variable which represents the number of high priority 

customers in the  queue (in front of the service station) at time t 

and S(t) represents the server state at time t.  The random process  

is described as {< N(t) , H(t), S(t) >/ N(t)=0,1,2,3,4…; 

H(t)=0,1,2,3…k; S(t)=0,1,2}. 

S(t) = 0 if the server is idle at time t 

S(t) = 1  if the server is busy with low priority customer at time t 

S(t) = 2 if the server is busy with high priority customer at time t 

The possible state spaces are 

{ (u,v,w) /  u = 0,1,2,3,… ; v = 0;w=0,1,2 }  

{ (u,v,w) /  u = 0,1,2,3,... ; v=1,2,3…k; w=1,2}  

The infinitesimal generator matrix Q is given below 

 

 

 

      Q = 

 

 

 

Notations 

T1  = -(λ1+ λ2)      T2   = -(pλ1+ λ2+μ1)    T3  =  -(pλ1+ λ2+μ2)    

T4  =  -(pλ1+ μ2)   T5    = -(nσ+ λ1+ λ2)     T6   =   -(Mσ+ λ1+ λ2)               

T7  =   -( λ2+μ2)    T8  = -(pλ1+ λ2+(1-q)μ1) 

 

A00, A01 , Ann-1, Ann, Ann+1 are square matrices order k+3. 

 

The matrix A00 is described as 

 

 

 

 

 

 

 

 

 

 

An,n-1 = (aij)  for n = 1, 2, 3, … 

where aij  =  nσ  if  ( i = 1 and j = 2) 

                 =   0      otherwise  

 

A0 = An,n+1 = (aij)  for n = 0, 1, 2, … 

 where                         aij  = p λ1      if   i = j  and  i = 2,3,4,…,k+3 

                        =  qµ1    if   i = 2 and  j = 1 

                                         = λ2       if   i = 2 and  j = 3 

                                         = 0     otherwise. 

 

 

A00 A0 O O O … 

A10 A11 A0 O O … 

O A21 A22 A0 O … 

O O A32 A33 A0 … 

… … … … … … 

 

T1 λ1 λ2 0 0 … 0 0 

(1-q)µ1 T2 

 

 

0 0 0 … 0 0 

µ2 0 T3 

 

λ2 0 … 0 0 

0 

 

0 μ2 T3 λ2 … 0 0 

… … … … … … … … 

0 0 0 0 0 … T3 λ2 

0 0 0 0 0 … µ2 T4 
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The matrix Ann is described as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the capacity of the orbit is finite say M then AMM is described as   

 

 

 

 

 

 

 

 

 

 

 

 

 

Let X be a steady-state probability vector of Q and partitioned as  

     X = ( x(0),x(1),x(2), . . .  and  X  satisfies 

 XQ =  0 , Xe = 1                                          (1)  

 

 

 

 where  x(i) =( Pi00  ,  Pi01 , Pi02 , Pi12 ,  Pi22 . . . . ,  Pik2 )  i = 0,1,2,3, . . . 

 

4.    DIRECT TRUNCATION METHOD 

 

In this method one can truncate the system of equations in (1) for 

sufficiently large value of the number of customers in the orbit, 

say M. That is, the orbit size is restricted to M such that any 

arriving customer finding the orbit full is considered lost. The 

value of M can be chosen so that the loss probability is small. Due 

to the intrinsic nature of the system in (1) the only choice 

available for studying M is through algorithmic methods. While a 

number of approaches are available for  determining the cut-off 

point, M ,the one that seems to perform well (with respect to 

approximating the system performance measures) is to increase M 

until the largest individual change in the elements of X for 

successive values is less than ε a predetermined infinitesimal 

value. 

 

5.  ANALYSIS OF STEADY STATE PROBABILITIES 

 

We are applying Direct Truncation Method to find Steady state 

probability vector X. Let M denote the cut-off point or Truncation 

level. The steady state probability vector X(M)  is now partitioned 

as X(M)  = (x(0) , x(1), x(2) , …..x(M)) and  X(M)    satisfies    

                                     X(M)  Q =  0  ,  X(M)  e =1 

where x(i) = ( Pi00  ,  Pi01 , Pi02 , Pi12 ,  Pi22 ,. . . , Pik2 ) i = 0,1,2,3,…,M 

The above system of equations is solved by Numerical method 

such as GAUSS-JORDAN elementary transformation method. 

Since there is no clear cut choice for M, we may start the iterative 

process by taking, say M=1 and increase it until the individual 

elements of  X do not change significantly. That is, if M* denotes 

the truncation point then  

     ||XM*(i) - XM*-1(i)  ||∞ <  ε   , ε is an infinitesimal quantity. 

 

6. STABILITY CONDITION 

 

Theorem  : 

The inequality 
1

1

1
(1 )

Fp

q





 
 

 
where F = 1+x+x2+…+xk+1 

 x = λ2/μ2 ,  is the necessary and sufficient condition  for the 

system to be stable. 

 

 

Proof: 

Let Q be an infinitesimal generator matrix for the queueing system 

(without retrial) 

The stationary probability vector X satisfying   

            XQ = 0   and   Xe=1                   (2)                             

            A0+RA1+R2A2  =0  ,  R is the Rate Matrix              (3) 

 

The system is stable if sp(R) < 1     

 R satisfies sp(R) < 1 if and only if     ΠA0e < ΠA2e            (4) 

where Π is given by ( π0, π1, π2, … , πk , πk+1) 

          

T5 λ1 λ2 0 0 … 0 0 

(1-q)μ1 T2 0 0 0 … 0 0 

μ2 0 T3 λ2 0 … 0 0 

0 0 μ2 T3 λ2 … 0 0 

… … … … … … … … 

0 0 0 0 0 … T3 λ2 

0 0 0 0 0 … µ2 T4 

 

 

 

          

        

   T6 λ1 λ2 0 0 … 0 0 

μ1 -µ1 0 0 0 … 0 0 

μ2 0 T7 λ2 0 … 0 0 

0 0 μ2 T7 λ2 … 0 0 

… … … … … … … … 

0 0 0 0 0 … T7 λ2 

0 0 0 0 0 … µ2 
- μ2 
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           ΠA = 0 and Πe =1                   (5)  

            A=A0+A1+A2                        (6) 

 

A0, A1, A2 are square matrices of order k+2 and  

 

A0 =  (aij)   where   aij  = p λ1      if   i = j  and  i =1, 2,3,4,…,k+2 

                                     = λ2       if   i = 1 and  j = 2 

                                     = 0     otherwise. 

A2 = (aij)  where       aij   = (1-q)µ1     if  i = 1 and j = 1 

                                                            = µ2                if  i = 2 and j = 1 

                                         =  0            otherwise        

 

The matrix A1  is described as  

 

 

 

 

 

 

 

 
 

 

By substituting  A0 ,  A1 ,  A2  in  equation,(5), we get                                      

               πi  = x
i
 π0             i=1,2,3…,k+1                                            

     π0+π1+ π2+π3+ π4+π5……+ πk-1+πk+πk+1 =1 

by substituting πi values in the above equation we get 

          π0 = 1/F  where F = 1+x+x
2
+…+x

k+1 

 From (4) 

         1

0

1(1 )

p

q






 
 

 
  

by substituting π0  we get    

                      
1

1

1
(1 )

Fp

q





 
 

 
    

The inequality 
1

1

1
(1 )

Fp

q





 
 

 
  is also a sufficient condition 

for the retrial queueing system to be stable.  Let Qn be the number 

of customers in the orbit after departure nth customer from the  

service station. We first prove the embedded Markov chain       

{Qn , n≥0} is ergodic if 
1

1

1
(1 )

Fp

q





 
 

 
is readily to see that  

{Qn , n≥0} is irreducible and aperiodic. It remains to be proved 

that {Qn , n≥0} is positive recurrent. The irreducible and aperiodic 

Markov chain  {Qn , n≥0} is positive recurrent if | ψi| <∞ for all i 

and      lim i →∞ sup   ψi <0  where  

              ψi    =   E( Qn+1  -  Qn / Qn = i)  for  i=0,1,2,3,4,5…. 

              ψi    =  
1

1(1 )

Fp

q





 
 

 
  -  kσ / (λ1 + λ2+kσ) 

if 
1

1

1
(1 )

Fp

q





 
 

 
, then | ψi| <∞ for all i and  lim i →∞ sup   ψi  

<0. Therefore the embedded Markov chain  {Qn , n≥0}  is ergodic. 

If K→∞  then  the above stability condition becomes  

1 2

1 2

1
(1 )

p

q

 

 

 
  

 
.  

 

7.    SPECIAL CASES 

 

1. This model becomes Single Server Retrial queueing 

system with pre-emptive priority service if  q→0 and 

p→1. 

2. This model becomes Single Server Retrial queueing 

system if  (λ2 →0), (μ2 →∞), q→0  and  p→1  

3. This model becomes Single Server Standard Queueing 

System if  λ2 →0 , μ2 →∞ , q→0 , p→1 and σ→∞  

 

 

8.    SYSTEM PERFORMANCE MEASURES  

In this section we will list some important performance measures 

along with their formulas. These measures are used to bring out 

the qualitative behaviour of the queueing model under study. 

Numerical study has been dealt in very large scale to study the 

following measures. We define, 

MNCO      : Mean Number of Customers in the Orbit 

 MPQL   : Mean Number of high priority customers in front of  

                    the service station 

 P0   : Probability that the server is idle  

 P1   : Probability that the server is busy with low priority  

T8 

 

0 0 0 … 0 0 

0 T3 

 

λ2 0 … 0 0 

0 μ2 
T3 

 

 

 

λ2 … 0 0 

0 0 μ2 
T3 

 

 

 

… λ2 0 

… … … … … …  

0 0 0 μ2 … T3 

 

 

 

λ2 

0 0 0 0 … μ2 T6 
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                    customers  

 P2   : Probability that the server is busy with high priority  

                    customers  

 

a) Probability mass function of server state  

Prob (The server is idle) = 

0

( ,0,0)
i

p i




  

Prob (The server is busy with low priority customer) 

                                             =  

0

( ,0,1)
i

p i




  

      Prob (The server is busy with high priority customer)  

                                            = 

0 0

( , , 2)
k

i j

p i j


 


 

b) Probability mass function of number of customers in the 

orbit 

      Prob ( n  customers in the orbit)   

                          =   

0

( , , 2)
k

j

p n j


 + p(n,0,0) +p(n,0,1)       

c) Probability mass function of number of high priority 

customers in the  queue. 

 

       Prob (No customers in the high priority queue)  

                                             =    
2

0 0

( , 0, )
i l

p i l


 


 

       

Prob (j customers in the high priority queue) 

                                            =    

0

( , , 2)
i

p i j




  

 

d) Mean number of high priority customers in the queue 

      MPQL    =  

1 0

( ( , , 2))
k

j i

j p i j


 

   

e) Mean number of low priority customers in the orbit 

     MNCO      =   (
0 0

( ( , , 2)
k

i j

i p i j


 

  + p(i,0,0) +p(i,0,1))) 

f) The probability that the orbiting customer (low) is blocked   

Blocking Probability  

                  =    

1 0

( , , 2)
k

i j

p i j


 

 + 

1

( ,0,1)
i

p i




  

g) The probability that the low priority customer gets service 

immediately       =     

0

( ,0,0)
i

p i




  

h) The Probability that the high priority customer gets service 

immediately 

                =    

0

( ,0,1)
i

p i




 +

0

( ,0,0)
i

p i




  

i) The probability that the high priority customer gets into 

system  immediately 

       =
1

0 0

( , , 2)
k

i j

p i j
 

 

  + 
0

( ,0,1)
i

p i




 +
0

( ,0,0)
i

p i




  

9.  NUMERICAL STUDY 

 

Table I, Table II, Table III, Table IV show the impact of retrial 

rate over the system. Mean number of customers in the orbit 

decreases as σ increases. When σ is large, values of tables show 

that this retrial model becomes standard queueing model.  Mean 

number high priority customers (MPQL) increases as k increases 

 

Table I: Mean number of customers in the orbit and Mean 

queue length of high Priority queue for λ1 = 10  λ2 =5   µ1=20  

µ2=25  p=0.8  q=0.2  and  k=2 and various values of σ  

  

σ Ocut P0 P1 P2 MNCO MPQL 

10 51 0.2678 0.5335 0.1987 4.6749 0.0449 

20 46 0.2678 0.5335 0.1987 3.0833 0.0449 

30 44 0.2678 0.5335 0.1987 2.5527 0.0449 

40 43 0.2678 0.5335 0.1987 2.2875 0.0449 

50 43 0.2678 0.5335 0.1987 2.1283 0.0449 

60 42 0.2678 0.5335 0.1987 2.0222 0.0449 

70 42 0.2678 0.5335 0.1987 1.9464 0.0449 

80 42 0.2678 0.5335 0.1987 1.8896 0.0449 

90 42 0.2678 0.5335 0.1987 1.8453 0.0449 

100 41 0.2678 0.5335 0.1987 1.8100 0.0449 

200 41 0.2678 0.5335 0.1987 1.6508 0.0449 

300 41 0.2678 0.5335 0.1987 1.5978 0.0449 

400 40 0.2678 0.5335 0.1987 1.5712 0.0449 

500 40 0.2678 0.5335 0.1987 1.5553 0.0449 

600 40 0.2678 0.5335 0.1987 1.5447 0.0449 
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700 40 0.2678 0.5335 0.1987 1.5371 0.0449 

800 40 0.2678 0.5335 0.1987 1.5314 0.0449 

900 40 0.2678 0.5335 0.1987 1.5270 0.0449 

1000 40 0.2678 0.5335 0.1987 1.5235 0.0449 

2000 40 0.2678 0.5335 0.1987 1.5076 0.0449 

3000 40 0.2678 0.5335 0.1987 1.5023 0.0449 

4000 40 0.2678 0.5335 0.1987 1.4996 0.0449 

5000 40 0.2678 0.5335 0.1987 1.4980 0.0449 

6000 40 0.2678 0.5335 0.1987 1.4970 0.0449 

7000 40 0.2678 0.5335 0.1987 1.4962 0.0449 

8000 40 0.2678 0.5335 0.1987 1.4956 0.0449 

9000 40 0.2678 0.5335 0.1987 1.4952 0.0449 

 

 

 

 

 

 

Table II: Mean number of customers in the orbit and 

Mean queue length of high Priority queue for  λ1 = 10    

λ2 =5   µ1=20  µ2=25  p=0.8  q=0.2  and  k=4 and various values 

of σ               

σ Ocut P0 P1 P2 MNCO MPQL 

10 51 0.2667 0.5333 0.1999 4.7094 0.0497 

20 46 0.2667 0.5333 0.1999 3.1097 0.0497 

30 45 0.2667 0.5333 0.1999 2.5765 0.0497 

40 44 0.2667 0.5333 0.1999 2.3099 0.0497 

50 43 0.2667 0.5333 0.1999 2.1499 0.0497 

60 43 0.2667 0.5333 0.1999 2.0433 0.0497 

70 42 0.2667 0.5333 0.1999 1.9671 0.0497 

80 42 0.2667 0.5333 0.1999 1.9100 0.0497 

90 42 0.2667 0.5333 0.1999 1.8655 0.0497 

100 42 0.2667 0.5333 0.1999 1.8300 0.0497 

200 41 0.2667 0.5333 0.1999 1.6700 0.0497 

300 41 0.2667 0.5333 0.1999 1.6167 0.0497 

400 41 0.2667 0.5333 0.1999 1.5900 0.0497 

500 41 0.2667 0.5333 0.1999 1.5740 0.0497 

600 41 0.2667 0.5333 0.1999 1.5634 0.0497 

700 41 0.2667 0.5333 0.1999 1.5558 0.0497 

800 41 0.2667 0.5333 0.1999 1.5500 0.0497 

900 41 0.2667 0.5333 0.1999 1.5456 0.0497 

1000 41 0.2667 0.5333 0.1999 1.5421 0.0497 

2000 41 0.2667 0.5333 0.1999 1.5261 0.0497 

3000 41 0.2667 0.5333 0.1999 1.5207 0.0497 

4000 41 0.2667 0.5333 0.1999 1.5181 0.0497 

5000 41 0.2667 0.5333 0.1999 1.5165 0.0497 

6000 41 0.2667 0.5333 0.1999 1.5154 0.0497 

7000 41 0.2667 0.5333 0.1999 1.5146 0.0497 

8000 41 0.2667 0.5333 0.1999 1.5141 0.0497 

9000 41 0.2667 0.5333 0.1999 1.5136 0.0497 

 

 

 

 

 

                           + p(i,0,1,1)                                                                   

Table III: Mean number of customers in the orbit and 

Mean queue length of high Priority queue for                 

λ1 = 10  λ2 =5   µ1=20  µ2=25 p=0.8  q=0.2  k = 6 and 

various values of σ 

σ Ocut P0 P1 P2 MNCO MPQL 

10 52 0.2667 0.5333 0.2000 4.7110 0.0500 

20 47 0.2667 0.5333 0.2000 3.1110 0.0500 

30 45 0.2667 0.5333 0.2000 2.5777 0.0500 

40 44 0.2667 0.5333 0.2000 2.3110 0.0500 

50 43 0.2667 0.5333 0.2000 2.1511 0.0500 

60 43 0.2667 0.5333 0.2000 2.0444 0.0500 

70 42 0.2667 0.5333 0.2000 1.9682 0.0500 

80 42 0.2667 0.5333 0.2000 1.9111 0.0500 

90 42 0.2667 0.5333 0.2000 1.8666 0.0500 

100 42 0.2667 0.5333 0.2000 1.8311 0.0500 

200 41 0.2667 0.5333 0.2000 1.6711 0.0500 

300 41 0.2667 0.5333 0.2000 1.6177 0.0500 

400 41 0.2667 0.5333 0.2000 1.5911 0.0500 
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500 41 0.2667 0.5333 0.2000 1.5751 0.0500 

600 41 0.2667 0.5333 0.2000 1.5644 0.0500 

700 41 0.2667 0.5333 0.2000 1.5568 0.0500 

800 41 0.2667 0.5333 0.2000 1.5511 0.0500 

900 41 0.2667 0.5333 0.2000 1.5466 0.0500 

1000 41 0.2667 0.5333 0.2000 1.5431 0.0500 

2000 41 0.2667 0.5333 0.2000 1.5271 0.0500 

3000 41 0.2667 0.5333 0.2000 1.5217 0.0500 

4000 41 0.2667 0.5333 0.2000 1.5191 0.0500 

5000 41 0.2667 0.5333 0.2000 1.5175 0.0500 

6000 41 0.2667 0.5333 0.2000 1.5164 0.0500 

7000 41 0.2667 0.5333 0.2000 1.5156 0.0500 

8000 41 0.2667 0.5333 0.2000 1.5151 0.0500 

9000 41 0.2667 0.5333 0.2000 1.5146 0.0500 

 

Table IV: Mean number of customers in the orbit and 

Mean queue length of high Priority queue for                 

λ1 = 10  λ2 =5   µ1=20  µ2=25  p=0.8  q=0.2   k=8 and 

various values of σ 

σ Ocut P0 P1 P2 MNCO MPQL 

10 52 0.2667 0.5333 0.2000 4.7111 0.0500 

20 47 0.2667 0.5333 0.2000 3.1111 0.0500 

30 45 0.2667 0.5333 0.2000 2.5778 0.0500 

40 44 0.2667 0.5333 0.2000 2.3111 0.0500 

50 43 0.2667 0.5333 0.2000 2.1511 0.0500 

60 43 0.2667 0.5333 0.2000 2.0444 0.0500 

70 42 0.2667 0.5333 0.2000 1.9682 0.0500 

80 42 0.2667 0.5333 0.2000 1.9111 0.0500 

90 42 0.2667 0.5333 0.2000 1.8667 0.0500 

100 42 0.2667 0.5333 0.2000 1.8311 0.0500 

200 41 0.2667 0.5333 0.2000 1.6711 0.0500 

300 41 0.2667 0.5333 0.2000 1.6178 0.0500 

400 41 0.2667 0.5333 0.2000 1.5911 0.0500 

500 41 0.2667 0.5333 0.2000 1.5751 0.0500 

600 41 0.2667 0.5333 0.2000 1.5644 0.0500 

700 41 0.2667 0.5333 0.2000 1.5568 0.0500 

800 41 0.2667 0.5333 0.2000 1.5511 0.0500 

900 41 0.2667 0.5333 0.2000 1.5467 0.0500 

1000 41 0.2667 0.5333 0.2000 1.5431 0.0500 

2000 41 0.2667 0.5333 0.2000 1.5271 0.0500 

3000 41 0.2667 0.5333 0.2000 1.5218 0.0500 

4000 41 0.2667 0.5333 0.2000 1.5191 0.0500 

5000 41 0.2667 0.5333 0.2000 1.5175 0.0500 

6000 41 0.2667 0.5333 0.2000 1.5164 0.0500 

7000 41 0.2667 0.5333 0.2000 1.5157 0.0500 

8000 41 0.2667 0.5333 0.2000 1.5151 0.0500 

9000 41 0.2667 0.5333 0.2000 1.5147 0.0500 

 

10. CONCLUSIONS 

It is observed from numerical study that Mean number of low 

priority customers in the orbit decreases as the retrial rate 

increases, the probabilities for the server being idle, busy are 

independent on retrial rate. The various special cases discussed in 

section 7 are particular cases of this research work. This research 

work can further be extended by introducing various parameters 

like negative arrival and second optional services.  
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