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ABSTRACT 

In Handwritten signatures analyzed for forgery have to undergo 

feature extraction process, due to varied samples in size rotation 

and intra-domain changes, invariance has to be achieved during 

feature extraction process; circular Hidden Markov Model with 

discrete radon transform approach of feature extraction provides 

invariance. On other hand Scale Invariant Feature Transform 

(SIFT) has inherent invariant feature extraction approach. This 

paper compares both approaches on common signature databases 

for False acceptance rate(FAR),False Rejection Rate(FRR) and 

Equal Error Rate(EER)   

Categories and Subject Descriptors 

The Paper deals in Digital Forensic category where circular 

Hidden Markov Model(HMM) and Scale invariant Feature 

Transform(SIFT) invariant features are compared for Offline 

Handwritten Signature verification 

General Terms 

Here we will be dealing with feature extraction of offline 

handwritten signature with Discrete Radon Transform (DRT) for  

circular HMM for forgery detection and in second approach scale 

invariant image features of offline signatures are extracted using 

SIFT and forgery detection is done.  
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Rate HSV Handwritten Signature Verification FA False 

Acceptance SVM Support Vector Machine DoG Difference-of-
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1. INTRODUCTION 

1.1.1 OVERVIEW 
The National Check Fraud Center Report of 2000 [1] states that: 

―cheque fraud and counterfeiting are among the fastest-growing 

crimes affecting the United States’ financial system, producing 

estimated annual losses exceeding $10 billion with the number 

continuing to rise at an alarming rate each year.‖ 

This system assumes that the signatures have already been 

extracted from the documents .Methods for extracting signature 

data from cheque backgrounds can be found in the following 

papers, [2, 3, 4]. 

Plamondon and Srihari [5] note that automatic signature 

verification systems occupy a very specific niche among other 

automatic identification systems: The features that are extracted 

from static signature images can be classified as global or local 

features. Global features describe an entire signature and include 

the discrete Wavelet transform [7], the Hough transform [8], 

horizontal and vertical projections [9], and smoothness features 

[10]. Local features are extracted at stroke and substroke levels 

and include unballistic motion and tremor information in stroke 

segments [11], stroke ―elements‖ [9], local shape descriptors 

[12], and pressure and slant features [13].  

Various pattern recognition techniques have been exploited to 

authenticate handwritten signatures (see Section 2). These 

techniques include template matching techniques [7, 9, 11], 

minimum distance classifiers [10, 12, 14, 15], Neural networks 

[8, 13, 16], hidden Markov models (HMMs) [17, 18], and 

structural pattern recognition techniques. 

The period from 1989 to 1993 is covered by Leclerc and 

Plamondon [19] and the period before 1989 by Plamondon and 

Lorette [20]. Another survey was published by Sabourin et al. in 

1992 [21]. A review of online signature verification by Gupta and 

McCabe in 1998 also includes a summary of some earlier work 

on the offline case [22]. 

1.1.2 IMAGE PROCESSING 
Each signature is scanned into a binary image at a resolution of 

300 dots per inch, after which median filtering is applied for 

removal of noise. The image dimensions are not normalized 

because DRT will be used. 

The DRT of each signature is calculated. A projection or shadow 

of the signature at certain angle is represented by each column  

of the DRT. These projections are processed and normalized 

which will represent a set of feature vectors, it is also termed as 

observation sequence of the target signature. 

1.2.CALCULATION PROCEDURE OF DRT. 

Let us assume that each signature consists of Ψ number of pixels 

in total and the intensity of ith pixel is denoted by I, i=1,….., Ψ. 

The DRT is calculated using β non overlapping beams per angle  

and θ angles in total. The cumulative intensity of the pixels that 

lie within the jth beam is denoted by Rj. j=1,….., βθ. This is 
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called the jth beam sum. The Discrete Radon Transform can be 

expressed as follows 

 

Ψ 

Rj=Σ wijIi, j=1,2,……,βθ,            (1.1) 

 i=1 

where wij indicates the contribution of ith pixel to the jth beam 

sum (see figure 1.1).The value of wij is found through two–

dimensional interpolation. Each projection therefore contains the 

beam sums that are calculated at a given angle. 

 

Figure1.1 : Discrete model for the Radon transform with wij≈0.9. 

 

Figure 1.2: (a) A signature and projection calculated at angles of 

0o  and 90 .   (b) The DRT displayed as a gray-scale image. This 

image has θ=128 columns, where each column represents a 

projection. 

The accuracy of the DRT is determine by θ(the number of angle), 

β ( the number of beams per angle) and the accuracy of the 

interpolation method. 

    Note that the continuous form of the Radon transform can be 

inverted through analytical means . The DRT therefore contains 

almost the same information as the original image and can be 

efficiently calculated with an algorithm by Bracewell[23].Our 

system calculates the DRT at θ angles. These angles are equally 

distributed between 0o and 180o. A typical signature and its 

DRT are shown in Figure 2. The dimension of each projection is 

subsequently altered from β to d.  

This is done by first decimating  all the zero-valued components 

from each projection. These decimated vectors are then shrunk or 

expanded to a length of d through interpolation. Although almost 

all the information in the original signature image is contained in 

the projections at angles that range from 0o to 180o, the 

projections at angles that range from 180o to 360o are also 

included in the observation sequence. These additional 

projections are added to the observation sequence in order to 

ensure that the sequence fits the topology of our HMM (see 

Section 3.2). Since these projections are simply reflections of the 

projections already calculated, no additional calculations are 

necessary. An observation sequence therefore consists of T = 2θ 

feature vectors, that is, XT1 = {x1, x2, . . . , xT}. Each vector is 

subsequently normalized by the variance of the intensity of the 

entire set of T feature vectors. Each signature pattern is therefore 

represented by an observation sequence that consists of T 

observations, where each observation is a feature vector of 

dimension d. The experimental results and computational 

requirements for various values of d and θ are discussed in 

Sections 6 . The DRT, as a feature extraction technique, has 

several advantages. Although the DRT is not a shift invariant 

representation of a signature image, shift and scale invariance is 

ensured by the subsequent image processing. Each signature is a 

static image and contains no dynamic information. Since the 

feature vectors are obtained by calculating projections at 

different angles, simulated time evolution is created from one 

feature vector to the next, where the angle is the dynamic 

variable. This enables us to construct an HMM for each signature 

(see Section 3). The DRT is calculated at angles that range from 

0o to 360oand each observation sequence is then modeled by an 

HMM of which the states are organized in a ring (see Section 

3.2). This ensures that each set of feature vectors is rotation 

invariant. Our system is also robust with respect to moderate 

levels of noise. These advantages are now discussed in more 

detail.  

1.3 Noise 
We explained earlier in this section that the zero-valued 

components of each projection are decimated before the 

remaining non-zero components are shrunk or expanded through 

interpolation. In this way, a feature vector with the required 

dimension is obtained. The decimation of the zero-valued 

components ensures that moderate levels of noise (which are 

represented by a few additional small-valued components within 

certain projections) are ―attached‖ to the other nonzero 

components before the decimated vector is shrunk or expanded. 

Since the dimension of the feature vectors are high compared to 

the number of these additional components, the incorporation of 

these components has little effect on the overall performance of 

the system. 

1.4 Shift invariance 
Although the DRT is not a shift invariant representation of a 

signature image, shift invariance is ensured by the subsequent 

image processing. The zero-valued components of each 

projection are decimated and the corresponding feature vector is 

constructed from the remaining components only 

1.5 Rotation invariance 
The DRT is calculated at angles that range from 0o to 360o and 

each set of feature vectors is then modeled by an HMM of which 

the states are organized in a ring (see Section 3.2). Each 
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signature is therefore represented by a set of feature vectors that 

is rotation invariant 

1.6 Scale invariance 
For each projection, scale invariance has to be achieved in the 

direction perpendicular to the direction in which the image is 

scanned, that is, perpendicular to the beams, and in the direction 

parallel to the beams. Scale invariance perpendicular to the 

beams is ensured by shrinking or expanding each decimated 

projection to the required dimension. Scale invariance parallel to 

the beams is achieved by normalizing the intensity of each 

feature vector. This is achieved by dividing each feature vector 

by the variance of the intensity of the entire set of feature 

vectors. 

2.SIGNATUREMODELLING 
We use a first-order continuous observation HMM to model each 

writer’s signature. For a tutorial on HMMs, the reader is referred 

to a paper by Rabiner [24] and the book by Deller et al. [25]. 

2.1. Notation 
We use the following notation for an HMM λ. 

(1) We denote the N individual states as S = {1, s2, . . . , sN}            

(2) and the state at time t as qt .  

(2) The initial state distribution is denoted by π = {πi}, where πi 

= P_q1 = si_, i = 1, . . . , N.                 (1.3) 

 

(3) The state transition probability distribution is denoted by A = 

{ai, j}, where ai, j = P_qt+1 = sj | qt = si_, i = 1, . . . ,N, j = 1, . . 

. , N.          (1.4) 

 

(4) The probability density function (pdf), which quantifies the 

similarity between a feature vector x and the state sj, is denoted 

by f _x|sj , λ_, j = 1, . . . , N.                               (1.5) 

2.2. HMM topology 
We use an HMM, the states of which are organized in a ring (see 

Figure 2.1). 

 

Figure 2.1: An example of an HMM with a ring topology. This 

model has ten states with one state skip. 

Our model is equivalent to a left-to-right model, but a transition 

from the last state to the first state is allowed. Since the HMM is 

constructed in such a way that it is equally likely to enter the 

model at any state, and the feature vectors are obtained from all 

the projections, that is, the projections calculated at angles 

ranging from 0o to 360o the ring topology of our HMM 

guarantees that the signatures 

are rotation invariant. Each state in the HMM represents one or 

more feature vectors that occupy similar positions in a d-

dimensional feature space. This implies that the HMM 

groups certain projections (columns of the DRT) together. It is 

important to note that this segmentation process only takes place 

after some further image processing has been conducted on the 

original projections. 

2.3. Training Using Viterbi Algorithm: 
Each model is trained using the Viterbi re-estimation technique. 

The dissimilarity between an observation sequence X and a 

model λ can therefore be calculated as follows (see [4]):  

d(X, λ) = −ln _ f (X|λ)_.              (6) In real-world scenarios, 

each writer can only submit a small number of training samples 

when he or she is enrolled into the system. Since our algorithm 

uses feature vectors with a high dimension, the re-estimated co-

variance matrix of the pdf for each state is not reliable and may 

even be singular. A Mahalanobis distance measure can therefore 

not be found. Consequently, these covariance matrices are not re-

estimated and are initially set to 0.5I, where I is the identity 
matrix. Only the mean vectors are re-estimated, which implies 

that the dissimilarity values are based on an Euclidean distance 

measure. We assume that training signatures, genuine test 

signatures, and forgeries are available for only a limited number 

of writers, that is, for those writers in our database. No forgeries 

are used in the training process since our system aims to detect 

only skilled and casual forgeries, and these type of forgeries are 

not available when our system is implemented. The genuine test 

signatures and forgeries are used to determine the error rates for 

our system (see Section 3). Assuming that there are W writers in 

our database, the training signatures for each writer are used to 

construct an HMM, resulting in W models, that is {λ1, λ2, . . . , 

λW}. 

When the training set for writer w is denoted by {X(w) 1 ,X(w) 2 

, . . . ,X(w) Nw }, where Nw is the number of samples in the 

training set, the dissimilarity between every training sample and 

the model is used to determine the following statistics for the 

writer’s signature:  
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2.4. VERIFICATION 
When a system aims to detect only random forgeries, subsets of 

other writers’ training sets can be used to model ―typical‖ 

forgeries. This is called ―impostor validation‖ and can be 

achieved through strategies like test normalization (see [26]). 

These techniques enable one to construct verifiers that detect 

random forgeries very accurately (see [7, 8]). Since we aim to 

detect only skilled and casual forgeries, and since models for 

these forgeries are generally unobtainable, we are not able to 

utilise any of these impostor validation techniques. We also do 

not use any subset of genuine signatures for validation purposes. 

Our verifier is constructed as follows. When a claim is made that 

the test pattern X(w) Test belongs to writer w, the pattern is first 

matched with the model λw through Viterbi alignment. This 

match is quantified by f (X(w) Test|λw). The dissimilarity 

between the test pattern and the model is then calculated as 

follows (see [4]):  

 

2.5. Experimental setup 
We consider 30 genuine signatures, 6 skilled forgeries, and 6 

casual forgeries for each writer. For each writer, 10 genuine 

signatures are used for training and 20 for testing. No genuine 

signatures are used for validation purposes. 

2.6 Results 
Let ℓ denote the number of allotted forward links in our HMM. 

Figure 4 shows the FRR and FAR as functions of our threshold 

parameter τ Є [−0.1, 1], when d = 512, θ = 128, 

N = 64, and ℓ = 1. The FRR, the FAR for a test set that 

 

Figure 2.2 contains only skilled forgeries, and the FAR for a test 

set that contains only casual forgeries are plotted on the same 

system of axes. When, for example, a threshold of τ = 0.16 is 

selected, equation (11) implies that all the test patterns for which 

d(X(w) Test, λw) ≥ 1.16μw are rejected—the other patterns are 

accepted. When only skilled forgeries are considered, this 

threshold selection will ensure an EER of approximately 18%. 

When only casual forgeries are considered, our algorithm 

achieves an EER of 4.5%. Table 1 tabulates the EER as well as a 

local FRR and FAR, for various values of d, θ, N, and ℓ. It is 

clear that when the dimension of the feature vectors is decreased 

from d = 512 to d = 256 or even to d = 128, the performance of 

the system is not significantly compromised. The performance of  

our system is generally enhanced when the number of feature 

vectors, that is, T = 2θ, or the number of states in the HMM, that 

is, N, is increased. The best results are obtained when only one 

forward link is allowed in the HMM, that is, when ℓ = 1. 
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Table 1.1 Summary of Results 

3 SIFT Related Work 
Proposed by David Lowe, Scale Invariant Features Transform 

(SIFT) is used to extract distinctive invariant features from 

images [28]. The SIFT algorithm is robust for identifying stable 

key locations in the scale- space of a grey scale image [28][52]. It 

uses the following four steps to extract the set of descriptors from 

a given image [28]. 

(i) Scale-Space extrema detection. 

(ii) Accurate Keypoint localisation. 

(iii) Orientation assignment. 

(iv) Keypoint description. 

Step 1: Scale-Space extrema detection involves 

searching over all scales and location of the sig- nature image to 

detect key points of all sizes. This is done using a difference-of-

Gaussian (DoG) function to identify potential interest points that 

are invariant to scale and orientation [52]. For each octave of 

scale space, the image is convolved with Gaussian functions 

producing a set of scale space images. Adjacent Gaussian images 

are subtracted to produce difference-of –Gaussian images. After 

each octave the Gaussian image is halved and the process is 

repeated. Figure 2.1 illustrates the blurred images at different 

scales and the computation of difference -of- Gaussian (DoG). 

The Scale-space of a signature image is defined as the function 

L(x,y,α),which is convolution of a variable scale Gaussian 

G(x,y,α) with an input signature image I(x,y) as follows [28]: 

 

Figure 3.1: Difference -of- Gaussian computation. 

L(x,y,α) = G(x,y,α) * I(x,y) (3.1) 

where * is the convolution in the x and y directions, and 

G(x,y,α)= 1 (2πa2)1/2 exp(−x2+y2 2a2 ) (3.2) 

The difference between two nearby scales, D(x,y,α), separated by 

a constant multiplicative factor k is given by   

D(x,y,α) = (G(x,y,kα) − G(x,y,α)) * I(x, y) (3.3) 

= L(x,y,kα) − L(x,y,α) (3.4) 

The keypoints are identified as local maxima and minima of the 

DoG signature images across scale. Each pixel in the DoG is 

compared to other 8 neighbouring pixels at the same scale and 9 

corresponding neighbours at the neighbouring scales. If the 

keypoint is the local maxima or minima, it is selected as a 

candidate keypoint. Figure 2.2 illustrates detecting the maxima 

and minima of difference-of-Gaussian in scale space.  

 

Figure 3.2: Scale space extrema detection (Reproduced from 

[28]). 
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Step 2: Accurate keypoint localisation. For each 

candidate keypoint identified, the interpolation of nearby data is 

used to accurately determine its point. Keypoints with low 

contrast (sensitive to noise) are dropped together with the 

responses poorly localised along the edges.  

Step 3: Orientation Assignment. Each keypoint is 

assigned one or more orientations based on local image gradients 

directions. To determine the keypoint orientation, a gradient 

orientation his- togram is computed in the neighborhood of the 

keypoint using the Gaussian image at the closest scale to the 

keypoints. The contribution of each neighboring pixel is 

weighted by the gradient magnitude and a Gaus- sian window 

with α set to be 1.5 times the scale of the keypoint. This 

contributes to stability [28]. Peaks at the histogram are 

correspondent with dominant orientation. Any keypoint that is 

within 80% of the highest peak is used to create a separate 

keypoint. The orientation assignment of each keypoint is 

obtained by computing the gradient magnitude M(x,y) and 

orientation θ(x, y)of the scale space for the scale of that keypoint: 

M(x,y)=√(K(x + 1,y) − K(x − 1,y))2 − (K(x, y + 1) − K(x, y − 

1))2 (3.5) 

and 

θ(x, y)=arctan K(x,y+1)−K(x,y−1) K(x+1,y)−K(x−1,y) (3.6) 

All the properties of the keypoint are measured relative to the 

keypoint orientation. This caters for rotation invariance. 

Step 4: Keypoint Description. Local image gradients 

are measured at the selected scale in the region around each key 

point and transformed into a representation that allows local 
shape distor- tion and change in illumination. When the keypoint 

orientation is selected, feature descriptors are computed as a set 

of orienta- tion histograms on 4*4 pixel neighborhoods. The 

orientation histograms are relative to the key- point orientation, 

and the orientation data comes from the Gaussian image closest 

in scale to the keypoints scale. The contribution of each pixel is 

weighted by the gradient magnitude and by a Gaussian with α 

1.5 times the scale of the keypoint. Histograms contain 8 bins 

each and each descriptor contains an array of 4 histograms 

around the keypoint. This gives a SIFT feature with 4*4*8=128 

values. This vector is normalized to enhance invariance to 

illumination. 

SIFT features have the following advantages compared to other 

shape descriptors [28]. 

(i) Locality-Features detected are local and robust to clutter and 

occulsion. 

(ii) Distinctiveness-Individual features can be matched to a large 

database. 

(iii) Quantity -Many features can be generated even for small 

objects. 

(iv) Efficiency for real time performance. 

(v) Extensibility -They can be extended to different dimensions 

each with added robustness. 

SIFT features have been used in pattern recognition and 

classification, mostly in object recognition. The work of Kim et 

al [53] uses SIFT features for robust digital watermarking. In 

[54] , the SIFT algorithm is used for face authentication using 

frontal view templates and evaluated for recognition of graffiti 

tags in [55] both with good results. Dlagnekov in his thesis used 

SIFT features for car make and model recognition with 89.5% 

true recognition rate [56]. More recently, use of SIFT features in 

fingerprint verification has been investigated [57]. Unlike these 

SIFT related work where the verification models have landmark 

features that have no intra class variability e.g. the location of the 

mouth and eyes in frontal view face authentication and minutiae 

points in fingerprint verification, which makes it easier to 

compute the nearest neighbours from these invariant points and 

do one to one mapping between the training class and the test 

class. Signatures have natural variance even among genuine 

signatures. 

3.1 Introduction  of Methodology 

Computer vision is often concerned with recognition of objects in 

a manner invariant to scale, pose, illumination and affine 

distortion. The SIFT algorithm takes an image and transforms it 

into a collection of local features where each of these feature 

vectors are distinctive and invariant to any scaling, rotation or 

translation of the image. In this project the SIFT features were 

considered. The implementation was done in MATLAB 6.0. The 

approach taken is a two step process with signature enrolment 

and verification. The forged signatures in the test set were 

generated by imitating the genuine signatures for each class on a 

piece of paper. The forgery was done by two people each 

generating a sample of three forged signatures per class which 

were given to a third party to chose one forgery which closely 

resembles the genuine set. Each forged signature was also 

scanned, cropped and stored in portable network graphic format. 

The results obtained from SIFT based verifier was compared 

with the results from human experts. Our original aim to use 

benchmark datasets from other research studies was not possible 

due to lack of cooperation and unavailability of online public 

datasets which are purely for offline handwritten signatures. 

3.2 Steps Used in Offline Handwritten 

Signature Verification 

The approach used for offline handwritten signature verification 

was broadly divided into two steps, signature enrolment and 

signature verification. Signature enrolment had four sub steps 

namely image pre-processing, extraction of SIFT features from 

signatures, calculation of Eu- clidean distances between images 

and creation of the known class signatures template. Signa- ture 

verification had two sub steps namely outlier detection and 

comparison of test signature with known set so as to make a 

decision whether it is a genuine signature or not. 

3.3 Signature Enrolment 

Signature enrolment involved preparation of signatures, 

extraction of SIFT features and registra- tion of signatures 

images and their SIFT features in the system. 

3.3.1 Image Pre-Processing 
The images used were signatures and were extracted from 

documents through scanning and crop- ping. A random sample of 

18 signers was used, each signer contributed a sample of 3 

signaturesgiving a total of 54 genuine signatures for the training 
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set. The test set consisted of 18 genuine signatures and 18 forged 

signatures giving a total of 36 signatures for the test set. A 

database of 90 signatures was used in overall i.e. the training set 

and test set. Signature images were stored in portable network 

graphic (PNG) format. These images were converted to greyscale 

for further processing. 

3.3.2 Extraction of SIFT Features From Signatures 
This involved identifying stable shape descriptors from the pre 

processed signature image as de- scribed in Section 2.8 . The 

implementation that was used for extracting SIFT features was 

adopted from a MATLAB function written by El-Maraghi [58]. 

Figure 3.1 shows an example of scale space Gaussian images for 

one of the signatures in the test set. Figure 3.2 shows a sample 

signature and its keypoints and their orientation. 

 

Figure 3.3: Example of space scale Gaussian images. 

 

Figure 3.4: Example of a signature with extracted SIFT features. 

3.3.3 Calculation of Euclidean Distances 
This involved calculation of the Euclidean distances between the 

SIFT features of two given sig- nature images to measure the 

variability between them. The motivation to use Euclidean 

distance as a measure of variability between images is derived 

from its success in object recognition [52] and lately in 

fingerprint verification [57]. Say we have two signatures A and 

B. Let Ai be the ith keypoint in signature A and Bj be the jth 

keypoint in signature B. The distance D(Ai,Bj) was calculated as 

the Euclidean distance between Ai and Bj. Ka, Kb are the 

number of keypoints in signature A and B respectively. The 

distance measure D( Ai,B) was taken as the average Euclidean 

distance from the ith keypoint in signature A to all the keypoints 

of signature B. The image distance between signature A and 

signature B is given by : D(A, B) = 1 Ka Ka∑i=1D(Ai,B)(3.7) 

3.3.4 Creation of the Known Signature Template. 
The implementation focused on upholding anonymity of the 

signers. Only the signatures and ar-bitrary writer IDs were used. 

For each known writer, a sample of three signatures say A, B and 

C were taken to cater for intra-personal variations. A template 

was generated as a MATLAB file and stored. The template has 

the following: 

(i) Writer ID. 

(ii) The Euclidean distances between keypoints i.e. D( Ai,B), 

D(Ai,C), and D(Bj,C). 

(iii) The distances between the Signature images i.e. D(A,B), 

D(A,C) and D(B,C). 

(iv) Intra-class thresholds: The maximum among D(A, B),D(A, 

C) and D(B,C) i.e. 

max(D(A, B),D(A, C),D(B,C)). The minimum among D(A, 

B),D(A, C) and D(B,C) 

i.e. min(D(A, B),D(A, C),D(B,C)). The average on D(A, B),D(A, 

C) and D(B,C) 

i.e. avg (D(A, B),D(A, C),D(B,C)). The range on maximum 

intra-class distance given 

by max(D(A, B),D(A, C),D(B,C)) ą 0.05. The range on minimum 

intra -class distance 

given by min(D(A, B),D(A, C),D(B,C)) ą 0.05. 

Figure 3.5 is an example of a sample of three genuine signatures 

of a known writer taken to 

cater for intra-personal variation. 

 

Figure 3.5: Example of intra-personal variation. 

Figure 3.6 Summarizes the signature enrolment stage. 

 

Figure 3.6: Steps in signature enrolment. 

3.4 Signature Verification 

Verification is the process of testing whether a claimed signature 

is of the same (class) writer as the set of signatures enrolled in 
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the system for that class. Verification involved loading the 

template MATLAB file enrolled in the system and comparing its 

stored parameters with those calculated by the outlier detection 

process.  

3.4.1 Outlier Detection 
Given a test signature say T claimed to be of a particular writer, 

the Euclidean distances were 

calculated between the test signature and each of the three 

sample signatures (as discussed in Sub- section 3.3.3 ) resulting 

to distances between the images i.e. D(T,A), D(T,B) and 

D(T,C).The inter-class thresholds, max(D(T,A),D(T,B),D(T,C)), 

min(D(T,A),D(T,B),D(T,C)), 

avg (D(T,A),D(T,B),D(T,C)) are computed. 

3.4.2 Comparison and Decision Criteria 
The comparison between the distance parameters of the SIFT 

features of the claimed test sig-nature was done with those of the 

stored template. Each decision criteria was a binary clas-

sification and was taken independently. We let W be 

(D(T,A),D(T,B),D(T,C)) and Z be(D(A, B),D(A, C),D(B,C)). 

Test 1: Comparing inter-class maximum 

distance with intra-class maximum distance 

asthreshold. 

We classify T as genuine if the condition 

max(Z) > max(W)(3.8) 

holds, otherwise we classify T as not genuine. 

Test 2: Comparing average of inter-class 

distances with the average of intra-class 

distance asthreshold. 

We classify T as genuine if the condition 

avg (Z) > avg (W)(3.9) 

holds, otherwise we classify T as not genuine. 

Test 3: Comparing inter-class minimum distance 

with intra-class minimum distance as thresh- 

old. 

We classify T as genuine if the condition 

min(Z) > min(W)(3.10) 

holds, otherwise we classify T as not genuine. 

Test 4: Using a range of 0.05 on the maximum 

intra-class distance as a threshold and com-

paring with inter-class maximum distance. 

We classify T as genuine if the conditionmax(Z) ą 0.05 > 

max(W)(3.11) 

holds, otherwise we classify T as not genuine. 

Test 5: Using a range of 0.05 on the minimum 

intra-class distance as a threshold and com-

paring with inter-class minimum distance. 

We classify T as genuine if the conditionmin(Z)) ą 0.05 > 

min(W))(3.12) 

holds, otherwise we classify T as not genuine. 

Test 6: Using a range of 0.05 on both the 

minimum intra-class distance and minimum intra-

class distance as a threshold such that the 

minimum and maximum inter- class 

distanceshould lie within that range. 

We classify T as genuine if the condition max(Z) ą 0.05 > 

max(W) and min(Z) ą 0.05 > min(W)(3.13) 

holds, otherwise we classify T as not genuine. 

Figure 3.7 summarizes the signature enrolment and verification . 

 

Figure 3.7: Flowchart showing signature enrolment and 

verification. 

3.5 Measurement of the Signature Verifier 

Accuracy 

To measure the accuracy of the verifier, a set consisting of 

genuine signatures and forged signatures was used and various 

performance statistics were used. These statistics are standard in 

machine learning literature, see example in Section 5.7 of [59]. 

(i) True Positive (TP) - A classification is a true positive if 

the signature is genuine (of known writer) and the output of the 

verifier ascertains that. 

(ii) False Positive (FP) - A classification is a false positive 

if the signature is forged and the 

output of the verifier claims that it is genuine. 

(iii) True Negative (TN) - A classification is a true negative 

if the signature is forged and the 

output of the verifier ascertains that. 

(iv) False Negative (FN) - A classification is a false 

negative if the signature is genuine (of 

known writer) and the output of the verifier claims that it is 

forged. 
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(v) The sensitivity is the proportion of actual positives (genuine 

signatures) which are correctly identified as positives. which is 

given by: 

Sensitivity =TP TP + FN (3.8) 

(vi) The specificity is the proportion of negatives (forgeries) 

which are correctly identified, 

which is given by:Specificity =TN TN + FP (3.9) 

The test for accuracy of the system is summarised in Figure 3.6 : 

 

Figure 3.8: Confusion matrix for analysing accuracy. 

4 RESULTS 

4.1 Introduction 

To measure the accuracy of the SIFT based verifier, a set 

consisting of genuine signatures and forged signatures was used. 

In total 90 signatures were used. The training set had 54 genuine 

signatures for creating the known signature templates. A test set 

consisted of a total of 36 signatures (18 genuine signatures and 

18 forged signatures). For each class of known signatures 

containing three sample signatures, a genuine and a forged 

signature were tested independently. The overall performance of 

the SIFT based classifier was measured in terms of the number 

of genuine and forged signatures it can correctly classify in the 

test set. 

4.2 Examples of Verified Signatures 

In this Section we present examples of verified signatures. Figure 

4.1 shows signatures 16.png, 17.png and 18.png from the same 

known writer(same class) and were used as the training set for 

this class to create a template. The signatures 19.png in Figure 

4.2 was the test signature. Using all the five tests described in 

Subsection 3.4.2, signature 19.png was correctly identified as 

gen- uine. Table 4.1 shows the image distances between the set 

of known signatures 16.png, 17.png and 18.png. The intra class 

maximum, max(D(16,17),D(17,18),D(16,18)) = 1.1710 is 

greaterthan the inter class maximum 

max(D(16,19),D(17,19),D(18,19)) = 1.0700. The intra class 

average, avg (D(16,17),D(17,18),D(16,18)) = 1.1293 is greater 

than the inter class average avg (D(16,19),D(17,19),D(18,19)) = 

1.0497, the intra class range on maximumm intra class distances 

is 1.2210 is also greater than inter class maximum 

max(D(16,19),D(17,19),D(18,19)) 

= 1.0700. The intra-class minimum 

min(D(16,17),D(17,18),D(16,18)) = 1.1069 is greater than inter 

class minimum distance which is 1.0382. Also the range on 

minimum, min(D(16,17),D(17,18),D(16,18))- 0.05= 1.0569 is 

also greater than inter class minimum. Hence based on all the 

tests signature 19.png is correctly classified as genuine. Table 

4.2 shows the inter- class distances between the test signature 

19.png and the template of knowns. 

 

Figure 4.1: Example 1 of genuine signatures of a known writer. 

 

Figure 4.2: Test signature correctly classfied as genuine by all 

the tests. 

Table 4.1: Image distances set of known signatures 16.png, 

17.png and 18.png. 

Signatures Distance 

description 

Image 

distance 

16.png,18.png  D(16,18) 1.1069 

17.png,18.png  D(17,18) 1.1710 

16.png,17.png  D(16,17) 1.1099 

Table 4.2: Image distances between test signature 19.png and set 

of known signatures. 

Signatures Distance 

description  

Image 

distance 

16.png,19.png D(16,19) 1.0411 

17.png,19.png) D(17,19 1.0700 

18.png,19.png D(18,19) 1.0382 

Figure 4.3 shows signatures 41.png, 42.png and 43.png from the 

same known writer and were 

used as the training set for this class to create a template. Using 

this template, signature 45.png shown in Figure 4.4 was correctly 

classified as a forgery by all the tests. Table 4.3 shows the intra - 

class distances between signatures 41.png, 42.png and 43.png. 

Table 4.4 shows the inter – class distances between known 
signatures 41.png, 42.png, 43.png and test signature 45.png. 

 

Figure 4.3: Example 2 of genuine signatures of a known writer. 
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Figure 4.4: Test signature correctly classfied as forgery by all the 

tests. 

Table 4.3: Image distances set of known signatures 41.png, 

42.png and 43.png. 

Signatures Distance 

description 

Image 

distance 

41.png,42.png D(41,42) 1.0538 

41.png,43.png  D(41,43) 1.0538  

42.png,43.png  D(42,43) 1.1028 

Table 4.4: Image distances between test signature 45.png and set 

of knowns 41.png, 42.png and 43.png. 

Signatures Distance 

description 

Image 

distance 

41.png,45.png D(41,45) 1.2012 

42.png,45.png  D(42,45) 1.3967  

43.png,45.png  D(43,45) 1.0539 

4.3 Results from the Proposed Method 

MATLAB scripts were used to detect false positives, true 

positives, true negatives, true positives and to calculate the 

sensitivity and the specificity. Sensitivity is proportion of 

genuine signatures the classifier is able to correctly identify as 

genuine from the test set and the specificity is the proportion of 

the forgeries the classifier is able to correctly classify as forgeries 

from the test set.The following statistics were obtained. 

4.3.1 Maximum Distance 
The specificity of 38.89% was obtained; which is the proportion 

of forgeries the classifier was able to identify from the testing set 

and the sensitivity of 77.78% was also obtained; which is the 

pro- portion of genuine signatures the classifier was able to 

correctly identify after using the condition set in Equation 3.2, 

that is comparing the maximum intra-class distance with 

maximum inter-class distance. This means the comparison 

between the maximum intra - class distance and maximum inter - 

class distance was better in identifying genuine signatures than 

in detecting forgeries. Table 4.5 shows the performance statistics 

obtained by the classifier using maximum class distances. Table 

4.5: Performance statistics obtained by the classifier using 

maximum class distances. 

TP  14  FP  11 

TN  7 FN  4 

4.3.2 Average Distance 
Using the condition set in Equation 3.3, that is comparing the 

average intra-class distance with average inter-class distance. 

The specificity of 50% was obtained, which is the proportion of 

forged signatures correctly identified from the test set and the 

sensitivity of 44.444% was also obtained, that is the proportion 

of genuine signatures correctly identified. From these 

performance statistics it shows the average test was poor and 

random in both detecting the forged signatures and identifying 

the genuine signatures. Table 4.6 shows the performance 

statistics obtained by the classifier using average class distances. 

Table 4.6: Performance statistics obtained by the classifier using 

average class distances. 

TP  8  FP  9 

TN  9  FN  10 

4.3.3 Minimum Distance 

The specificity of 38.889% and the sensitivity of 44.444% were 

obtained after using the condition set in Equation 3.4, that is 

comparing the minimum intra-class distance with minimum 

inter-class distance. Similar to the average test, the minimum 

distance test performed poorly in both detecting the forged 

signatures and identifying the genuine signatures. Table 4.7 

shows the performance statistics obtained by the classifier using 

minimum class distances. Table 4.7: Performance statistics 

obtained by the classifier using minimum class distances. 

TP  7  FP  10 

TN 8  FN 11 

4.3.4 Range of ą0.05 on Maximum Distance 
The specificity of 33.3% and the sensitivity of 88.8% were 

obtained after using the condition set 

in Equation 3.5, that is a range of 0.05 on the maximum intra-

class distance and setting it as a threshold and comparing it with 

the maximum inter-class distance. This test was the best in terms 

of sensitivity i.e. was able to correctly classify highest number of 

genuine signatures from the test set and the poorest in terms of 

specificity i.e. identifying forged signatures. Table 4.8 shows the 

performance statistics obtained by the classifier using the range 

test on maximum intra class distance.Table 4.8: Performance 

statistics obtained by the classifier using the range test on 

maximum class distances. 

TP 16  FP  15 

TN  3 FN 2 

4.3.5 Range of ą0.05 on Minimum Distance 
The specificity of 72.2% and the sensitivity of 50% were 

obtained after using the condition set in Equation 3.6, that is a 

range of 0.05 on the minimum intra-class distance and setting it 

as a threshold and comparing it with the minimum inter-class 

distance. This test was the best in identifying the forged 

signatures from the test set. Table 4.9 shows the performance 

statistics obtained by the classifier using the range test on 

minimum intra class distance .Table 4.9: Performance statistics 
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obtained by the classifier using the range test on minimum class 

distances. 

TP 9 FP  5 

TN  13  FN  9 

4.3.6 Range of ą0.05 on Maximum Distance and 

Range of ą0.05 on Mini- mum Distance 
The specificity of 55.5% and the sensitivity of 77.78% were 

obtained after using the condition 

set in Equation 3.7, that is a a range of 0.05 on both the 

minimum and maximum intra-class distances and setting them as 

a threshold. Table 4.10 shows the performance statistics obtained 

by the classifier using the range on both minimum and maximum 

intra-class distances. A good classifier should have high rates of 

both specificity and sensitivity. It should be able to correctly 

classify high proportion of genuine signatures from the test set 

and also detect high proportion of forged signatures as forgeries 

in the same test set. From the performance statistics, this test 

compared to the rest had high rates on both specificity and 

sensitivity and was considered for comparison with human 

experts. Table 4.10: Performance statistics obtained by the 

classifier using the range test on both minimum and maximum 

class distances.  

TP  14  FP  8 

TN  10  FN  4 

 

5. CONCLUSIONS AND AREAS OF 

FURTHER RESEARCH 

5.1 Conclusions 

The objective of this project was mainly to offer an efficient and 

economically viable offline hand- written signature verifier. In 

order to meet the objective various existing methods of offline 

hand- written signature verification were reviewed and SIFT 

features were decided as robust image de- scriptors. A database 

of signatures was collected consisting of known writers’ 

signatures and forgeries. The efficiency of the verifier was tested 

and specificity and the sensitivity were measured for each test 

taken. It was noted that some writers have large discrepancies 

between three of their sample signatures such that even a forgery 

may fall within the intra class distances which may result to a 

false negative notification this might have been caused by 

physiological factors. A good classifier should have high rates of 

specificity and sensitivity. To be able to have an efficient 

classifier we picked the test that had high rates of both specificity 

and sensitivity. The optimal condition was given by Equation 3.7 

that is, using a range of 0.05 on both the minimum intra-class 

distance and minimum intra-class distance as a threshold such 

that the minimum and maximum inter- class  distance should lie 

within that range. Though originally designed for object 

recognition, the use of SIFT features for signature verification 

had not been systematically investigated before. The performance 

statistics obtained from this test showed that SIFT features can 

be used with Euclidean distances for offline handwritten 

verification. Although this research is a good start to SIFT based 

handwritten signature verification it can be extended to evaluate 

other image similarity measures.  

5.2 Areas of Further Research 

The problem of handwritten signature verification was addressed 

from an offline point of view in the experiments. Many areas of 

study related to SIFT features and various distance measures are  

still open.  

5.2.1 Alternative Distance Measures 
Use of SIFT features as signature descriptors and other distance 

measures could be interesting. Chernoff-Bhattacharya distance, 

has been successfully used to measure discrminability in hand- 

written numeral recognition [60] could be evaluated in HSV 

problems. Mahalanobis distance is another measure that can be 

used to find patterns in SIFT features . Unlike the Euclidean 

distance that uses the mean vector, Mahalanobis distance uses 

both the mean vector and the full covariance matrix which can an 

efficient measure of variability among signatures. If the 

covariance matrix is the identity matrix, the Mahalanobis 

distance reduces to the Euclidean distance. Detailed explanations 

of the Chernoff-Bhattacharya distance and Mahalanobis distance 

can be found in Chapter 6 of [61]. The experiments can also be 

extended to combine two or more of these distance measures and 

compare their efficiency. 

5.2.2 SIFT Features and Online Handwritten 

Signature Verification 
Since online handwritten signature verification problems 

involves descriptors like velocity, acceleration and capture time 

of each point on the signature trajectory. Future work could 

evaluate inclusion of SIFT features as image descriptors and 

various distance measures discussed above in online handwritten 

signature verification problems.  
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