
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

8

Real Time Snapshot Collection Algorithm for Mobile

Distributed Systems with Minimum Number of

Checkpoints

Surender Kumar

Deptt. of Information Technology,

HCTM, Kaithal

R.K. Chauhan
Deptt. of Computer Sc. & Application,
Kurukshetra University, Kurekshetra

Parveen Kumar
Deptt. of Computer Sc. & Engg.

MIET, Meerut

ABSTRACT

Checkpointing is an efficient way of implementing fault

tolerance in distributed systems. Mobile computing raises many

new issues, such as high mobility, lack of stable storage on

mobile hosts (MHs), low bandwidth of wireless channels, limited

battery life and disconnections that make the traditional

checkpointing protocols unsuitable for such systems. Minimum

process non-blocking coordinated checkpointing may be useful

for mobile distributed system as this approach is domino-free,

requires at most two checkpoints of each process on stable

storage, forces only interacting processes to checkpoint and does

not suspend their underlying computation during checkpointing.

Sometimes, it also requires piggybacking of information onto

normal messages, blocking of the underlying computation or

taking some useless checkpoints. In this paper, we propose a

non-blocking minimum process coordinated checkpointing

algorithm that requires minimum bandwidth over wireless

channels and does not requires any induced/forced or mutable

checkpoints and reduce the height of checkpointing tree without

taking any extra overhead in real time.

Keywords

Fault tolerance, checkpointing, consistent global state, domino

free, orphan message, coordinated checkpointing and mobile

distributed systems.

1. INTRODUCTION
Checkpointing is a well-established technique used for fault-

tolerance in distributed systems. To recover from a failure, the

system restarts its execution from a previous error-free,

consistent global state [3]. A global state is said “consistent” if it

contains no orphan message (whose receive event is recorded but

its sent event is lost).

Coordinated checkpointing is a commonly used technique for

fault tolerant [1], [4], [6], [8]-[9], [13]-[15] in mobile distributed

system, as it is domino free. In coordinated checkpointing,

processes must coordinate their checkpointing activities and take

checkpoints in such a manner that the resulting global state is

consistent. The Chandy-Lamport [6] algorithm is the earliest

non-blocking all-process coordinated checkpointing algorithm.In

this algorithm a marker are sent along all channels in the

network and requires FIFO channels.

Koo-Tong [4] have proposed a minimum process algorithm

which use sequential coordinated scheme and block their

relevant processes during checkpointing. In algorithm [8] and

[15] authors proposed a non sequential minimum process

algorithm but it also blocks their underlying computation as [4].

Further to remove blocking overhead in [6] authors proposed all

process non- blocking centralized checkpointing algorithms with

minimum synchronization message overhead.

Recently, non-blocking distributed checkpointing algorithms [14]

have received consideration attention. However, the algorithm

[14] also forces all processes as [4] and [13], even though many

of them may not be necessary. The Parkash-Singhal [9] proposed

the first minimum process non blocking checkpointing algorithm.

This algorithm only forces the minimum number of processes to

take checkpoints without blocking of the underlying computation.

However author found paper [8], that algorithm [9] may leads

inconsistency in some situation and proved that there does not

exists a non-blocking algorithm which forces only a minimum

number of processes to take their checkpoints. Cao and Singhal

[1] achieved non-intrusiveness in the minimum-process

algorithm by introducing the concept of mutable checkpoints.

The number of useless checkpoints in [1] may be exceedingly

high in some situations [11].

The rest of the paper is organized as follows. Section II presents

the system model, section III formulate study and inconsistency

in existing checkpointing algorithms, section IV presents basic

idea, feature, data structure etc, section V presents main

algorithm, section VI show example, section VII presents

correctness proof, VIII presents performance evaluation and

section VIII presents comparative study and conclusions.

2. SYSTEM MODEL
A mobile system is a distributed system where some of processes

are running on mobile hosts (MHs) [5].The term “mobile” means

able to move while retaining its network connection. A host that

can move while retaining its network connection is an MH (see

Figure 1). An MH communicates with other nodes of system via

special nodes called mobile support station (MSS).An MH can

directly communicate with an MSS only if the MH is physically

located within the cell serviced by MSS through the base

station(BS) .A cell is a geographical area around an base station

in which it can support an MH .An MH can change its

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

9

geographical position freely from one cell to another cell or even

area covered by no cell .At any given instant of time an MH may

logically belong to only one cell ; its current cell defines the

MH‟s location and the MH is considered local to MSS providing

wireless coverage in the cell .An MSS has both wired and

wireless links and acts as an interface between static network

and a part of mobile network . Static network connects all MSSs.

Our system model is similar to [1] and 11]. There are n spatially

separated sequential processes denoted by P0, P1,.., Pn-1, running

on MHs or MSSs, constituting a mobile distributed computing

system. Each MH/MSS has one process running on it. The

processes do not share memory or clock. Message passing is the

only way for processes to communicate with each other. Each

process progresses at its own speed and messages are exchanged

through reliable channels, whose transmission delays are finite

but arbitrary. A process is in the cell of MSS means the process

is either running on the MSS or on an MH supported by it. It also

includes the processes of MHs, which have been disconnected

from the MSS but their checkpoint related information is still

with this MSS. We also assume that the processes are non-

deterministic and FIFO channels. In our algorithm mobility and

disconnections are handled as in algorithm [1]

3. EXISTING COORDINATED

CHECKPOINTING ALGORITHM
Many checkpointing algorithms have been proposed for the

distributed as well as mobile distributed systems. Some

checkpointing algorithm forces minimum process to take their

checkpoint but must block their underlying computation during

checkpointing as in [4]. Blocking algorithms may dramatically

degrade the system performance [6]. To increase the system

performance non-blocking checkpointing algorithms are

proposed. This non-blocking checkpointing algorithm uses

checkpoint sequence number (csn) to identify the orphan

message. However, these algorithms requires useless checkpoint

during checkpointing, even though many of them may not be

necessary.

The algorithm in [9] was the first coordinated non-blocking

algorithm that tries to combine min-process with non-blocking

two approaches. It only forces minimum number of processes on

which initiator depends directly or transitively to take

checkpoints and does not block their underlying computation

during checkpointing.

However in [8], the author point out that the algorithm in[9] can

cause inconsistencies in some situations and proposed new

checkpointing algorithm to correct the inconsistency.

Problem with Cao and Singhal’s Algorithm [1]
In [1] Cao and Singhal proposed mutable checkpoints based

checkpointing algorithm to improve in[9] and implement a non

blocking checkpointing algorithm. In Cao and Singhal‟s

algorithm [1], when Pi receives a computation message M from Pj

, Pi take mutable checkpoint if the following three condition have

been satisfied.

i. Pj is in checkpointing process before sending M.

ii. Pi has sent a message since last checkpoint.

iii. Pi has not taken a checkpoint associate with current

 initiation.

Figure 2, shows the inconsistency exists in Cao and Singhal‟s

algorithm [1] by the example in 3.4. in Figure 2,

 P4 initiates the checkpointing algorithms, takes the

tentative checkpoints C4,1 and sends the checkpoint request

message to processes P3 and P5, as it depends on these. So,

P3 and P5 take tentative checkpoints after receiving the

request.

After taking checkpoint C3,1, P3 sends M4 to P2. P2 doesn‟t

C5,1

C2,1

C1,1

C3,1

C4,1

Computation Message

Permanent Checkpoint

M7

M6

M5

M4

M3

M2

M1

P7

P6

P5

P4

P3

P22

P11

Request Message

Figure 2. An example showing inconsistency in

algorithm [1]

MH

Base Station

 WIRED

NETWORK

MSS
 MSS

MSS
 MSS

MSS
 MSS

MSS
 MSS

Wireless Cell

Fixed Host

Wireless Cell

Wireless Cell Wireless Cell

Figure 1. Mobile Distributed System

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

10

take mutable checkpoint before delivering M4 because it

hasn‟t send a message since last checkpoint (condition(2)

false). After receiving M5 from P2, P1 receives checkpoint

request from initiator and request P2 to take checkpoint

further. So M4 become orphan message.

4. PROPOSED CHECKPOINTING

ALGORITHM

4.1 Basic Idea

We propose a two phase checkpointing algorithm to remove the

inconsistency. In the first phase checkpoint initiator compute the

minset, take tentative checkpoint and sends the checkpointing

request to all the process in minset with weight. Upon receiving

checkpoint request process Pi takes tentative checkpoint (if not

taken any forced or tentative checkpoint related to current

initiation), convert forced checkpoint into tentative one (if taken

forced checkpoint related to the current initiation) or ignore the

request (if already taken the tentative checkpoint) and increases

csni[i]. After taking the tentative checkpoint, Pi propagates the

checkpoint request to all processes Pk further, which are

dependent processes and not belongs to minset by appending

initiator‟s trigger and a portion of received weight. At last, P i

sends a reply to the initiator with the remaining weight and

continues computation.

In second phase initiator broadcast COMMIT or ABORT

message. When the initiator Pjni receives a reply message from

the processes in minset, Pini adds the weight which is in the reply

message to its own weight. When the weight becomes equal to 1,

it conclude that all processes involved in checkpointing have

taken their tentative checkpoints successfully. Then, it broadcasts

COMMIT message. On receiving the COMMIT message process

Pi , if a process has taken a tentative checkpoint, it convert

tentative checkpoint to permanent; if a process has taken a forced

checkpoints, it discard forced checkpoint and decreases the

csni[i]. Each process updates its csn and other data structure

according to the piggybacked on committing message. On the

other hand if weight is not equal to 1 and time out, then Pini

broadcast ABORT message. After receiving the ABORT message

process Pi, rollback to its previous consistent state.

Sending and Receiving Computation Message during

Checkpoinitng:
When a process Pi in checkpointing session sends a computation

message to process Pj , it piggybacks his csn, trigger, and minset

with the message.

On the receiving end following actions are taken:

a) if (old_csnj[i]>= m.csni[i]): it means both the processes takes

latest checkpoint related to the current initiation. So in such case

process only receive the message and updates the data structure.

b) if (old_csnj[i] < m.csni[i]): in such case the following actions

are taken

(i) if (Pi minset[]):takes tentative checkpoint.(as process is a

part of minset and definitely get the checkpointing request from

the initiator).

(ii) if ((Pi minset[]) (Bitwise logical AND of

sendvi[] minset[] is not all zero)): process does not belongs

to minset and send any computation message to the processes

which belongs to minset, since its last checkpoint, it takes

tentative checkpoint (as there is a good probability that process

will get the checkpoint request).

(iii)) if ((Pi minset[]) (Bitwise logical AND of sendvi[]

minset[] is all zero)) : in such case there is a probability that a

process do not get any checkpoint request process takes the

forced checkpoint

4.2 Data Structure
Each process Pi maintains the following data structures:

Pint Initiator process identification

m.csn senders csn received with message

m.g_set sender global set received with message

weighti A non negative real variable with a maximum

value of 1and used to value 1 used to detect the

termination of checkpointing algorithm as in [7].

mri A flag set to “1” on taking the tentative

checkpoint successfully.

csni[] An array of length n for n processes at each

process Pi, where csni[j] indicates the checkpoint

sequence numbers (csn) of Pj currently known to

Pi.

old_csni The csn of Pi‟s last checkpoint.

ddvi[] A bit vector of size n; ddvi[j] =1 implies Pi is

directly dependent upon Pj for the current CI;

initially, k, ddvi[k]=0 and ddvi[i]=1;

Sendvi[] A bit vector size n; sendvi[j]=1 implies Pi has

sent at least one message to Pj in the current CI.

minset[] A bit vector of size n which is compute on the

MSSini; if Pi initiate its(x+1)th checkpoint then

the set of processes on which Pi depends

(directly or transitively) in its xth checkpoint

interval is minimum set. In order to compute the

initial minimum set we use the similar approach

as [9].

new_ddvi It holds the new dependency at node Pi during

the execution of checkpoint request.

Uminset[] It holds exact minimum set at last.

c_req Checkpoint request send by a process.

c_rply After receiving the checkpoint request,

processes sends reply (acknowledge) negatively

or positively to initiator process.

g_set A set of 2-tuples(Pid,csn) maintained by each

process Pi, where Pid indicates the identifier of

a checkpointing initiator and csn indicates the

checkpoint sequence number at process Pid

corresponding to the checkpoint event as [12].

4.3 Maintains of Dependency Vector

In order to maintain the dependency vector ddvi[], we use the

similar approach as the [9], where each process Pi

maintains a Boolean vector ddvi[], which has n bits.

Initially at Pi, the vector ddvi[]set to 0 except Pi[i] and set

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

11

ddvi[j] to „1‟ only if Pi receive computation message(m)

from Pj. So, ddvi[j] =1 represents that Pi is directly

dependent upon Pj for the current CI.

When process Pi sends a computation message m to Pj, it

appends ddvi[] to m (see Figure 2). After receiving m, Pj

includes the dependences indicated in ddvi[] into its own

ddvj[] as follows: ddvj[k] = ddvj[k] v m. ddv[k] , where

1<=k<=n, and v is the bitwise inclusive OR operator.

Thus, if a sender Pi of a message depends on a process Pk

before sending the computation message, the receiver Pj

also depends on Pk through transitivity. So in this way

ddv[] contain all the processes which are directly or

transitively dependent on the process. The dependency

information is used to minimize the effort required to

collect global checkpoint.

Minimum set is a bit vector of size n which is compute by

the MSSini by taking transitive closure of dependency of

dependency bit vector with its own dependency bit vector.

So at the time of initiation ddv [] of the MSSini treated as

a minimum set. (minset[]= ddvini[]). minset[k]=1 implies

Pk belongs to the minimum set and it is directly or

transitively dependent on initiator process Pini.

4.4 Mobility and Disconnections

Due to mobility a MH may disconnect from the old MSS and

connected to a new MSS. Due to this message transmission

becomes complicated. In paper [10] routing protocol has been

proposed to handle the MH mobility. Disconnection may me

voluntary or non-voluntary. We can handle the voluntary

disconnection and non-voluntary disconnection are treated as

faults [1],[3].

Suppose, an MH, say MHi, disconnects from the MSS, say

MSSk. MHi takes its checkpoint, say disconnect_ckpti, and

transfers it to MSSk. MSSk stores all the relevant data structures

and disconnect_ckpti of MHi on stable storage. If MHi is in the

minset[], disconnect_ckpti is considered as MHi‟s checkpoint

for the current initiation. On commit, MSSk also updates MHi‟s

data structures, e.g., ddv[], send, etc. On the receipt of messages

for MHi, MSSk does not update MHi‟s ddv[], but maintains a

message queue to store the messages.

When MHi enters in the cell of MSSj, it is connected to the

MSSj if no checkpointing process is going on. Before connection,

MSSj collects its ddv[], buffered messages, etc. from MSSk;

and MSSk discards MHi‟s support information and

disconnect_ckpti. The stored messages are processed by MHi, in

the order of their receipt at the MSS. MHi‟s ddv[] is updated on

the processing of buffered messages. If a node does not

reconnect in a stipulated time, then its computation can be

restarted from its disconnect_ckpt.

5. The Algorithm

Actions for the Initiator/Coordinator Pg
a) on checkpoint initiation:

{set new_set[]= = 0; Uminset[]= = minset[];

 c_statei=1; csni= old_csni +1; weighti=1.0;

set g_set(Pg.pid, Pg.csn);

check ddvi ;

when ddvini[k] = =1 for 1<=k<=n;

set minset[k]=1;}

b) sends c_req() to all node Pj such that and wait for

response:
 for(j=0;j<=n; j++)

if (minset[j]= = 1)

weighti = weighti/2; ws=weighti ;

sends c_req(g_set, minset, ws, request);

c) on receiving response from process Pj:
 receive message c_rply (new_ddvj[],wj, mr)

 weighti = weighti + wj ;//update weight

 if(new_ddvj[] ≠)

{new_set = new_set[] U new_ddvj[]; //update new_set

 Uminset = minset[] U new_set[];}//update Uminset

d) send ABORT or COMMIT message:

 if((weight<1) AND(maxtimeout)) (mr==0)

{sends message ABORT() to all processes belongs to

 Uminset[]}

 else if(weight= =1)

 {send message COMMIT() to all process belongs to

 Uminset[];}

Actions taken when Pj sends Computation

Message to Pi
Set sendvj[i] =1;

If tentative // message sends after taking tentative checkpoint

 Send(Pi, msg, ddvj[], csnj[j], minset[], g_set)

else

 Send(Pi, msg, ddvj[],csnj[j], ,);

Actions taken when Pi receive Computation

Message from Pj
Receive msg(Pi, msg, ddvj[], csnj[j], minset[], g_set);

a) if(old_csnj > m.csni[j])
 {Receive(msg) and update csni[j] and ddvi[j];}

b) if(old_csnj < m.csni[j]) (m.g_set=)
 {Receive(msg) and update csni[j] and ddvi[j];}

c) if(old_csnj < m.csni[j]) (m.g_set ≠)
 i) if(Pi minset[]) (own.g_set ≠ m.g_set)

{Take tentative checkpoint; receiving message;

 increment old_csni; set Master; update

 csni[j];update ddvi[j]; }

 ii) if(Pi minset[]) (own.g_set == m.g_set)

 {Receive(msg) and update csni[j] and ddvi[j];}

 iii) if ((Pi minset[]) (Bitwise logical AND of

 sendvi[] minset[] is all zero))

 {Take forced checkpoint}

 iv) if ((Pi minset[]) (Bitwise logical AND of

 sendvi[] minset[] is not all zero))

{Take tentative checkpoint; receiving message;

 increment old_csni; set Master; update

 csni[j];update ddvi[j]; }

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

12

v) if (Pi minset[]) (sendvi[] = =)

{receive message; }

Actions taken when Pj receives checkpoint

request from Pi and forward to Pk
receive c_req(g_set, minset, ws, request) ;

if (req.g_set=own.g_set)

{ Pj ignore the request and sends reply message to Pi with

received weight ; }

else

{ Take tentative checkpoint ; increment csnj ; check ddvj[];

 For(k=0; k<n; k++)

 if(k s.t. ddvj[k]= =0) (k s.t. ddvj[k] = =1

 minset[k] = =1)

 {wr = ws;

 Sends message c_rply(, wr, mr,Pj) to initiator,

 Continue computation ;

 }

 else if(k s.t. ddvj[k] = =1 minset[k] = =0)

 if(sendvk[] = =) (p s.t. sendvk[p] = =1

 minset[p] = =0)

 {Set new_ddvj ==1;

 wr = wr/2; ws=wr;

 sends c_req(minset,csnj, req.g_set,ws, req) to Pk ;

 sends c_rply(new_ddvj[k],wr, mr) to Pi;

 continue computation;

 }

 }

When Process Pj receives COMMIT/ABORT

message:
On receiving COMMIT ()

{Discard old permanent checkpoint, if any;

 convert tentative checkpoint in to permanent,

Reset the related data structure}

 On receiving ABORT ()

{Discard the tentative checkpoint; and reset data structure}

6. AN EXAMPLE
We explain our checkpointing algorithm with the help of an

example. Consider the distributed system as shown in Figure 3.

Note that when a computation message is sent after taking the

checkpoint it piggybacked with minset[]. Assuming that process

P4 initiate checkpointing process. First process P4 takes its

tentative checkpoint and increment its csn number from C4,0 to

C4,1 , compute minset[](which in case of Figure 3. is {P1, P3,

P5}). This means is that the initiator process is directly or

transitively dependent on these processes. Hence, when P2

initiate a checkpoint all of these processes should take their

checkpoints in order to maintain global consistent state.

Therefore P2 sends the checkpoint request along with minset[] to

process P1, P3 and P5. When P3 receives the checkpoint request it

takes the tentative checkpoint and sends message M4 by

atteching minset [1011100], trigger set(P4, C4,1), and csn3=1.

After receiving message M4, P2 first compare m.csn3(which is 1)

with its old_csn2[3](which is 0). As P2 does not belongs to

minset, not sent any message to the processes which are in

minimum set and m.csn3 > csn2[3]. Hence, P2 takes forced

checkpoint, update its trigger set to (P4, C4,1), increment its csn2

from 1 to 2, and updates the csn2[3] from C4,0 to C4,1.

After taking forced checkpoint it sends message M5 to P1. P1

takes tentative checkpoint directly due to minset[P1]= =1 and set

c_state ==1(as P1 knows that it is the part of minset and get the

checkpoint request from the initiator in future and when it get the

checkpoint request it ignore the request).P2 check its dependency

and find out that it receives computation message from P2 since

its last checkpoints. So, it sends checkpoint request to the

process P1 with weight and reply with remaining weight and

new_ddv2 [P1] ==1 to the initiator. After receiving the

checkpointing request from P1, P2 converts its forced checkpoints

in to tentative one and reply to the initiator. Initiator compute the

Uminset[P1, P2, P3, P4, P5] by taking the union of minset{ P1, P3,

P4, P5} and new_ddv1{P2}.

At last, when P2 receives positive responses from all relevant

processes(weight = =1) it issues commit request along with the

exact minimum set [P0, P1, P2, P3, P4] to all processes. On

receiving commit following actions are taken. A process, in the

minimum set, converts its tentative checkpoint into permanent

one and discards its earlier permanent checkpoint, if any. On the

other hand if it receive the negative response from any one of the

processes which belongs to the minset, it sends the abort

message to all processes which belongs to Uminset[]. On

receiving abort, processes discard the tentative checkpoint, if

any; reset c_state, tentative, g_chkpt etc and update ddv[]

and minset[].The system is consistent.

7. CORRECTNESS PROOF
Let GCi ={C1,x, C2,y,.........,Cn,z} be some consistent global

state created by our algorithm, where Ci,x is the xth checkpoint

of Pi.

Theorem I: Algorithm is non-blocking and produces a

consistent global state.

Proof: Processes which are part of global state can receives

C2,1

C5,1

C4,1

C1,1

C3,1

Computation Msg

Forced Chkpt

Permanent Chkpt

M7

M6

M5

M4

M3

M2

M1

P7

P6

P5

P4

P3

P22

P11

System Message

Figure 3. An example showing inconsistency in

algorithm [1]

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

13

and handle the computation messages by the following ways

a) Message received from the processes before sending any

ddv[] with message to the initiator or any other processes

which are directly or transitively depends upon initiator:

These types of processes become the part of the minset and

receives the checkpoint request directly from the initiator so

that these messages not become orphan.

b) Message received from the processes after sending the ddv[]

with message to initiator the initiator or any other processes

which are directly or transitively depends upon initiator but

before receiving the checkpoint request and taking tentative

checkpoint. Message received after taking tentative

checkpoint and before receiving the commit request: These

types of message are buffered and execute after the

checkpoint interval.

In such way there are not any orphan message and handle all

messages efficiently without blocking. So it shows that our

algorithm is non-blocking and produces the global consistent

state.

8. PERFORMANCE EVALUATION OF

PROPOSED CHECKPOINTING

ALGORITHM
To evaluate we compare the performance of our proposed

minimum process checkpointing algorithm with [1], [2], [4], [6],

[14] in different perspective. We assume an n+1 process

distributed system and use the following notations for

performance analysis of the algorithms:

N : Total number of processes.

Nmin: Minimum number of processes that required to take

 checkpoint.

Nmut: Number of redundant Mutable checkpoint during a

 checkpointing process.

Nindu Number of redundant Induced checkpoint during a

checkpointing process

Cbroad: Cost of broadcasting a message to all (N) processes in

the system.

Cair : Cost of sending a message from one process to another

process.

Tch: Total checkpointing time. This time includes the time to

save the checkpoint on MSS, transferring time from MH

to its MSS and times taken by a system message during

a checkpointing process.

8.1 Performance of our Checkpointing

Algorithm

The Blocking Time: Similar to algorithms [1], [2], [6] and

[14], our algorithm does not block their underlying computation

during checkpointing.

The Number of Checkpoints: Similar to algorithms [1], [2],

[4], our algorithm also forces only a minimum number of

processes to take their checkpoints.

The Average Message Overhead: our algorithm includes

the following message overhead in best case is given as 3*Nmin *

Cair in table 1. In our algorithm, first the initiator sends control

messages to minimum number of processes that need to take a

checkpoint each and reply (acknowledge) back. At last when

initiator receives acknowledge from all the processes, it sends

COMMIT message to these minimum processes to convert their

respective tentative checkpoint in to permanent one. Hence total

cost of these are 3*Nmin*Cair.

Useless Checkpoints: Our algorithm does not have any

useless checkpoints as [1] and [2]. Instead of above, our

algorithm is coordinated, nondeterministic, distributed and

require piggybacking of integer csn(checkpoint sequence

number) on normal messages .

8.2 Comparison with Existing Algorithms

In [1], Cao-Singhal proposed a mutable checkpoint based non-

blocking minimum-process coordinated checkpointing algorithm.

This algorithm completes its processing in the following three

steps. First initiator MSS sends tentative checkpoint request to

minimum number of processes that need to take checkpoint. The

synchronization message overhead for this is Nmin *Cair.

Secondly MSSini gets the acknowledgement from all processes to

whom it sent checkpoint request. Hence message overhead 2*

Nmin *Cair is needed in first two phases. At last MSSini sends the

COMMIT request to convert its tentative checkpoint into

permanent. In this case it takes min (Nmin* Cst, Cbroad). Hence

algorithm [1] generate consistent global state with the message

overhead cost 2* Nmin * Cair + min (Nmin* Cair, Cbroad) and

average number of checkpoints Nmin+ Nmut [Refer Table 1]. Thus

algorithm is non-blocking and minimum process but suffer from

useless checkpoints. Our proposed algorithm generates the

consistent global state with approximately same message

overhead as [1], without using any useless checkpoint. In [2],

P.Kumar et al. also proposed minimum process coordinated

checkpoint algorithm for mobile system. The synchronization

message overhead to complete the checkpointing process using

algorithm [2] is given as 3*Cbroad + 2*Nmin * Cair. Here 3Cbroad is

the total cost of broadcasting sends ddv[](Cbroad), take tentative

checkpoint the request(Cbroad) and COMMIT(Cbroad) messages to

all MSSs by the initiator MSS. 2*Nmin*Cair is the total cost of

sending checkpoint request message to the minimum number of

processes that need to take checkpoints(Nmin*Cair) and reply to

the initiator after taking the tentative checkpoint(Nmin*Cair).

Hence algorithm [2] generates the global consistent state by

using Nmin+ Nindu average number of checkpoints and 3*Cbroad +

2*Nmin * Cair message overhead cost but our proposed algorithm

by using Nmin and 3* Nmin * Cair respectively [Refer Table

1].Thus algorithm [2] takes less useless checkpoint in the

comparison of [1] but have high message overhead cost. The

algorithm suffers from useless checkpoint and has higher

message overhead as compared to the proposed algorithm. The

koo-Toueg[4] proposed a minimum process coordinated

checkpointing algorithm for distributed systems with the cost of

blocking of processes during checkpointing.This algorithm

T
a
b

le
 1

.

A

C
o
m

p
a
ri

so
n

 o
f

S
y
st

em

P
er

fo
rm

a
n

ce
 o

f

th
e

P
ro

p
o
se

d

C
h

ec
k

p
o

in
ti

n
g

A
lg

o
ri

th

m

O
u

r

A
lg

o
.

3
*
N

m
in

*

C
a

ir

N
m

in

0

N
o

Y
es

In
te

g
er

N
o

Y
es

Y
es

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

14

S
.N

eo
g
y

[1
4
]

2
*
C

b
ro

a
d

+
 N

*
C

a
ir

N
m

ss

0

N
o

N
o

In
te

g
er

N
o

Y
es

Y
es

E
ln

o
za

h
ly

[6
]

2
*
C

b
ro

a
d

+

N
*
C

a
ir

N

0

N
o

N
o

In
te

g
er

N
o

N
o

Y
es

K
o
o

-T
o
n

g

[4
]

3
*
N

m
in

*

N
d

ep
*
C

a
ir

N
m

in

N
m

in
*
T

ch

N
o

Y
es

In
te

g
er

N
o

Y
es

Y
es

P
.K

u
m

a
r

et

a
l.

 [
2
]

3
*
C

b
ro

a
d

+
2
*
N

m
in

*

C
a

ir

N
m

in
+

N
in

d
u

0

P
re

se
n
t

Y
es

In
te

g
er

N
o

Y
es

Y
es

C
a
o
-S

in
g
h

a
l

[1
]

2
*

N
m

in

*

C
a

ir
+

m
in

(N
m

in
*
C

a
ir
,C

b
ro

a
d
)

N
m

in
+

N
m

u
t

0

P
re

se
n
t

Y
es

In
te

g
er

Y
es

Y
es

Y
es

S
.K

.G
u

p
ta

[1
6
]

2
*
N

m
in

*

C
p
p
+

C
b

ro
a

d

N
m

in

0

N
o

Y
es

In
te

g
er

N
o

Y
es

N
o

P
a
rv

ee
n

K
u

m
a
r

[1
5
]

A
O

M
m

in
p

N
m

in

2
T

st

N
o

y
es

In
te

g
er

N
o

Y
es

Y
es

C
a
o
-

S
in

g
h

a
l

[8
]

A
O

M
m

in
p

N
m

in

2
T

st

N
o

y
es

N
il

N
o

Y
es

Y
es

 A
v
er

ag
e

M
es

sa
g
e

O
v
er

h
ea

d
s

A
v
g
.

n
o
.

o
f

C
h
ec

k
p
o
in

t

A
v
g
.

B
lo

ck
in

g
 T

im
e

U
se

le
ss

 C
h
ec

k
p
o
in

t

M
in

im
u
m

 P
ro

ce
ss

es

P
ig

g
y
b
ac

k
 I

n
fo

.

in
fo

rm
at

io
n

C

o
n
cu

rr
en

t
E

x
ec

u
ti

o
n

D
is

tr
ib

u
te

d

N
o
n

-d
et

er
m

in
is

ti
c

requires minimum number of synchronization message and

number of checkpoint .In Toueg algorithm requires only

minimum number of process to take checkpoints (ii) message

overhead is 3*Nmin*Ndep * Cair (iii) Blocking time is Nmin*Tch.

Our proposed algorithm reduces the message overhead

3*Nmin*Ndep * Cair to 3*Nmin* Cair [Refer Table 1]. Thus

algorithm [2] takes less useless

checkpoint in the comparison of [1] but have high message

overhead cost. The algorithm suffers from useless checkpoint

and has higher message overhead as compared to the proposed

algorithm. In [6] and [14] authors designs an all process non

blocking checkpointing algorithm. In these algorithms we get

consistent global state with the total cost of (2*Cbroad + N*Cair)

[Refer Table 1].

However algorithm [6] and [14] had fewer messages overhead in

the comparisons of our proposed algorithm but these algorithms

forces to all processes in the system to take their checkpoints for

each checkpoint initiation. This may waste the energy and

processor power of the processes which are in doze mode.

Compared to [6], our algorithm forces only a minimum number

of processes to take checkpoint on stable storage.

In Elnozhay et al.[6] and S.Neogy et al.[14] algorithm proposed

non blocking checkpointing algorithms but requires all-processes

to take checkpoints during checkpointing, even though many of

them may not be necessary. In mobile environment, since

checkpoints need to be transferred to the stable storage at the

MSSs over the wireless network. So in this way taking

unnecessary checkpoints may waste a large amount of wireless

bandwidth. In the algorithms [4] and [8] authors proposed

minimum process checkpointing algorithm but it block its

underlying computation during checkpointing. The blocking time

of the Koo-Toueg[4] (Nmin* Tch)algorithm is highest, followed by

Cao-Singhal[8] which is 2Tst (not shown in the

table1). Therefore, blocking algorithm may degrade the

performance to mobile computing systems [6].

The message overhead in proposed algorithm is greater than [6]

but less than [1]. However, the algorithm in [6] is a centralized

algorithm and there is no easy way to make it distributed without

increasing message overhead. The Parkash-Singhal[9] proposed

the first minimum process non blocking checkpointing algorithm.

However author found that this algorithm may result in an

inconsistency [3]and [8] in some situation and proved that there

does not exist a non-blocking algorithm which forces only a

minimum number of processes to take their checkpoints. Cao and

Singhal [1] achieved non-intrusiveness in the minimum-process

algorithm by introducing the concept of mutable checkpoints but

number of useless checkpoints in [1] may be exceedingly high in

some situations [11]. Also a concurrent execution is allowed in

[1], but in algorithm [12], author proves that algorithm [1] may

lead to inconsistency during concurrent execution. Kumar et. al

[2] proposed a five phase checkpointing algorithm to reduced the

height of the checkpointing tree and the number of useless

checkpoints by keeping non-intrusiveness intact. However,

algorithm [2] reduces the useless checkpoint in the comparison of

algorithm [1] but has extra message overhead cost.

9. COMPARATIVE STUDY AND

CONCLUSION
In Elnozhay et al.[6] and S.Neogy et al.[14] algorithm proposed

non blocking checkpointing algorithms but requires all-processes

to take checkpoints during checkpointing, even though many of

them may not be necessary. In mobile environment, since

checkpoints need to be transferred to the stable storage at the

MSSs over the wireless network. So in this way taking

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.9, June 2010

15

unnecessary checkpoints may waste a large amount of wireless

bandwidth. In the algorithms [4] and [8] authors proposed

minimum process checkpointing algorithm but it block its

underlying computation during checkpointing. The blocking time

of the Koo-Toueg[4] (Nmin* Tch)algorithm is highest, followed by

Cao-Singhal[8] which is 2Tst (not shown in the table1).

Therefore, blocking algorithm may degrade the performance to

mobile computing systems [6]. The message overhead in

proposed algorithm is greater than [6] but less than [1]. However,

the algorithm in [6] is a centralized algorithm and there is no

easy way to make it distributed without increasing message

overhead. The Parkash-Singhal[9] proposed the first minimum

process non blocking checkpointing algorithm. However author

found that this algorithm may result in an inconsistency [3]and

[8] in some situation and proved that there does not exist a non-

blocking algorithm which forces only a minimum number of

processes to take their checkpoints. Cao and Singhal [1] achieved

non-intrusiveness in the minimum-process algorithm by

introducing the concept of mutable checkpoints but number of

useless checkpoints in [1] may be exceedingly high in some

situations [11]. Also a concurrent execution is allowed in [1], but

in algorithm [12], author proves that algorithm [1] may lead to

inconsistency during concurrent execution. Kumar et. al [2]

proposed a five phase checkpointing algorithm to reduced the

height of the checkpointing tree and the number of useless

checkpoints by keeping non-intrusiveness intact. However,

algorithm [2] reduces the useless checkpoint in the comparison of

algorithm [1] but has extra message overhead cost.

Since a forced checkpoints are save in main memory, the delay

incurred in saving a forced checkpoints, is very little in the

comparison of save a tentative checkpoints on stable storage. Our

proposed algorithms also try to minimize the useless checkpoints.

Hence, proposed coordinated checkpointing algorithms obtain a

consistent global checkpoint state by minimizing the number of

additional checkpoints, forcing only minimum processes and

without blocking. It has also the low overhead in the comparison

of other algorithms. [Table 1]

10. REFERENCES

1. Cao G. and Singhal M., Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing systems.

IEEE Transaction On Parallel and Distributed Systems, vol.

12, no. 2, pp. 157-172, February 2001.

2. Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta: A

Non-Intrusive Minimum Process Synchronous

Checkpointing Protocol for Mobile Distributed Systems.

Proceedings of IEEE ICPWC-2005, January 2005.

3. Cao-Singhal : On coordinated checkpointing in Distributed

Systems. IEEE Trns. on Parallel and Distributed Systems,

vol. 9, no.12, pp. 1213-1225, Dec 1998.

4. Koo-Toueg.: Checkpointing and Roll-back Recovery for

Distributed systems. IEEE Transactions on Software

Engineering, pages 23-31, January 1987.

5. Acharya A. and Badrinath B. R.,: Checkpointing Distributed

Applications on Mobile Computers. Proceedings of the 3rd

International Conference on Parallel and Distributed

Information Systems, pp. 73-80, September 1994.

6. Elnozahy E.N., Johnson D.B. and Zwaenepoel W.: The

Performance of Consistent Checkpointing, Proceedings of

the 11th Symposium on Reliable Distributed Systems, pp.

39-47, October 1992.

7. Hung, S. T.: Detecting Termination of Distributed

Computations by External Agents, Proceeding 9th Int‟ Conf.

Dist, Computing System, pp.79-84, 1989.

8. Cao-Singhal. : On the Impossibility of Min-process Non-

blocking Checkpointing and an Efficient Checkpointing

Algorithm for Mobile Computing Systems, Proc. of

Int‟Conf. on Parallel Processing, pp. 37-44, August 1998.

9. Prakash R. and Singhal M.: Low-Cost Checkpointing and

Failure Recovery in Mobile Computing Systems, IEEE

Transaction On Parallel and Distributed Systems, vol. 7, no.

10, pp. 1035-1048, October1996.

10. C. Perkins : Mobile IP, IEEE Comm. Magazine, vol. 35, pp.

84-99, May 1997.

11. L. Kumar, M. Misra, R.C. Joshi :Low overhead optimal

checkpointing for MDS, Proc.19th IEEE Int‟Conf on Data

Engineering, pp 686 – 88, 2003.

12. Ni, W., S. Vrbsky and S. Ray: Pitfalls in Distributed

Nonblocking Chkpointing, J‟ of Interconnection N/Ws, Vol.

1 No. 5, pp. 47-78, March 2004.

13. L.Kumar, P.Kumar: A Synchronous Checkpoiting Protocol

for Mobile Distributed System: Probabilistic Approach,

International Journal of Information and Computer Security

1(3)(2007), 298-314.

14. S. Neogy, A. Sinha, P.K. Das : A Checkpointing Protocol for

Distributed System Processes, TENCON 2004. 2004 IEEE

Regions 10 congerence vol.B. no.2,pp 553-556, November

2004, Thailand.

15. Parveen Kumar: A low-cost hybrid coordinated

checkpointing protocol for mobile distributed systems,

Journal of Mobile Information Systems, vol 4, Number 1,

2008.

16. S.K.Gupta, R.K.Chauhan and Parveen Kumar: An Efficient

Snapshot Collection Protocol for Deterministic Mobile

Distributed System, Int‟ J‟ of Computer Science and

Engineering Systems, Vol. 2, No. 2, April 2008.

17. Guohui Li, LihChyun Shu: A Low-Latency checkpointing

Scheme for Mobile Computing Systems.

