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ABSTRACT 
Training a support vector machine (SVM) leads to a quadratic 

optimization problem with bound constraints and one linear equality 

constraint. Despite the fact that this type of problem is well 

understood, there are many issues to be considered in designing an 

SVM learner. In particular, for large learning tasks with many 

training examples, off-the-shelf optimization techniques for general 

quadratic programs quickly become intractable in their memory and 

time requirements. Here we propose an algorithm which aims at 

reducing the learning time, this algorithm is based on the 

decomposition method proposed by Osuna dedicated to optimizing 

SVMs: it divides the original optimization problem into sub problems 

computable by the machine in terms of CPU time and memory 

storage, the obtained solution is in practice more parsimonious than 

that found by the approach of Osuna in terms of learning time 

quality, while offering similar performances. 

Keywords;Classification;Learning;Support Vector Machines (SVM); 

Qquadratic optimization; Decomposition 

 

1. INTRODUCTION 

 Support Vector Machines (SVMs) are a method which was 

introduced by [1]. This classification shows good performance in 

solving various problems such as pattern recognition or classification 

of texts. It is particularly well suited to handle high-dimension data 

such as text and images. An SVM is a learning algorithm allowing to 

learn a separator. This brings back the question of defining what a 

separator is. Give us a finite set of vectors of Rn, separated into two 

classes. Belonging to a group or another is defined by a label 

associated with each vector, which is inscribed "Class 1" or "Class 

2". Finding a separator means building a function that takes a vector 

of our set, and can tell what group it is. SVMs are a solution to this 

problem, as would be a simple learning by heart of the classes 

associated with the vectors of our set. Theoretically we encounter an 

infinite number of separators to distinguish between the two classes. 

The objective of the SVM method is to decide the best separator that 

maximizes the margin of separation, so we are in a situation to solve 

a constrained optimization whose size depends on the number of 

documents constituting our training corpus. Practically, the solution 

of such systems becomes difficult (long learning time) if not 

impossible. Therefore we resort to decomposition methods, as their 

name suggests, which decompose the original problem in many sub 

optimization problems computable by machine. 

In this paper we present the theory of SVMs, detailing the quadratic 

optimization techniques adopted by this method, then highlight the 

decomposition algorithm of OSUNA, lastly with the objective of 

reducing the learning time, we describe the proposed algorithm and 

we give some results of experiments on different corpora. Finally, we 

will propose some suggestions for future work. 

2. SUPPORT VECTOR MACHINES  

2.1 linear classification 

A classifier is called linear when it is possible to express the decision 

function by a linear function in x which will designate a vector of Rn. 

where n is the number of components of the vectors containing the 

data. We can, in general, express this function by: 
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Where w∈Rn and b∈R are parameters, and x∈Rn is a variable. 

This classifier does not only give values -1 (class 1) or 1 (class 2), but 

we will say that when the result fw,b (x) is positive, the vector x 

belongs to the same class as the examples label 1, and when the result 

is negative, the vector x belongs to the same class as examples of 

label -1. 

Note that equation fw,b(x) = 0 defines the boundary of separation 

between the two classes, and that this border is a hyper plane in the 

case of affine linear separator. 

 

 

 

 

 

 

FIG.1 Representation, in R2 , of the hyperplane corresponding to the decision 

function of a linear classifier 

2.2 Margin 

Let S= {(xi, yi) ∈  Rn x {-1,1}}, i=1…n, the training set with labels 

1} {-1,∈iy
, S+= {x/ (x,y) ∈  S and y=1} and     S-= {x/ (x,y) ∈  

S and y=-1}. 

The geometric margin is the Euclidean distance taken perpendicularly 

between the hyper plane, characterized by w and b, and the example 

xi, this margin is defined as: 
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The margin of the training set compared to the hyper plane 

characterized by w and b is defined as: 

 

 

              FIG.2 : Definition of a separator fw,b 

Classifiers with the objective of maximizing the margin of the 

training set are called maximum margin classifiers. SVM, in 

particular, is one of them. 

2.3 The canonical hyperplane 

For the objective of normalization, we can define two planes located 

on both sides of the hyperplane and parallel to it. Note that the 

examples closest are on the canonical hyperplanes, and are called 

support vectors. Figure (FIG.3.a) illustrates this situation. 

It is therefore possible to resize w and b so that the two parallel 

planes have respectively the equation: 

             1, =+ bxw   and  1, −=+ bxw  

These two hyper planes are called canonical hyper planes. 

Note that the margin of the canonical hyper plane is 1/||w||. 

  

 

 

 

FIG.3.a : Canonical hyperplanes 

For the separator with maximum margin, these examples have a 

margin larger than the examples with smallest margin of other 

possible separators. 

 

FIG.3.b:  Infinity hyperplane separators, and the optimal hyperplane with 

maximum margin. 

2.4 Optimization problem 

The width of the band formed by the canonical hyper planes is 2/||w||. 

To find the maximum margin separator, it is sufficient to search 

among the separators checking for all the examples yi*f (xi) ≥ 1, the 

separator for which ||w|| is minimal. 

Now we can formulate a mathematical optimization problem as its 

solution provides the optimal hyper plane (maximizing the margin): 

 

 (QP1)  Minimize       ( ) 2

2

1
, xbwW =  

             Subject to     ( ) 1, ≥+ bxwy ii  

This is a quadratic optimization problem. Its objective function is the 

square of the inverse of the double marginalization. The only 

constraint states that the examples should be properly classified and 

they do not exceed the canonical hyper planes. 

To avoid the problems of conventional methods of machine learning 

(over fitting, curve of dimensionality), it is necessary to introduce a 

dual formulation of the problem. For this objective, we must form 

what is called the Lagrangian. It is to enter the constraints in the 

objective function and weighted each one by a dual variable, which 

are called Lagrange multipliers. 
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In determinant conditions [2] of our optimization problem (QP1), we 

find that: 
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By substituting in (1) we can formulate the following dual problem: 
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Now, we have all the necessary elements to express the decision 

function of our linear classifier: 
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2.5 Soft Margin 

In general, it is not possible to find a linear separator in the space of 

redescription. It is also possible that some examples are mislabeled 

and that the separating hyper plane is not the best solution to the 

problem of classification. 

[3] propose a technique called soft margin, which tolerates bad 

rankings. The technique seeks a separating hyper plane that 

minimizes the number of errors with the introduction of slack 

variables ξk, which can relax the constraints on the vectors of 

learning: 

 

 

 

 

 

 

 

 

FIG.4 : The linear hyperplanes for classification problem nonlinearly 

separable. 

As before, the Lagrangian of this problem is written: 
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By forming the Lagrangian, then applying the theorem (KKT), we 

find the following dual form: 
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Where C is a parameter set in advance. The larger C is, the 
more the errors are penalized.  

2.6 Nonlinear decision surfaces 

If data are not linearly separable, a solution to better separate the 

examples is to project them into a different space (the feature space), 

and realize a linear separation in that space there. 

We denote the feature space F, and the mapping Ф into this space, we 

have:  

                       FX →Φ :  
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FIG.5 : A mapping Ф making examples linearly separable 

We end up making the linear separation on the new corpus S . This 

gives a separator, given by 

∑
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and b.  

In fact, we will not proceed like this, and we prefer to avoid the 

explicit calculation of 
( )xΦ

 by noting that the optimization 

problem posed in the previous section involves the vectors via dot 

products between them. Note k (x, z) the product
( ) ( )zx ΦΦ ,

, 

where the function k(x, y) is a kernel function. Work on the corpus 

S  returns to work on the initial corpus S with previous methods, but 

replacing all instances 
••,

 by
( )••,k

. 
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The trick is that we will not make this projection, because we 

calculate k (x, z) otherwise. In fact, k (x, z) is a function we will give, 

ensuring that there is good in theory Ф a projection in a space that 

does not seek to describe. Thus, we directly calculate k (x, z), 

whenever the previous algorithm requires a dot product, and that's 

all! The projection in the large feature space is implied. 

Example of  RBF kernel (Radial Basis Function) 

The generic form of this kernel is: 
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Where the parameterσ adjusts the width of the Gaussian. 

The vector w has a very clear geometric meaning. 

2.7 Formulation of SVM 

The problem to be solved by the SVM is a quadratic optimization 

problem under linear constraints, its version matrix is as follows: 
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Where the matrix Q is defined by ( )
jijiij xxkyyQ ,=  

3. THE DECOMPOSITION ALGORITHMS 

The size of the optimization problem (QP5) depends on the number 

of training set examples noted l. The size of the matrix Q is l2, for a 

training set of 10,000 examples and more, it becomes impossible to 

keep Q in memory. 

Many standard implementations of (QP5) solvers require explicit 

storage of Q which prohibits their application. To solve quadratic 

optimization systems of this size, the world of optimization proposed 

decomposition methods, which use subsets of the training set at each 

stage in order to solve small size problems. 

3.1 The property used: parsimony 

Note first that the forms witch will be optimised are convex and 
thus admit a single optimal solution. Note also that the constraints are 

linear and finite in number: the optimal solution α checks for each 

component iα  Karuch Kuhn Tucker (KKT) conditions, 

 ie:   ( ) 10 >→= iii xfyα  

                ( ) 10 =→<< iii xfyCα  

                        ( ) 1<→= iii xfyCα  

The general principle of decomposition methods based on the 

observation that only the unconstrained points in the solution requires 

the calculation of their coefficients: it is parsimony. Indeed, others 

have a fixed value for the coefficient, given by the problem. This has 

led to different techniques and different decomposition algorithms 

that we will explain. 

3.2 Common structure solvers 

The iterative algorithms for solving share a common structure. The 

methods differ in how they then distribute the points and the 

calculation of α. 

General Decomposition Algorithm 

1: initialization 

2: While current solution is not optimal do 

a:       update the distribution of groups 

b:      calculate the coefficients αi corresponding to changes 

5: end while 

 

3.3 The decomposition algorithm of Osuna 

3.3.1 Optimality Conditions 
 

The QP problem we have to solve is the following: 
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So the conditions of Kuhn-Tuker are necessary and sufficient for 

optimality. The KT conditions are as follows: 
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In order to derive still other algebraic expressions optimality 

conditions (1) and (2) we assume the existence of some iα  such 

that
Ci << α0

, and consider three possible values that each 

component iα  can have: 

• Case 1 : Ci << α0  for the first three equations of 

the KT conditions we have:  

                  )3(01)( =+− i

eq

i yQ λα  

Using the results of [3] and [4], we can easily prove that when 

α  is strictly between 0 and C, the following equality: 
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By combining this expression with (3) and (4), we obtain 

immediately: beq =λ  

• Case 2 : Ci =α  

By definition: ( ) ( ) 
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we conclude that ( ) 1≤ii xfy  

Case 3 : 0=iα  By applying a similar algebraic manipulation 

as the one described for case 2, we obtain: 

                           ( ) )5(1≥ii xfy  

 

1) Proposition : 
Given an optimal solution of a sub problem defined on B, the 

operation of replacing 
Bii ∈= 0α

, with 

Njj ∈= 0α
, j E N, satisfying 

( ) 1<ii xfy
generates a 

new  sub problem that when optimized, yields a strict improvement 

of the objective function [4]. 

2) The Decomposition algorithm 

Suppose we can define a fixed-size working set B, such that 

lB ≤ , and it is big enough to contain all support vectors , 

but small enough such that the computer can handle it and 

optimize it using some solver. Then the decomposition 

algorithm can be stated as follows: 

• Arbitrarily choose lB ≤ points from the data set. 

• Solve the subproblem defined by the variables in B. 

• While there exists some Nj∈ , such that ( ) 1<ii xfy , 

replace Bii ∈= 0α , with Njj ∈= 0α   

and solve the new sub problem. 

Notice that, according to the optimality conditions described above, 

this algorithm will strictly improve the objective function at each 

iteration and therefore will not cycle. Since the objective function is 

bounded W(α) is convex quadratic and the feasible region is 

bounded), the algorithm must converge to the global optimal solution 

in a finite number of iterations.[4] 

4. PROPOSED ALGORITHM 

4.1.1 Algorithm strategy 

 
Our strategy is based on the same principle to the proposal of [4], we 

divide all variables into two sets B and N such that optimality 

conditions will hold in the subproblem defined only for variables in 

the set B, called working set, then we decompose the vector α  into 

two vectors Bα
, Nα

 and put 
0=Nα

. The difference is in the 

replacement strategy elements of B satisfying 
0=iα by the 

elements of N which satisfy
( ) 1<jj xfy

, where our method will 

select the closest elements to the current hyperplane in terms of 

functional margin. Applying the following algorithm guarantees that, 

in each iteration the objective function take a faster step to the 

minimum, than Osuna algorithm. 

4.1.2 Algorithm  

• Arbitrarily choose lB ≤ points from the data set. 

• Solve the subproblem defined by the variables in B. 

• While there exists some Nj∈ , such that 

( ) 1<ii xfy , replace Bii ∈= 0α , with 

0=jα  

Where 

NkxfyxfyandNj kkjj ∈∀<∈ )()(  

and solve the new subproblem. 

3) Proof 

We assume the existence of  pα
 such as  

Cp <<α0
 suppose 

also, without loss of generality that 
jp yy =

 (the proof is 

analogous if jp yy −=
) Then there exists some  0>ε  such that 

0>−δα p for
( )εδ ,0∈

. Notice also that 
( )

pp yxf =
, 
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Now , consider 
pj ee δδαα −+=
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 and 
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are the jth and pth unit vectors , and notice that the pivot 

operation can be handled implicitly by letting 0>δ  and by holding  

0=iα . The new cost function 
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 can be written as:  
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Therefore, since ( ) 1<jj xgy  , by choosing δ  small enough 

we have ( ) ( )αα WW < . 

Now, we assume the existence of an element kα  witch 

verifies ( ) ( ) 1<< jjkk xgyxgy , and consider 

pk ee δδαα −+=  

Then we have  
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To this effect, since ( ) ( ) 1<< jjkk xgyxgy  , by 

choosing δ  small enough we have 

( ) ( ) ( )ααα WWW <<  

4) Implementation 
We chose to code this algorithm in the Matlab environment to take 

advantage of its optimizer quadprog () which can go well for a 

number of 1000 learning examples. 

Our algorithm is designed to perform the classification of text 
documents. Our choice of representation has naturally focused on the 
vector model. In the case of the bag of words representation, the 
training set used is a sample of the database "Reuters-21578" available 

at: A second perspective is to use quadratic optimizers that rely on 
other techniques such as (Interior Point Method: IPM), which seem to 
give very good results in terms of computational time and accuracy of 
the solution.  

http://download.joachims.org/svm_light/examples/example1.tar.gz, 

This set contains 1000 positive examples (class 1) and 1000 negative 

examples (class -1) in the file "train.dat. The file "test.dat" contains 

the database of test data where we have 300 positive examples (class 

1) and 300 negative examples (class -1). 

5) Results 
The following tables show the results obtained by the two learning 

algorithms based on parameter values C=1000, δ =10 for RBF 

kernel and different samples taken from the learning set "Reuters-

21578". We will always initialize the same working set for both 

algorithms. 

 Time CPU (min) Test 

Osuna 5,01 96,99 % 

Changed Ossuna 4,43 97,16 % 

Tab.1 : Results of algorithms for 600 examples of learning 

 Time CPU (min) Test 

Osuna 26,27 97,16  % 

Changed Ossuna 15,88 97,16 % 

Tab.1 : Results of algorithms for 800 examples of learning 

6) Discussion 
 

We started learning with a set of 600 examples for both algorithms 

including 300 positive and 300 negative, this number of examples 

will be increased for each experiment under the same parameters. 

The tables above show that, the learning time elapsed from the 

amended Osuna algorithm is always better than the time of the 

original algorithm whose difference is proportional to the size of the 

corpus. We also note that the model deduced always gives the same 

results on the test set about 97% for all experiments. 

5. CONCLUSION AND PERSPECTIVES 

 
The objective of our work is the development of a text classifier by 

learning using the method Support Vector Machine (SVM). This 

work deals with the learning and the formulation of principles of the 

SVM method, which becomes a quadratic optimization problem 

untold by the machine. In this context, several approaches are 

proposed and which are generally based on the principle of 

decomposition. we have discussed, in particular, the algorithm of 

Osuna. Based on the same principle of this algorithm, we have 

proposed a new way to define the sub-problems to optimize (working 

set). Finally, in the phase of implementation we have chosen a 

sample of the corpus "Reuters-21578 "containing 2000 learning 

examples and 600 test items, then we have applied both algorithms 

on several samples of the corpus by increasing the size of sample for 

each experiment. The results obtained show that our strategy has 

worked to reduce the learning time compared to the algorithm of 

Osuna, and that the model derived by each algorithm gave the same 

results on the classification of the test corpus. 

One perspective in this work is the implementation of the algorithm 

using the technique of caching for the Hessian matrix Q, to exploit its 

influence on the training duration. 
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