
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

49

SVM : Reduction of Learning Time

Sid Ahmed MOSTEFAOUI
Department of Computer Science

University of Tiaret
ALGERIA

 Lynda ZAOUI
Department of Computer Science

University USTO
Oran-ALGERIA

ABSTRACT
Training a support vector machine (SVM) leads to a quadratic

optimization problem with bound constraints and one linear equality

constraint. Despite the fact that this type of problem is well

understood, there are many issues to be considered in designing an

SVM learner. In particular, for large learning tasks with many

training examples, off-the-shelf optimization techniques for general

quadratic programs quickly become intractable in their memory and

time requirements. Here we propose an algorithm which aims at

reducing the learning time, this algorithm is based on the

decomposition method proposed by Osuna dedicated to optimizing

SVMs: it divides the original optimization problem into sub problems

computable by the machine in terms of CPU time and memory

storage, the obtained solution is in practice more parsimonious than

that found by the approach of Osuna in terms of learning time

quality, while offering similar performances.

Keywords;Classification;Learning;Support Vector Machines (SVM);

Qquadratic optimization; Decomposition

1. INTRODUCTION

 Support Vector Machines (SVMs) are a method which was

introduced by [1]. This classification shows good performance in

solving various problems such as pattern recognition or classification

of texts. It is particularly well suited to handle high-dimension data

such as text and images. An SVM is a learning algorithm allowing to

learn a separator. This brings back the question of defining what a

separator is. Give us a finite set of vectors of Rn, separated into two

classes. Belonging to a group or another is defined by a label

associated with each vector, which is inscribed "Class 1" or "Class

2". Finding a separator means building a function that takes a vector

of our set, and can tell what group it is. SVMs are a solution to this

problem, as would be a simple learning by heart of the classes

associated with the vectors of our set. Theoretically we encounter an

infinite number of separators to distinguish between the two classes.

The objective of the SVM method is to decide the best separator that

maximizes the margin of separation, so we are in a situation to solve

a constrained optimization whose size depends on the number of

documents constituting our training corpus. Practically, the solution

of such systems becomes difficult (long learning time) if not

impossible. Therefore we resort to decomposition methods, as their

name suggests, which decompose the original problem in many sub

optimization problems computable by machine.

In this paper we present the theory of SVMs, detailing the quadratic

optimization techniques adopted by this method, then highlight the

decomposition algorithm of OSUNA, lastly with the objective of

reducing the learning time, we describe the proposed algorithm and

we give some results of experiments on different corpora. Finally, we

will propose some suggestions for future work.

2. SUPPORT VECTOR MACHINES

2.1 linear classification

A classifier is called linear when it is possible to express the decision

function by a linear function in x which will designate a vector of Rn.

where n is the number of components of the vectors containing the

data. We can, in general, express this function by:

∑
=

+=+=
n

i

ii bxwbxwxf
1

,)(

Where w∈Rn and b∈R are parameters, and x∈Rn is a variable.

This classifier does not only give values -1 (class 1) or 1 (class 2), but

we will say that when the result fw,b (x) is positive, the vector x

belongs to the same class as the examples label 1, and when the result

is negative, the vector x belongs to the same class as examples of

label -1.

Note that equation fw,b(x) = 0 defines the boundary of separation

between the two classes, and that this border is a hyper plane in the

case of affine linear separator.

FIG.1 Representation, in R2 , of the hyperplane corresponding to the decision

function of a linear classifier

2.2 Margin

Let S= {(xi, yi) ∈ Rn x {-1,1}}, i=1…n, the training set with labels

1} {-1,∈iy
, S+= {x/ (x,y) ∈ S and y=1} and S-= {x/ (x,y) ∈

S and y=-1}.

The geometric margin is the Euclidean distance taken perpendicularly

between the hyper plane, characterized by w and b, and the example

xi, this margin is defined as:

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

50

The margin of the training set compared to the hyper plane

characterized by w and b is defined as:

 FIG.2 : Definition of a separator fw,b

Classifiers with the objective of maximizing the margin of the

training set are called maximum margin classifiers. SVM, in

particular, is one of them.

2.3 The canonical hyperplane

For the objective of normalization, we can define two planes located

on both sides of the hyperplane and parallel to it. Note that the

examples closest are on the canonical hyperplanes, and are called

support vectors. Figure (FIG.3.a) illustrates this situation.

It is therefore possible to resize w and b so that the two parallel

planes have respectively the equation:

 1, =+ bxw and 1, −=+ bxw

These two hyper planes are called canonical hyper planes.

Note that the margin of the canonical hyper plane is 1/||w||.

FIG.3.a : Canonical hyperplanes

For the separator with maximum margin, these examples have a

margin larger than the examples with smallest margin of other

possible separators.

FIG.3.b: Infinity hyperplane separators, and the optimal hyperplane with

maximum margin.

2.4 Optimization problem

The width of the band formed by the canonical hyper planes is 2/||w||.

To find the maximum margin separator, it is sufficient to search

among the separators checking for all the examples yi*f (xi) ≥ 1, the

separator for which ||w|| is minimal.

Now we can formulate a mathematical optimization problem as its

solution provides the optimal hyper plane (maximizing the margin):

 (QP1) Minimize () 2

2

1
, xbwW =

 Subject to () 1, ≥+ bxwy ii

This is a quadratic optimization problem. Its objective function is the

square of the inverse of the double marginalization. The only

constraint states that the examples should be properly classified and

they do not exceed the canonical hyper planes.

To avoid the problems of conventional methods of machine learning

(over fitting, curve of dimensionality), it is necessary to introduce a

dual formulation of the problem. For this objective, we must form

what is called the Lagrangian. It is to enter the constraints in the

objective function and weighted each one by a dual variable, which

are called Lagrange multipliers.

() ()[])1(1,
2

1
,,

1

2
−+−= ∑

=

bxwywbwL ii

n

i

iαα

In determinant conditions [2] of our optimization problem (QP1), we

find that:

∑
=

=
n

i

ii y
1

0α

() 









+=Ψ

w

b
x

w

w
yyx iiiibw ,,

()iibw
ni

bw yx ,min ,
...1

, Ψ=Ψ
=

∑
=

=
n

i

iii xyw
1

α

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

51

By substituting in (1) we can formulate the following dual problem:

∑∑
==

+−=
n

ji

jijiji

n

i

i xxyyWMinimierQP
1,1

,
2

1
)()2(αααα









=∀≥

=∑
=

ni

y
ts

i

n

i

ii

...10

0
. 1

α

α

Now, we have all the necessary elements to express the decision

function of our linear classifier:

() bxxyxf
n

i

iii +=∑
=1

,α

2.5 Soft Margin

In general, it is not possible to find a linear separator in the space of

redescription. It is also possible that some examples are mislabeled

and that the separating hyper plane is not the best solution to the

problem of classification.

[3] propose a technique called soft margin, which tolerates bad

rankings. The technique seeks a separating hyper plane that

minimizes the number of errors with the introduction of slack

variables ξk, which can relax the constraints on the vectors of

learning:

FIG.4 : The linear hyperplanes for classification problem nonlinearly

separable.

As before, the Lagrangian of this problem is written:

∑
=

+=
n

i

ii CwxbwLMinimiserQP
1

2

2

1
),,()3(ξ

()





=∀≥

=∀−≥+

ni

nibxwy
ts

i

iii

..10

..11,
.

ξ

ξ

By forming the Lagrangian, then applying the theorem (KKT), we

find the following dual form:

∑∑
==

−=
n

ji

jijiji

n

i

i xxyyWMaximiserQP
1,1

,
2

1
)()4(αααα









=∀≤≤

=∑
=

niC

y
ts

i

n

i

ii

...10

0
. 1

α

α

Where C is a parameter set in advance. The larger C is, the
more the errors are penalized.

2.6 Nonlinear decision surfaces

If data are not linearly separable, a solution to better separate the

examples is to project them into a different space (the feature space),

and realize a linear separation in that space there.

We denote the feature space F, and the mapping Ф into this space, we

have:

 FX →Φ :

 ()

()
()

()





















∅

∅

∅

=Φ

x

x

x

x

n

.

.

2

1

FIG.5 : A mapping Ф making examples linearly separable

We end up making the linear separation on the new corpus S . This

gives a separator, given by

∑
=

=
n

i

iii xyw
1

α
and b.

In fact, we will not proceed like this, and we prefer to avoid the

explicit calculation of
()xΦ

 by noting that the optimization

problem posed in the previous section involves the vectors via dot

products between them. Note k (x, z) the product
() ()zx ΦΦ ,

,

where the function k(x, y) is a kernel function. Work on the corpus

S returns to work on the initial corpus S with previous methods, but

replacing all instances
••,

 by
()••,k

.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

52

The trick is that we will not make this projection, because we

calculate k (x, z) otherwise. In fact, k (x, z) is a function we will give,

ensuring that there is good in theory Ф a projection in a space that

does not seek to describe. Thus, we directly calculate k (x, z),

whenever the previous algorithm requires a dot product, and that's

all! The projection in the large feature space is implied.

Example of RBF kernel (Radial Basis Function)

The generic form of this kernel is:

()












 −
−=

2

2

2
exp,

σ

zx
zxk

Where the parameterσ adjusts the width of the Gaussian.

The vector w has a very clear geometric meaning.

2.7 Formulation of SVM

The problem to be solved by the SVM is a quadratic optimization

problem under linear constraints, its version matrix is as follows:

αααα QWMinimiserQP TT

2

1
1)()5(+−=





=∀≤≤

=

niC

y
tS

T

...110

0
.

α
α

Where the matrix Q is defined by ()
jijiij xxkyyQ ,=

3. THE DECOMPOSITION ALGORITHMS

The size of the optimization problem (QP5) depends on the number

of training set examples noted l. The size of the matrix Q is l2, for a

training set of 10,000 examples and more, it becomes impossible to

keep Q in memory.

Many standard implementations of (QP5) solvers require explicit

storage of Q which prohibits their application. To solve quadratic

optimization systems of this size, the world of optimization proposed

decomposition methods, which use subsets of the training set at each

stage in order to solve small size problems.

3.1 The property used: parsimony

Note first that the forms witch will be optimised are convex and
thus admit a single optimal solution. Note also that the constraints are

linear and finite in number: the optimal solution α checks for each

component iα Karuch Kuhn Tucker (KKT) conditions,

 ie: () 10 >→= iii xfyα

 () 10 =→<< iii xfyCα

 () 1<→= iii xfyCα

The general principle of decomposition methods based on the

observation that only the unconstrained points in the solution requires

the calculation of their coefficients: it is parsimony. Indeed, others

have a fixed value for the coefficient, given by the problem. This has

led to different techniques and different decomposition algorithms

that we will explain.

3.2 Common structure solvers

The iterative algorithms for solving share a common structure. The

methods differ in how they then distribute the points and the

calculation of α.

General Decomposition Algorithm

1: initialization

2: While current solution is not optimal do

a: update the distribution of groups

b: calculate the coefficients αi corresponding to changes

5: end while

3.3 The decomposition algorithm of Osuna

3.3.1 Optimality Conditions

The QP problem we have to solve is the following:

αααα QWMinimizeQP TT

2

1
1)()6(+−=









≤−

=∀≤−

=

0

...10

0

.

C

ni

y

tS

T

α
α

α

So the conditions of Kuhn-Tuker are necessary and sufficient for

optimality. The KT conditions are as follows:

10 C≤≤α

() ()
() 0..1

0

=−=∀

=+−+∇

i

lo

i

uploeq

ni

yW

αλ

λλλα

() 0..1 =−=∀ Cni i

up

i αλ

)2(0≥loλ

)1(0≥upλ

0=yTα

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

53

In order to derive still other algebraic expressions optimality

conditions (1) and (2) we assume the existence of some iα such

that
Ci << α0

, and consider three possible values that each

component iα can have:

• Case 1 : Ci << α0 for the first three equations of

the KT conditions we have:

)3(01)(=+− i

eq

i yQ λα

Using the results of [3] and [4], we can easily prove that when

α is strictly between 0 and C, the following equality:

 ())4(1,
1

=







+∑

=

l

j

jijji bxxkyy α

And we have () ()







= ∑

=

l

j

jijjii xxkyyQ
1

,αα

By combining this expression with (3) and (4), we obtain

immediately: beq =λ

• Case 2 : Ci =α

By definition: () () 







+= ∑

=

l

j

jijji bxxkyxf
1

,α

and noting that

() () ()()bxfyxxkyyQ ii

l

j

jijjii
−=








= ∑

=1

,αα

we conclude that () 1≤ii xfy

Case 3 : 0=iα By applying a similar algebraic manipulation

as the one described for case 2, we obtain:

 ())5(1≥ii xfy

1) Proposition :
Given an optimal solution of a sub problem defined on B, the

operation of replacing
Bii ∈= 0α

, with

Njj ∈= 0α
, j E N, satisfying

() 1<ii xfy
generates a

new sub problem that when optimized, yields a strict improvement

of the objective function [4].

2) The Decomposition algorithm

Suppose we can define a fixed-size working set B, such that

lB ≤ , and it is big enough to contain all support vectors ,

but small enough such that the computer can handle it and

optimize it using some solver. Then the decomposition

algorithm can be stated as follows:

• Arbitrarily choose lB ≤ points from the data set.

• Solve the subproblem defined by the variables in B.

• While there exists some Nj∈ , such that () 1<ii xfy ,

replace Bii ∈= 0α , with Njj ∈= 0α

and solve the new sub problem.

Notice that, according to the optimality conditions described above,

this algorithm will strictly improve the objective function at each

iteration and therefore will not cycle. Since the objective function is

bounded W(α) is convex quadratic and the feasible region is

bounded), the algorithm must converge to the global optimal solution

in a finite number of iterations.[4]

4. PROPOSED ALGORITHM

4.1.1 Algorithm strategy

Our strategy is based on the same principle to the proposal of [4], we

divide all variables into two sets B and N such that optimality

conditions will hold in the subproblem defined only for variables in

the set B, called working set, then we decompose the vector α into

two vectors Bα
, Nα

 and put
0=Nα

. The difference is in the

replacement strategy elements of B satisfying
0=iα by the

elements of N which satisfy
() 1<jj xfy

, where our method will

select the closest elements to the current hyperplane in terms of

functional margin. Applying the following algorithm guarantees that,

in each iteration the objective function take a faster step to the

minimum, than Osuna algorithm.

4.1.2 Algorithm

• Arbitrarily choose lB ≤ points from the data set.

• Solve the subproblem defined by the variables in B.

• While there exists some Nj∈ , such that

() 1<ii xfy , replace Bii ∈= 0α , with

0=jα

Where

NkxfyxfyandNj kkjj ∈∀<∈)()(

and solve the new subproblem.

3) Proof

We assume the existence of pα
 such as

Cp <<α0
 suppose

also, without loss of generality that
jp yy =

 (the proof is

analogous if jp yy −=
) Then there exists some 0>ε such that

0>−δα p for
()εδ ,0∈

. Notice also that
()

pp yxf =
,

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

54

Now , consider
pj ee δδαα −+=

 where je
 and

pe
are the jth and pth unit vectors , and notice that the pivot

operation can be handled implicitly by letting 0>δ and by holding

0=iα . The new cost function
()αW

 can be written as:

() αααα QW ⋅+⋅−=
2

1
1

() () ()[]
pjpjpj eeQeeeeQQ δδδδδδααααα −⋅−+−⋅+⋅+⋅−= 2

2

1
1

()
() () () ()[]pjpjppjj

pj

j
xxKyyxxKxxK

y

b

y

bxf
W ,2,,

2
1

2

−++











+−

−
+=

δ
δα

() ()[] () () ()[]pjpjppjjjj xxKyyxxKxxKxfyW ,2,,
2

1
2

−++−+=
δ

δα

Therefore, since () 1<jj xgy , by choosing δ small enough

we have () ()αα WW < .

Now, we assume the existence of an element kα witch

verifies () () 1<< jjkk xgyxgy , and consider

pk ee δδαα −+=

Then we have

() () () ()[]
() () ()

() 









 +−−
+

−=−

),2

,(),2,(

2

)()(

2

pjpj

jjpkpkkk

jjkjk

xxKyy

xxKxxKyyxxK

xfyxfyWW

δ

δαα

To this effect, since () () 1<< jjkk xgyxgy , by

choosing δ small enough we have

() () ()ααα WWW <<

4) Implementation
We chose to code this algorithm in the Matlab environment to take

advantage of its optimizer quadprog () which can go well for a

number of 1000 learning examples.

Our algorithm is designed to perform the classification of text
documents. Our choice of representation has naturally focused on the
vector model. In the case of the bag of words representation, the
training set used is a sample of the database "Reuters-21578" available

at: A second perspective is to use quadratic optimizers that rely on
other techniques such as (Interior Point Method: IPM), which seem to
give very good results in terms of computational time and accuracy of
the solution.

http://download.joachims.org/svm_light/examples/example1.tar.gz,

This set contains 1000 positive examples (class 1) and 1000 negative

examples (class -1) in the file "train.dat. The file "test.dat" contains

the database of test data where we have 300 positive examples (class

1) and 300 negative examples (class -1).

5) Results
The following tables show the results obtained by the two learning

algorithms based on parameter values C=1000, δ =10 for RBF

kernel and different samples taken from the learning set "Reuters-

21578". We will always initialize the same working set for both

algorithms.

 Time CPU (min) Test

Osuna 5,01 96,99 %

Changed Ossuna 4,43 97,16 %

Tab.1 : Results of algorithms for 600 examples of learning

 Time CPU (min) Test

Osuna 26,27 97,16 %

Changed Ossuna 15,88 97,16 %

Tab.1 : Results of algorithms for 800 examples of learning

6) Discussion

We started learning with a set of 600 examples for both algorithms

including 300 positive and 300 negative, this number of examples

will be increased for each experiment under the same parameters.

The tables above show that, the learning time elapsed from the

amended Osuna algorithm is always better than the time of the

original algorithm whose difference is proportional to the size of the

corpus. We also note that the model deduced always gives the same

results on the test set about 97% for all experiments.

5. CONCLUSION AND PERSPECTIVES

The objective of our work is the development of a text classifier by

learning using the method Support Vector Machine (SVM). This

work deals with the learning and the formulation of principles of the

SVM method, which becomes a quadratic optimization problem

untold by the machine. In this context, several approaches are

proposed and which are generally based on the principle of

decomposition. we have discussed, in particular, the algorithm of

Osuna. Based on the same principle of this algorithm, we have

proposed a new way to define the sub-problems to optimize (working

set). Finally, in the phase of implementation we have chosen a

sample of the corpus "Reuters-21578 "containing 2000 learning

examples and 600 test items, then we have applied both algorithms

on several samples of the corpus by increasing the size of sample for

each experiment. The results obtained show that our strategy has

worked to reduce the learning time compared to the algorithm of

Osuna, and that the model derived by each algorithm gave the same

results on the classification of the test corpus.

One perspective in this work is the implementation of the algorithm

using the technique of caching for the Hessian matrix Q, to exploit its

influence on the training duration.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.7, June 2010

55

Bibliography
[1] V. Vapnik, «The Nature of Statistical Learning Theory».

Springer Verlag, New York, 1995.

[2] W. Kuhn et A. W. Tucker. « Nonlinear programming ». In
Proc. 2nd Berkeley Symposium on Mathematical Statistics
and Probabilistics, pages 481–492, Berkeley, 1951.University
of California Press.

[3] C. Cortes et V. Vapnik. « Support vector networks». Machine
Learning, 20:1-25, 1995.

[4] E. Osuna, R. Freund, and F. Girosi. «Support vector
machines: Training and applications». A.I. Memo 1602, MIT
A. I. Lab., 1997.

