
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

24

QoS Guided Heuristic Algorithms for Grid Task
Scheduling

Sameer Singh Chauhan
Department of Electronics & Computer Engineering

Indian Institute of Technology Roorkee
Roorkee, India - 247667

R. C. Joshi
Department of Electronics & Computer Engineering

Indian Institute of Technology Roorkee
Roorkee, India - 247667

ABSTRACT

Due to the heterogeneity and geographically distribution of Grid

resources, effective and efficient task scheduling algorithms are
required. Resource load balancing and minimizing makespan are
the fundamental goals of effective and efficient task scheduling. It
becomes more complicated when various QoS demands arise
from users. In this paper, we have presented two algorithms, QoS
Guided Weighted Mean Time-min and QoS Guided Weighted
Mean Time Min-Min Max-Min Selective, for QoS based Grid
task scheduling. Both algorithms consider the resource

performance and QoS demands of tasks for scheduling. The
algorithms are simulated using GridSim. The results show that the
proposed algorithms outperform in makespan, resource utilization
and load balancing than other algorithms such as, Weighted Mean
Time-min, Weighted Mean Time Min-Min Max-Min Selective,
Min-Min, Max-Min and QoS Guided Min-Min.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed Application

General Terms

Algorithms

Keywords

Grid Computing, QoS, Makespan, Load Balancing.

1. INTRODUCTION
Effective and efficient Task scheduling is an important aspect of
Grid computing. Task scheduling becomes more complicated in
Grid environment, due to the geographically distribution,
heterogeneity and dynamic nature of grid resources. It has been
proved that QoS based task scheduling in Heterogeneous
Computing (HC) is NP-hard problem[1]. The classical heuristic
algorithms such as Min-Min, Max-Min, Sufferage[2], do not

consider the QoS demands of tasks in deciding the match between
resources and tasks. QoS requirement of a task is one of the
important factors in scheduling. QoS guided Min-Min[3]
algorithm considers network bandwidth as QoS parameter in
scheduling. It divides the tasks in two groups: high and low QoS.
It first schedules the tasks from the high and afterword from the
low group. The priority grouping algorithm[4], groups the tasks in
n groups. These groups are formed on the basis the QoS services

provided by the resources. The QoS based algorithms given in [3,
4] shows that the results given by them are better than the
classical scheduling algorithms such as given in [2].

In this paper, we have presented two heuristic algorithms: QoS
Guided Weighted Mean Time-Min(QWMTM) and QoS Guided
Weighted Mean Time Min-Min Max-Min Selective(QWMTS).

Both algorithms are for batch mode independent tasks scheduling.
The network bandwidth is taken as QoS parameter. The QWMTM
divides the tasks in a metatask in two groups: high and low QoS.
The heuristic first schedules the high QoS group task and
afterward low QoS tasks. The QWMTS heuristic is the extension

of our previous work Weighted Mean Time Min-Min Max-Min[5]
heuristic. The QWMTS heuristic creates priority groups, to group
the tasks with related QoS demands. The groups are created based
on the QoS services provided by the resources. If there are n
resources, then at most n groups can be created. Each group is
assigned a priority level. The tasks are assigned to one of the
groups based on their QoS requirements. With the descendent
order from high to low priority, the tasks from the group are
mapped.

The paper is organized as follows. In section 2 we have discussed
the related work. In section 3 the problem is described. In section
4 the QoS Guided Weighted Mean Time-min heuristic is
discussed. In section 5 the QoS Guided Weighted Mean Time
Min-Min Max-Min Selective heuristic is discussed. In section 6
simulation environment and performance metrics are shown.
Results are discussed in section 7. Conclusion and future work is
discussed in section 8.

2. RELATED WORK
In this section, we are going to review a set of heuristics those
schedules meta-task(MT)[6] to a set of resources. Meta-task can
be defined as a collection of independent tasks with no inter-task
dependencies. Throughout the paper the number of tasks in MT is

represented with n and number of resources is represented with m.

2.1 Min-Min Heuristic
The Min-Min algorithm[2] is a simple algorithm which runs fast
and delivers the satisfactory performance. Min-Min begins with
the set MT of all unassigned tasks. It has two phases. In the first

phase, the set of minimum expected completion time for each task
in MT is found. In the second phase, the task with the overall
minimum expected completion time from MT is chosen and
assigned to the corresponding resource. Then this task is removed
from MT and the process is repeated until all tasks in the MT are
mapped. In most situations, it maps as many tasks as possible to
their first choice of service resources. However, the Min-Min
algorithm is unable to balance the load well since it usually

schedules small tasks first. This algorithm takes O(n2m) time.

2.2 Max-Min Heuristic
Max-Min algorithm[2] is very similar to Min-Min, except in
second phase. Max-Min assigns task with maximum expected
completion time to the corresponding resource in second phase.
The Max-Min algorithm may give a mapping with more balanced

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

25

loads across the service resources in some environments. This
algorithm takes O(n2m) time.

2.3 Weighted Mean Time-min Heuristic
Weighted Mean Time algorithm[7] employs weighted mean
execution time as heuristic and then assigns the tasks which have
maximum weighted mean execution time to the machine with
minimum earliest completion time. The heuristics finds the
performance of each resource, called the weight of the resource.
This weight is used to find the weighted mean time of each task.

2.4 QoS Guided Min-Min Heuristic
QoS Guided Min-Min heuristic[3] is based on the Min-Min
heuristic. It considers network bandwidth as QoS parameter. It
divides the tasks in two groups: high and low QoS. The idea
behind this division is that the tasks requiring high QoS can only
run on high QoS providing hosts. The low QoS task can run on

any hosts and if they are allocated to high QoS resources, then it
leads large makespan, wastage of resources and unbalancing the
load. At last, this reduces the overall performance of Grid
systems. The QoS guided Min-Min heuristic first schedules the
tasks from high QoS group on resources that can provide high
QoS as required. Later it schedules the tasks from low QoS group.
This algorithm takes O(n2m) time.

3. PROBLEM DISCRIPTION
Now a day, user’s demand for various QoS is continuously
increasing in various computing environments. The QoS is an
extensive concept and it varies from application to application. It
could be the requirement of CPU speed, network bandwidth,
deadline, execution cost etc. Providing nontrivial QoS is one of

the primary goals of Grid computing. The QoS demands from
users put conditions, on the schedulers, to run the
applications/tasks. We can justify the QoS demand of a task by
following example. Let there are two tasks t1 and t2 and two
resources r1 and r2. The task t1 can only be executed on resource
r1 but task t2 can be executed on any of the two resources. Now if
we schedule task t2 first on resource r1 then task t1 has to wait till
task t2 completes. Meanwhile the resource r2 is also idle.
Scheduling the tasks in above way increases the makespan, wastes

the resources and it eventually results in overall degradation of the
performance of Grid. The problem is to design such algorithms
which should consider the QoS demands of tasks in scheduling.
The algorithm should give preference to tasks with QoS demands
and should schedule them first. From the above example, if task t1
is first scheduled on resource r1 and task t2 on resource r2, then
the requirement of both tasks is satisfied and the resources are
also utilized fully.

Now, we are going to give the terminology [2] used in this paper.

The expected execution time ETij of task ti on resource rj is
defined as the amount of time taken by rj to execute ti given that rj
has no load when ti is assigned. The expected execution time
matrix (ETC), is formed by finding the expected execution time of
each task on every resource. The expected completion time CTij of
task ti on resource rj is defined as the wall-clock time at which rj
completes ti after having finished previously assigned work. The

makespan of the schedule is defined as maxti€{t1, t2,…,tn}CTij, where
task ti is assigned to resource rj. Hence,

 (3.1)

Here rtj is the ready time of resource rj. Ready time is the time
after which the resource will be free to execute a new task.

4. QoS GUIDED WEIGHTED MEAN TIME-

MIN HEURISTIC
The Weighted Mean Time-min heuristic, does not consider the
QoS demand of tasks for scheduling. The heuristic is modified
and a QoS parameter, network bandwidth, is introduced. It

considers this QoS parameter as QoS demand of task for
scheduling. The modified algorithm is given in figure 4.1.

(1) Divide the tasks in two groups : High and Low QoS

(2) While there are tasks in MT

(3) Do until all tasks with high QoS in MT are mapped

(4) For each task find the weighted mean time

(5) Find task ti with maximum weighted mean time

(6) For the task ti, find the resource rj from QoS
 qualified resources that gives minimum completion
 time

(7) Assign task ti to resource rj

(8) Update ready time of resource rj

(9) Delete task ti from MT

(10) End Do

(11) Do until all tasks with low QoS in MT are mapped

(12) For each task find the weighted mean time

(13) Find task ti with maximum weighted mean time

(14) For the task ti find the resource rj that gives the
 earliest completion time

(15) Assign task ti to resource rj

(16) Update ready time of resource rj

(17) Delete the task ti from MT

(18) End Do

(19) End While

Figure 4.1 QWMTM Heuristic

The working of the algorithm is as follows: The algorithm first

divides the tasks into two groups: high and low QoS. In high QoS
group the task with high QoS demands are taken. In low QoS
group, tasks with low or no QoS demands are taken. The
algorithm first schedules tasks from the high QoS group and
afterward tasks from low QoS group. For each group it first
calculates the performance of the resources, using equation (4.1),
called weight of the resource.

 (4.1)

Here avgi is the average of expected execution time all tasks on
each resource rj.

 (4.2)

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

26

The weighted mean time of each task can be calculated using
equation (4.3).

 (4.3)

For each task in high QoS group, the algorithm calculates the
weighted mean time using equation (4.3). It selects the task t i with
maximum weighted mean time for mapping. It finds the resource
rj, from QoS qualified resource set, for the task ti that gives the
earliest completion time. It maps the task ti on resource rj. It
updates the ready time of resource rj. Task ti is deleted from MT.

The process continues till all the tasks are mapped. After
mapping, all high QoS tasks, the algorithm maps the tasks from
low QoS group. For each task in low QoS group the algorithm
calculates weighted mean time using equation (4.3). It selects the
task ti with maximum weighted mean time. For the task ti, it finds
the resource rj that gives earliest completion time. It maps the task
ti on resource rj. It updates the ready time of resource rj. Task ti is
deleted from MT. The process continues till all tasks from low

QoS group are mapped.

5. QoS GUIDED WEIGHTED MEAN TIME

MIN-MIN MAX-MIN SELECTIVE

HEURISTIC
The Weighted Mean Time Min-Min Max-Min Selective
heuristic[5] considers the performance of resources and calls this
performance as weight of resource. It uses the merits and demerits

of Min-Min and Max-Min heuristics for scheduling. In its present
form it does not consider the influence brought by the QoS of
task. We have included a QoS parameter, network bandwidth in it.
The modified heuristic QoS guided weighted mean time min-min
max-min selective considers the QoS demand of task for mapping.
It creates n priority groups of tasks based on the services available
at the time of mapping. Each task is assigned to one of the groups
based on its QoS demand. Each group is assigned a priority level.
Tasks from the highest priority group are mapped first and

afterward tasks from high to low priority group are mapped. The
algorithm is shown in figure 5.1.

The working of algorithm is as follows. It first creates the
expected time compute matrix by calculating the expected
execution time of each task on all resources. It computes n groups,
based on the QoS services provided by the resources. For each
group it calculates the weight of the resources in that group. It
calculates the weighted mean time of each task in the group. It

calculates the standard deviation of the completion time of
unassigned tasks of MT. The standard deviation[8] can be
calculated using equation(5.1).

 (5.1)

Here avgCT is average of completion time of all unassigned tasks.
It can be defined as

 (5.2)

Which task, having maximum or minimum weighted mean time,
will be chosen for the mapping that depends on the critical value
of the relative standard deviation(SD’). The relative standard
deviation can be computed using equation (5.3)

 SD’ = SD/avgCT (5.3)

The relative standard deviation shows the degree of dispersion of
a set of values, here the set of values are CTij. If the value of the
relative standard deviation is less than the critical value of relative
standard deviation(ST), then task with minimum weighted mean
time is chosen for mapping otherwise task with maximum

weighted mean time is chosen for mapping. The critical value of
relative standard deviation can be found by experiments, which
come out to be 0.64 in this case.

(1) Get the expected execution time of each task on all

 resources. Create ETC matrix

(2) Compute n QoS groups

(3) While (i < n)

(4) For each QoS group

(5) For all resources rj compute

(6) For all resources ri compute the weight

(7) For all tasks ti in group

(8) For all resources rj

(9) CTij = ETij + rtj

(10) For all tasks ti, compute the weighted mean time

(11) Compute the standard deviation (SD) using
 equation(5.1)

(12) Calculate relative standard deviation SD’

 SD’ = SD/average(CTij)

(13) If SD’ < ST then

(14) Find task ti having minimum weighted mean
 execution time and assign it to the resource, from the
 QoS qualified set, that is giving minimum completion
 time

 Else

(15) Find task ti having maximum weighted mean
 execution time and assign it to the resource, from the
 QoS qualified set, that is giving minimum completion
 time

(16) Delete task ti from the MT

(17) Update ready time of resource rj

(18) End while

Figure 5.1 QWMTS Heuristic

6. PERFORMANCE METRICS AND

SIMULATION ENVIRONMENT

6.1 Performance Metrics
Depending on what scheduling performance is desired in Grid
there exists different performance metrics for evaluating different

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

27

scheduling algorithms. Here, the results are evaluated on the basis
of following performance matrices.

 Makespan: - Makespan is the measure of the throughput of the

Grid. It can be calculated using equation (6.1):

 (6.1)

The less the makespan, the better is the algorithm.

 Average resource utilization rate[8] : Average resource

utilization rate of all resources can be computed through
equation(6.2)

 (6.2)

Here the ruj is the resource utilization rate of resource rj. It can
be computed using equation(6.3)

 (6.3)

Here tei is the finish time and tsi is the start time of task ti on
resource rj. T is the total application time elapsed so far. It can
be calculated using equation (6.4)

 (6.4)

 Load Balancing Level[8] : The mean square deviation of ru is

given by equation (6.5)

 (6.5)

The load balancing level, β, is determined through the relative
deviation of d over ru.

 (6.6)

The best load balancing level is achieved if β reaches to 1 and

d is close to 0.

6.2 Simulation Environment and Data
To evaluate both heuristics, QoS Guided Weighted Mean Time
Min and QoS Guided Weighted Mean Time Min-Min Selective,
we have used the GridSim Toolkit[9], for simulating the

heuristics.

20 resources and batch size of 2000 tasks are taken for each
experiment. The arrival of tasks is modeled as Poisson random
process. To evaluate both heuristics we have used the following
three task scenarios:

Scenario I: - A few short tasks along with many long tasks.
Scenario II: - A few long tasks along with many short tasks.
Scenario III: - Length of tasks is randomly determined.

7. RESULTS
The makespan, average resource utilization rate and load
balancing level results of QWMTM and QWMTS heuristics are
shown in section 7.1 and 7.2, respectively.

7.1 QWMTM Results
The task scenarios listed in section 6.2 are used for testing the
QWMTM heuristic. The results are obtained and compared with
the QoS Guided Min-Min(QMinMin), Weighted Mean Time-
min(WMTM), Min-Min and Max-Min heuristics.

7.1.1 Makespan Results
Figures 7.1.1(a), 7.1.1(b), 7.1.1(c), show the results for makespan
of task scenario I, II and III, respectively. Table 1 shows the
comparison of makespan results of QWMTS heuristic with other
heuristics. The QWMTM heuristic gives 9.14%, 19.87% and
11.83% better makespan than QMinMin for tasks scenarios I, II,
III, respectively. It gives 24.85%, 42.26%, 32.05% gain over
makespan than WMTM for task scenario I, II, III, respectively. It

gives 26.55%, 50%, 33.79% less makespan than Min-Min for task
scenario I, II, III, respectively. It gives 29.83%, 47.6% 34.23%
less makespan than Max-Min for task scenario I, II, III,
respectively. Overall it gives better makespan than other
heuristics.

Figure 7.1.1(a) Makespan

Figure 7.1.1(b) Makespan

Figure 7.1.1(c) Makespan

318.00

350.00

423.20 433.00
455.20

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario I

In
 H

u
n

d
re

d
 S

ec
o

n
d

s

200.40

250.10

380.00
401.00

382.50

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario II

In
 H

u
n

d
re

d
 S

ec
o

n
d

s

264.50

300.00

389.30 399.50 402.20

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario III

In
 H

u
n

d
re

d
 S

ec
o

n
d

s

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

28

Table 1 Makespan Comparison of QWMTM, QMinMin, WMTM, MinMin and MaxMin Heuristics

Task

Scenario

Makespan (In Hundred Seconds) Improvement

Over

QMinMin

Improvement

Over

WMTM

Improvement

Over

MinMin

Improvement

Over

MaxMin QWMTM QMinMin WMTM MinMin MaxMin

I 318 350 423.2 433 453.2 9.14% 24.85% 26.55% 29.83%

II 200.4 250.1 380 401 382.5 19.87% 42.26% 50% 47.6%

III 264.5 300 389.3 399.5 402.2 11.83% 32.05% 33.79% 34.23%

7.1.2 Average Resource Utilization Rate Results
Figures 7.1.2(a), 7.1.2(b), 7.1.2(c), showing the results of task
scenarios I, II, and III, respectively. We can see the QWMTM
gives the better resource utilization results in each task scenario
than QMinMin, WMTM, MinMin and MaxMin heuristics.

7.1.3 Load Balancing Level Results
The load balancing results for task scenario I, II and III are
shown in figure 7.1.3(a), 7.1.3(b), and 7.1.3(c), respectively. We
can see from the results that the proposed heuristic QWMTM
provides better load balancing than other heuristics.

Figure 7.1.2(a) Average Resource Utilization Rate

Figure 7.1.2(b) Average Resource Utilization Rate

Figure 7.1.2(c) Average Resource Utilization Rate

Figure 7.1.3(a) Load Balancing Level

Figure 7.1.3(b) Load Balancing Level

0.7232 0.7212
0.6812

0.7015
0.6800

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario I

0.0376
0.0366

0.0330 0.0330

0.0370

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario II

0.3566
0.3455 0.3378 0.3375

0.3550

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario III

0.9083

0.7388

0.6666 0.6653 0.6668

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario I

0.8616

0.7638
0.7340

0.4453

0.6654

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario II

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

29

Figure 7.1.3(c) Load Balancing Level

7.2 QWMTS Results
For the testing the heuristic, the task scenarios, given in section
6.2 are taken. The results are compared with the QoS Guided

Min-Min(QMinMin), Weighted Mean Time Min-Min Max-Min
Selective(WMTS), Min-Min and Max-Min Heuristics.

7.2.1 Makespan Results
Figures 7.2.1(a), 7.2.1(b), 7.2.1(c), show results of makespan for
task scenario I, II and III, respectively. Table 2 gives the
makespan comparison of QWMTS, QMinMin, WMTS, MinMin
and MaxMin heuristics. We can see from the table that QWMTS
gives 16.89%, 32.45%, 16.37% shorter makespan than

QMinMin heuristic for the task scenario I, II, III, respectively.
The QWMTS gives 41.08%, 33.43%, 40.74%, gain over
makespan than WMTS for the task scenario I, II, III,
respectively. The QWMTS gives 41.08%, 37.37%, 41.42%
shorter makespan than MinMin heuristic for the task scenario I,
II, III, respectively. The QWMTS gives 41.53%, 33.43%,
41.35% gain over makespan than MaxMin heuristic for the task
scenario I, II, III, respectively. The QWMTS heuristic is better

in makespan than above mentioned heuristics in every task
scenarios.

Table 2 Makespan Comparison of QWMTS, QMinMin, WMTS, MinMin and MaxMin Heuristics

Task

Scenario

Makespan (In Hundred Seconds) Improvement

Over

QMinMin

Improvement

Over WMTS

Improvement

Over

MinMin

Improvement

Over

MaxMin QWMTS QMinMin WMTS MinMin MaxMin

I 263.6 317.2 447.4 447.4 450.9 16.89% 41.08% 41.08% 41.53%

II 146.5 216.9 220.1 233.8 220.1 32.45% 33.43% 37.37% 33.43%

III 264.1 315.8 445.7 450.8 455 16.37% 40.74% 41.42% 41.35%

Figure 7.2.1(a) Makespan

Figure 7.2.1(b) Makespan

Figure 7.2.1(c) Makespan

7.2.2 Average Resource Utilization Rate Results
The average resource utilization rate results for task scenario I,
II, and III are shown in figure 7.2.2(a), 7.2.2(b), and 7.2.2(c),
respectively. The results of QWMTS heuristic are better in each
task scenario than other heuristics.

0.9741

0.7416

0.6668 0.6668 0.6661

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTM QMinMin WMT-M MinMin MaxMin

Scenario III

263.6

317.2

447.4 447.4 450.9

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

QWMTS QMinMin WMTS MinMin MaxMin

Scenario I

In
 H

un
dr

ed
 S

ec
on

ds

146.5

216.9 220.1

333.8

220.1

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

QWMTS QMinMin WMTS MinMin MaxMin

Scenario II

In
 H

un
dr

ed
 S

ec
on

ds

264.1

315.8

445.7 450.8 455.0

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

QWMTS QMinMin WMTS MinMin MaxMin

Scenario III

In
 H

un
dr

ed
 S

ec
on

ds

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

30

Figure 7.2.2(a) Average Resource Utilization Rate

Figure 7.2.2(b) Average Resource Utilization Rate

Figure 7.2.2(c) Average Resource Utilization Rate

Figure 7.2.3(a) Load Balancing Level

Figure 7.2.3(b) Load Balancing Level

7.2.3 Load Balancing Level Results
The load balancing level results for task scenario I, II, III are

shown in figure 7.2.3(a), 7.2.3(b), and 7.2.3(c), respectively. The
results of QWMTS heuristic are better than other heuristics in
each task scenario.

Figure 7.2.3(c) Load Balancing Level

8. CONCLUSION AND FUTURE WORK
In this paper, we have proposed two heuristic algorithms for
QoS based task scheduling. QoS Guided Weighted Mean Time-
min and QoS Guided Weighted Time Min-Min Max-Min
Selective. The QWMTM divides the tasks in two groups: high
and low QoS. It schedules the tasks from high QoS group first

and afterward tasks from low QoS group. The QoS Guided
Weighted Mean Time Min-Min Max-Min Selective heuristic
provides the priority grouping strategy to group the tasks with
related QoS demand. Table 1 shows the comparison of
makespan results of QWMTM with QMinMin, WMTM, Min-
Min and Max-Min. The QWMTM gives 9.14% to 19.87% gain
over makespan than QMinMin, 24.85% to 42.26% shorter
makespan than WMTM, 26.55% to 50% gain in makespan than

Min-Min, 29.83% to 47.6% shorter makespan than Max-Min.
Table 2 show the comparison of makespan results of QWMTS
with QMinMin, WMTS, Min-Min and Max-Min heuristics.
QWMTS gives 16.37% to 32.45% gain in makespan than
QMinMin, 33.43% to 41.08% shorter makespan than WMTS,
37.37% to 41.42% shorter makespan than Min-Min and 33.43%
to 41.53% shorter makespan than Max-Min. Both heuristics
provide better makespan, resource utilization and load balancing
than above said heuristics.

0.8327
0.7896 0.7988

0.7419
0.7043

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTS QMinMin WMTS MinMin MaxMin

Scenario I

0.0591

0.0348

0.0531

0.0478

0.0330

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

QWMTS QMinMin WMTS MinMin MaxMin

Scenario II

0.4729

0.3740

0.4279
0.3964

0.3774

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

QWMTS QMinMin WMTS MinMin MaxMin

Scenario III

0.6203 0.6016 0.6067

0.3105

0.5183

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTS QMinMin WMTS MinMin MaxMin

Scenario I

0.6513

0.5406

0.6300

0.5444
0.5170

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTS QMinMin WMTS MinMin MaxMin

Scenario II

0.6198
0.5677 0.5668

0.3843

0.5220

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

QWMTS QMinMin WMTS MinMin MaxMin

Scenario III

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

31

Adding more QoS parameters in both heuristics is under
investigation. Verification of both the heuristics under actual
Grid environment can be considered as future problem.

9. REFERENCES
[1] D. Fernández-Baca, Allocating modules to processors in a

distributed system, IEEE Transactions on Software
Engineering, pp. 1427-1436, November 1989.

[2] Maheswaran M, Ali S, Siegel H J, et al, Dynamic Mapping
of a Class of Independent tasks onto Heterogeneous
Computing Systems, 8th IEEE Heterogeneous Computing
Workshop (HCW ’99), Apr. 1999. pp. 30-44.

[3] Xiao-Shan He, Xian-He Sun, QoS Guided Min-Min
Heuristic for Grid Task Scheduling, Jouranal of Computer
Science & Technology, 2003, (5): 442-451.

[4] Dong, F., J. Luo, L. Gao and L. Ge, A Grid Task
Scheduling Algorithm based on QoS Priority Grouping. In
proceedings of the 5th International Conference on Grid and
Cooperative Computing, 2006, pp. 58-61.

[5] Sameer Singh Chauhan and R. C. Joshi, “Weighted Mean
Time Min-Min Max-Min Selective Scheduling Strategy for
Independent Tasks on Grid”, In proceedings of IEEE 2nd

International Advance Computing Conference – 2010
(IACC 2010), pp. 4-9, February, 2010.

[6] Barun TD, Siegel H J and Beck N. A comparison of
Eleven static heuristics for mapping a class of independent
tasks onto Heterogeneous Distributed computing systems
Journal of Parallel and Distributed Computing Vol. 61, No.
1. PP 810-837, 2001.

[7] Jinquan Z, Lina N, Changjun J, A Heuristic Scheduling
Strategy for Independent Tasks on Grid, Proceedings of the
Eighth International Conference on High-Performance

Computing in Asia-Pacific Region (HPCASIA ’05),
November 2005.

[8] Kobra Etminani, M. Naghibzadeh. A Min-Min Max-Min

Selective Algorihtm for Grid Task Scheduling. Internet,
2007. ICI 2007. 3rd IEEE/IFIP International Conference in
Central Asia on, Sept. 2007.

[9] R. Buyya, M. Murshed, GridSim: A toolkit for the
modeling and simulation of distributed resource
management and scheduling for grid computing, Journal of
Concurrency and Computation: Practice and Experience,
pp. 1175–1220, 2002.

