
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

19

Simulation of Dynamic Mobile Agent Model to Prevent

Denial of Service Attack using CPNS

Mayank Aggarwal
Department of Computer
Science & Engineering,

Gurukula Kangri University,
Haridwar, 249404, India

Nupur
Department of Computer
Science, Kanya Gurukul
Mahavidyalaya, Sewak

Ashram Road, Dehradun,
248001, India

Pallavi Murgai

Department of Computer
Science, Kanya Gurukul
Mahavidyalaya, Sewak

Ashram Road, Dehradun,
248001, India

ABSTRACT
Mobile Agents are soft wares migrating from one node to

another to fulfill the task of its owner. In Static mobile agents,

agent travels on the predefined path whereas in Dynamic mobile

agents, agent route is decided by the host or the agent itself,

which makes security much more difficult in it. Mobile agents

are not properly utilized because of security concerns. Security

becomes more challenging in Dynamic mobile agents as

compared to Static mobile agent. One such challenge is ‗Denial

of Service‘, in it the malicious host may deny resources required

by the agent and kill the agent, thus the result computed so far is

lost and this may happen every time the agent visits any

malicious host. Colored Petri Nets (CPNs) is a language for the

modeling and validation of systems in which concurrency,

synchronization and communication play a major role. In our

previous paper we have simulated and obtained the results for

static mobile agent but in real world agents are dynamic. This

paper simulates dynamic mobile agent model that enables the

owner of the agent to detect the malicious host. The simulation

has been done using CPNs, the result clearly proves that owner

can detect the malicious hosts and thus prevent Denial of service

attack to occur in future

Keywords

Dynamic mobile agent; denial of service attack; colored

petrinets; independent and dependent mobile agent..

1. INTRODUCTION
The advantage for using mobile agent technology is that

interaction cost for the agent owner is remarkably reduced since

after leaving its owner the agent migrates from one host to the

next autonomously. Though a lot of research is going for

security of mobile agents and host security [14], it is still a

major concern. One such concern is 'Denial of Service' attack

by malicious host, in such an attack; the malicious host can

prevent an agent from migrating to another host or may even

delete the agent. As a consequence, all the results collected so

far are lost. This may repeat every time the agent passes through

this malicious host while the agent owner has no knowledge to

detect the malicious host[12]. In general, the term Denial Of

Service is used for attacks in which the focus is on exhausting

resources with the effect that other entities cannot be served

anymore[12]. Mobile agents are of two types Static and

Dynamic. Static mobile agent follows the route decided by its

owner. Dynamic mobile agent the route is decided by the agent

or the host at each transition. The security concern increases in

case of Dynamic mobile agent as the chances of host to be

visited next for being malicious is more as compared to the hosts

in static mobile agent because in it the host is not predicted by

the owner.This paper is an extension of the work done in

‗Simulation of Static mobile agent to prevent denial of service of

service attack using CPNs‘ (Aggarwal Mayank, Nupur,Pallavi

2011) in press, a similar model was discussed in [11,12],

additional and useful changes in the model have been done and

model is finally simulated to show that owner can detect the

malicious host. The paper discusses how the owner can detect

the malicious host in dynamic mobile agent and thus prevent

from Denial Of Service attack in future .The paper is divided in

XI Sections. In section II we formally define the agent, data

structure and the problem. Section III discusses the solution

whose algorithm is taken in Section IV with algorithms for

sender, receiver ,router and guard. Section V has the model

showing the owner, hosts ,router and the guard and how do they

communicate with each other. Section VI discusses the detection

mechanism i.e. how the owner detects the malicious host.

Implementation of the model in CPNs is discussed in section

VII. The simulation using CPN is discussed in section VIII

showing different markings. Many researchers have simulated

mobile agents in CPN tools before also [13]. The limitations of

simulation is overcome in Section IX by State Space Analysis

of the model.The related work on agent security is discussed in

Section X. Last Section i.e. Section XI has Conclusion and

scope for future. The paper shows screen shots of the simulation

done in CPN tool, for clarity of pictures only the required

portion is captured thus the label not required appear truncated.

2. DEFINING AGENTS AND PROBELM
Agent is a software program which works on behalf of the user.

There are many possible definitions of mobile agent, Lang C

(1998) at General Magic, Inc: said agent is a software object

that is situated within an execution environment and must

possess the following mandatory properties”:

a) Autonomous : On behalf of the user

b) Reactive : Responsive to change in environment.

c) Goal Driven : Proactive acting in advance to deal

 with an expected situation.

d) Temporally Continuous: Continuously operating

In this paper agent is defined as:

Agentj = (id, sc, r,) i.e agent at jth host.

Where:

 j : Stands for the host i.e. jth host

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

20

id : It is the unique identifier of the agent.

sc : It denotes the source code of the agent.

r : Predefined route(set of trusted hosts)

 jth host is denoted by cj and it is assumed that agent travels from

cj to cx where cx is decided dynamically.

There can be two types of operations in agent systems:

Dependent and Independent [12].

In a dependent computation (the output of one host is input to

next host) Here, at cj the results contained in o/p (j-1) calculated

by cj−1 are needed as input for cj. Thus the order of hosts in the

journey is important.

We say that an agent journey is completely dependent if for 1 < i

≤ n each ci requires the results of ci−1. In this case, the hosts have

to be visited exactly in the same order as they are prescribed in

the route r.

This means that the agent cannot fulfill its task when at least one

of the required hosts specified in r is either not available or

denies its services to the agent.

Second type is independent (in which the order of journey is not

important) Here, the agent computation does not need the results

of another host. We say that an agent journey is completely

independent when there are no dependent computations in it. As

a consequence, the hosts contained in the prescribed route r can

be visited in any arbitrary order.

The agent is free to move without the control of its owner,

therefore the possibilities of its loss increases a lot. As the agent

moves from cj to cx, the possibility of cx being malicious is

significant and thus ‗Denial of Service‘ attack might occur,

which would result in loss of the agent and the partially

computed result. We can also say, In ‗Denial Of Service‘ the

agent is not transmitted further from the malicious host and the

owner keeps on waiting for the results and the agent.

 In the next section we provide a solution for the discussed

problem.

3. SOLUTION
A model is proposed which can solve the problem discussed in

section 2. In the proposed model owner could detect the

malicious host and thus prevent from ‗Denial of Service‘ attack

to occur in future journey.

The model has two main servers called ‗Guard‘ and ‗Router‘.

Router keeps track of the dynamically decided route and Guard

keeps all the acknowledgements.

For each value in the router there should be an

acknowledgement with the guard if agent is successfully

transmitted.

Whenever an agent moves from host cj to cx (decided

dynamically) the host cj sends an acknowledgment "j" to the

guard and sequence of next host "x" to the router.

Whenever the owner feels that agent has not returned it checks

with the router for the route and for their corresponding

acknowledgments in the guard , if any acknowledgment is

missing it means that agent has not been transmitted correctly

and the owner can detect the malicious host. For example if

route is [1, 3, 7] and acknowledgement form host 3 is missing,

then it suggests that host 3 might be malicious.

It may also be the case that that cj is ready to send but cx is found

to be offline always. This variation is dealt separately by using

the concept that cx should be blacklisted from the trusted node

lists and cj should avoid sending agent to cx . Although this

raises another issue that malicious cj can malign the image of cx

and skip it intentionally though it is available.

The algorithm proposed gives the solution of the simplified

problem not the above variation.

Many protocols like in [8] can be reused, [8] discusses how to

implement cryptographic protocols and reuse it. The proposed

architecture in [8] can be used for implementation of secure

distributed applications.

4. ALGORITHM
The model broadly has three main players ‗Sender‘, ‗Router‘

and ‗Guard‘. Role of ‗Receiver‘ is same as ‗Sender‘ as it

becomes the Sender for next host.

It is assumed that cj sends agent to cx. (Figure 1)

4.1 Sender Algorithm
1.Saves a copy of agent

2.Send the agent to cx..Where cx is dynamically

 decided.

3. If successfully sends the agent to cx, sends

 acknowledgement bearing j to guard.

4. Send the signature x of cx the next host to router.

4. End

The sender saves a copy of agent so that if cx is malicious and it

changes the code , a copy of it and the result up to host j can be

had from cj.

4.2 Receiver Algorithm
The receiver works similarly as sender. The receiver on

receiving the agent becomes sender for next host in the path. It

follows the same algorithm as the sender.

4.3 Guard Algorithm
In our model, guard plays an important role. We can consider it

as a server keeping all records; similar to the server it keeps

copies of all acknowledgments for future reference(Figure-

1).The sender sends acknowledgement to it, which denotes the

signature of the host, this in turn confirms the owner that the

host is malicious or not.

1. Receive acknowledgment

2. Save the acknowledgment

4.4 Router:

Router keeps the track of the dynamically decided route. Sender

sends the signature of the next host at each transition

1. Receive the signature of next host

2. Save it.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

21

5. MODEL
The model shows the owner H, which launches the agent, the

agent goes to host c1 and then proceed further depending on the

decision taken dynamically. Each host ci, where 1 < i ≤ n sends

an acknowledgment to guard. A variant of this model is

discussed in [17].

Figure 1. Model

6. DETECTION PROCEDURE
The owner waits for the result from the agent, when it finds that

the time out has occurred it consults the Router and the Guard

and for all the nodes listed in the Router checks for its

acknowledgement with the Guard. In other words, it checks for

an acknowledgment for ci for all i listed in Router, when it finds

that acknowledgment from ci is missing it understands that ci

must be the malicious host and it resends the agent this time

skipping ci from the route and also after training the agent that ci

is malicious not too chose it dynamically.

Though there are several variations in the approach, it may be

the case that ci itself is malicious it does not want to respond or

the acknowledgment might have lost. Sometimes the case may

be that ci is malicious and it corrupts the code and sends back

the acknowledgment pretending to be a safe host, though this

variation is tackled in our approach, as the guard checks for the

code for each acknowledgment. In [2] it tackles the situation by

taking into record the path history.

7. CPN MODEL
Colored Petri Nets (CPNs) is a language for the modeling and

validation of systems in which concurrency, synchronization and

communication play a major role [3]. It is a discrete-event

modeling language combining Petrinets with the functional

programming language Standard ML. It provides the graphical

representation and the basic primitives for modeling

concurrency, communication, and synchronization. Standard

ML provides the primitives for definition of data types,

describing data manipulation, and for creating compact and

parametirsable models.

Figure 2. CPN Model

A CPN model is an executable model representing the states of

the system and the events that can cause the system to change

the state.

The proposed model shown in Fig. 2 has been simulated using

CPNs. The CPN model has 13 places and 5 transitions. Owner

of the agent is labeled as Owner. Senders/Receivers are labeled

as RCV_1, RCV_2, RCV_3 and RCV_4.In between are

intermediately places through which agent moves from one host

to another .Copy of agent is saved in places called Stores. A

place called Guard receives the entire acknowledgement labeled

as ‗G‘; similarly a place called Router ‗R‘ receives the entire

route as per the algorithm discussed in section IV.

Declarations are used in CPN ML declaring the data types,

constants, variables used in the model.

The agent is described in CPN ML by the following

declarations:

colset id = int;

colse INT=int;

Owner

rcv_2

rcv_1 rcv_3

rcv_4

R

ROUTE

1’ (10, “xyz”, r)

1’ (10, “xyz”,*2,3,5+)

agent

DATA

If success then 1’ 2 else empty

If x = 1 then 1’ p else empty

If x = 2 then 1’ p else empty

p

p

p

 p

p

 p

 p

 p

p

If success then 1’ 4 else empty

If success then (if y = 4 then 1’ p else empty) else empty

Store_1
DATA

If success then (if y = 3 then 1’ p
else empty) else empty

If success then (if y = 4 then 1’ p
else empty) else empty

If success then (if z = 5 then 1’ p else
 empty) else empty

If success then (if z = 6 then 1’ p else
empty) else empty

If success then (if z = 5 then 1’ p
else empty) else empty If success then (if y = 3 then 1’ p

else empty) else empty

If success then 1’ 1 else empty

G

INT

 x

y
 z

 z

 If success then (if z = 6 then 1’ p
else empty) else empty

1

2

DATA

1

DATA

Store_2
DATA

Store_3
DATA

4
DATA

Store_4
DATA

If success then 1’ 3 else empty

6
DATA

5 DATA 3
DATA

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

22

colset sc = string;

colset route =list INT with 1..5;

colset agent = product id*sc*route;

Screen shot of declaration is shown below:

Figure 3. Screen Shot of Declaration

8. SIMULATION
Simulation is done to investigate different scenarios and explore

the behaviors of the system. Very often, the goal of simulation is

to debug and investigate the system design. CP-nets can be

simulated interactively or automatically. An interactive

simulation is similar to single-step debugging. It provides a way

to ―walk through‖ a CPN model, investigating different

scenarios in detail and checking whether the model works as

expected. Automatic simulation is similar to program execution.

The purpose is to simulate the model as fast as possible and it is

typically used for testing and performance analysis.

The Simulation of the model shows different markings. In the

initial marking, agent is at the owner, there are two places where

the agent can go depending on the dynamically decided route

rcv_1 or rcv_2. On reaching rcv_1 or rcv_2 marking M1 is

reached. In this marking the receiver rcv_1 or rcv_2 keeps a

copy of agent, update the router with the next host and if

‗success=true‘ sends the agent to next host (decided

dynamically) and sends acknowledgment to guard. Marking M1,

in which agent reaches to rcv_2 is shown in Figure 4.

Figure 4, shows that agent has reached to rcv_2, ‗R‘ has been

updated with the entry 1`2 which in CPN is read as 1 instance of

value 2.

Figure 4. Marking M1.

Depending on the value of success in marking M1 there are two

possibilities giving two variants of marking M2.If ‗ success =

true‘ then only the agent is transferred to next host else it

signifies that ‗Denial Of Service‘ attack has occurred by host

rcv_2.In M2, router receives the signature of next host from

rcv_2.Figure 5, shows marking M2 for ‗success=true‘.

Figure5. Screen shot of Marking M2

Owner

rcv_2

rcv_1

R

ROUTE

1’ (10, “xyz”, r)

agent

DATA

If success then 1’ 2 else empty

If x = 1 then 1’ p else empty

If x = 2 then 1’ p else empty

p

 p

 p

 p

p

If success then 1’ 1 else empty

G

INT

 x

y

1

2

DATA

1

DATA

Store_2
DATA

Store_1

DATA

1’2

1
1’ (10, “xyz”, *2,3,5+)

p=(10, “xyz”, *2,3,5+)
success = ?

Owner

rcv_2

rcv_1

R

ROUTE

1’ (10, “xyz”, r)

agent

DATA

If success then 1’ 2 else empty

If x = 1 then 1’ p else empty

If x = 2 then 1’ p else empty

p

 p

 p

 p

p

If success then 1’ 1 else empty

G

INT

 x

y

1

2

DATA

1

DATA

Store_1

DATA

1’2++
1’4

1’ (10, “xyz”, *2,3,5+)

p=(10, “xyz”, *2,3,5+)
success = true

4 rcv_4

1

Store_2
DATA

1’ (10, “xyz”, *2,3,5])

1

1’ 2

1

If success then 1’ 4 else empty

 p

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

23

As soon as the transition rcv_2 is executed for success= true,

guard receives an acknowledgement from rcv_2 shown as 1`2

on the place labeled ‗G‘ in Figure 5 and the agent moves to next

host decided dynamically in above case rcv_4, so ‗R‘ is updated

with entry 1`4 shown as 1`2++1`4 signifying the complete

route.(Agent moves from host 2 to host 4) upto rcv_4.

If Denial of Service attack occurs agent is not transferred further

as shown in Figure 6.In this case Guard does not receive any

acknowledgement but router is updated so owner can easily

detect for malicious host when it finds missing

acknowledgement with guard.

In Marking M2, for ‗ success=false‘ (Fig. 6) ‗G‘ is empty and

‗R‘ contains the entry 1`2++1`4 signifying that till now the route

is from host 2 to host 4, but as ‗G‘ is empty i.,e it has not

received any acknowledgement host 2 is malicious it has not

transferred the agent to next host i.e host 4. This shows that we

can detect the malicious host whenever Denial of service attack

occurs.

Figure 6. Screen shot of marking M2 for success = false

Similarly there can be a case in which host 4 is malicious, and

host 2 has transferred the agent to host 2 correctly. This is the

case if in Marking M2 ‗success=true‘ but rcv_4 is malicious

which gives a new marking M3 in which the malicious host i.e

rcv_4 is detected.(Fig. 7)

Figure 7. Screen Shot of Marking M3.

In marking M3 ‗success=false‘ agent has travelled till host 4 i.e

rcv_4 but is lost now due to ‗Denial of Service‘ attack by

rcv_4.The above figure shows ‗R‘ with 1`2++1`4++1`5 which

signifies that the route is from 2 to 4 and from 4 to 5 but ‗G‘ has

only one acknowledgement i.e 1`2 which signifies that host 2 i.e

rcv_2 has transferred the agent correctly but host 4 i.e rcv_4 is

malicious.

Completely simulating the model several times makes different

hosts malicious on different runs, and each time malicious host

was detected by consulting the entries at ‗R‘ and ‗G‘.

The simulation of the model proved that the malicious host for

‗Denial of service‘ attack could be detected and thus ‗Denial of

service‘ attack could be prevented in the next journey by

skipping the detected malicious host.

9. STATE SPACE ANALYSIS
Simulation can only be used to consider a finite number of

executions of the model being analyzed. This makes simulations

suited for detecting errors and for obtaining increased

confidence in the correctness of the model. The situation of our

model shows that Guard always has the correct

acknowledgements and the malicious host can be detected but

we can't ensure it to be 100% correct.

Full state space analysis represent all possible executions of the

model being analyzed. The basic idea of full state spaces is to

calculate all the reachable states (markings) and all state changes

(occurring binding elements) of the CPN model and represent

these in a directed graph where the nodes correspond to the set

of reachable marking and the arcs correspond to occurring

binding elements.

Owner

rcv_2

rcv_1

R

ROUTE

1’ (10, “xyz”, r)

agent

DATA

If success then 1’ 2 else empty

If x = 1 then 1’ p else empty

If x = 2 then 1’ p else empty

p

 p

 p

 p

p

If success then 1’ 1 else empty

G

INT

 x

y

1

2

DATA

1

DATA

Store_1

DATA

1’2++
1’4

p=(10, “xyz”, *2,3,5+)
success = false

4 rcv_4

Store_2
DATA

1’ (10, “xyz”, *2,3,5+)

1

If success then 1’ 4 else empty

 p

Owner

rcv_2

rcv_1

R

ROUTE

1’ (10, “xyz”, r)

agent

DATA

If success then 1’ 2 else empty

If x = 1 then 1’ p else empty

If x = 2 then 1’ p else empty

p

 p

 p

 p

p

If success then 1’ 1 else empty

G

INT

 x

y

1

2

DATA

1

DATA

Store_1

DATA

1’2++
1’4++
1’5

1’ (10, “xyz”, *2,3,5+)

p=(10, “xyz”, *2,3,5+)
success = false

4 rcv_4

1

Store_2
DATA

1’ (10, “xyz”, *2,3,5+)

1

1’ 2

1

If success then 1’ 4 else empty

 p

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

24

Figure 8. Complete state space analysis.

Figure 9. Part of State space analysis

State space diagram in Figure 9 shows G with marking

1`2++1`4 and R with marking 1`2++1`4++1`5 which is the case

when no ‗Denial of Service‘ attack has been done by any of the

node in the dynamic route.

State space analysis also shows that by consulting the Guard and

the Router owner can detect the malicious host and thus prevent

‗Denial of service‘ attack in future journey by skipping that

malicious host.

10. RELATED WORK
Many of the problems concerning the security of mobile agent

systems, both protecting the host from malicious agents and

protecting agents from malicious hosts, have been discussed in

the literature. Counter measures for mobile agent security are

well discussed in [18]. Execution tracing [9] is a technique for

detecting unauthorized modifications of an agent through

recording the agent‘s behavior during its execution on each host.

In [10] Lofti and Samuel introduce the concept of mobile agent

protection by clones. In [16] Sander and Tschudin introduce the

concept of computing with encrypted functions and thus

protecting the integrity and the privacy of the agent‘s

computations.

Corradi present in [1] methods for protecting the agent‘s

integrity —both making use of a Trusted Third Party and

without it. In [6], Kim presented an adaptive migration strategy

that can be used to avoid mobile agents from blocking or

crashing.

This is achieved by a route reordering algorithm and a backward

recovery algorithm.

In [4,5] Westhoffet describe methods for the protection of the

agent‘s route against hosts spying out route information. One

technique for ensuring that a mobile agent arrives safely at its

destination is through the use of replication and voting [7]. The

problem of detecting the black hole—a stationary process

destroying visiting agents—in an anonymous ring is addressed

in [15] visiting agents—in an anonymous ring is addressed in

[15].

11. CONCLUSION AND FUTURE WORK
Simulation and State space analysis of the model shows that by

consulting the Guard and the Router owner can detect the

malicious host and thus prevent ‗Denial of service‘ attack in

future journey by skipping that malicious host.

The model discussed above is well suited for Dynamic mobile

agent, but there may be certain case like sender sends the

acknowledgement but corrupts the code, or the sender does not

send the acknowledgement deliberately; such cases need to be

considered.

12. REFERENCES
[1] Antonio Corradi, Marco Cremonini, Rebecca Montanari,

and Cesare Stefanelli. Mobile agents integrity for electronic

commerce applications. Information Systems, 24(6), 1999.

[2] Cao, Chun andLu, Jian 'Path-history-based access control

for mobile agents', International Journal of Parallel,

Emergent and Distributed Systems, vol 21: 3, pp 215 - 225,

2006.

[3] CPN Tools website: www.daimi.au.dk/CPNtools

3:
New_Page’agent 1: empty
New_Page’r1 1: empty
New_Page’r2 1: empty
New_Page’store_1 1: empty
New_Page’store_2 1: 1’(10,’xyz”, *2,3,5+)
New_Page’r3 1: empty
New_Page’r4 1: 1’(10,’xyz”, *2,3,5+)
New_Page’G 1:1’2
New_Page’r5 1:empty
New_Page’r6 1:empty
New_Page’store_3 1:empty
New_Page’store_4 1:empty
New_Page’R 1: 1’2++1’4

4:
New_Page’agent 1: empty
New_Page’r1 1: empty
New_Page’r2 1: empty
New_Page’store_1 1: empty
New_Page’store_2 1: 1’(10,’xyz”, *2,3,5+)
New_Page’r3 1: empty
New_Page’r4 1: empty
New_Page’G 1:empty
New_Page’r5 1:empty
New_Page’r6 1:empty
New_Page’store_3 1:empty
New_Page’store_4 1:empty
New_Page’R 1:1’2++1’4

6:
New_Page’agent 1: empty
New_Page’r1 1: empty
New_Page’r2 1: empty
New_Page’store_1 1: empty
New_Page’store_2 1: 1’(10,’xyz”, *2,3,5+)
New_Page’r3 1: empty
New_Page’r4 1: empty
New_Page’G 1:1’2
New_Page’r5 1:empty
New_Page’r6 1:empty
New_Page’store_3 1:empty
New_Page’store_4 1: 1’(10,’xyz”, *2,3,5+)
New_Page’R 1: 1’2++1’4++1’5

1:
New_Page’agent 1: 1’(10,’xyz”, *2,3,5+)
New_Page’r1 1: empty
New_Page’r2 1: empty
New_Page’store_1 1: empty
New_Page’store_2 1: empty
New_Page’r3 1: empty
New_Page’r4 1: empty
New_Page’G 1:empty
New_Page’r5 1:empty
New_Page’r6 1:empty
New_Page’store_3 1:empty
New_Page’store_4 1:empty
New_Page’R 1:empty

2:
New_Page’agent 1: empty
New_Page’r1 1: empty
New_Page’r2 1: 1’(10,’xyz”, *2,3,5+)
New_Page’store_1 1: empty
New_Page’store_2 1: empty
New_Page’r3 1: empty
New_Page’r4 1: empty
New_Page’G 1:empty
New_Page’r5 1:empty
New_Page’r6 1:empty
New_Page’store_3 1:empty
New_Page’store_4 1:empty
New_Page’R 1:1’2

5:
New_Page’agent 1: empty
New_Page’r1 1: empty
New_Page’r2 1: empty
New_Page’store_1 1: empty
New_Page’store_2 1: 1’(10,’xyz”, *2,3,5+)
New_Page’r3 1: empty
New_Page’r4 1: empty
New_Page’G 1: 1’2++1’4
New_Page’r5 1: 1’(10,’xyz”, *2,3,5+)
New_Page’r6 1:empty
New_Page’store_3 1:empty
New_Page’store_4 1: 1’(10,’xyz”, *2,3,5+)
New_Page’R 1: 1’2++1’4++1’5

1
0:1

2
1:2 3

1:2

4
1:0

6
1:0

5
1:0

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

25

[4] Dirk Westhoff, Markus Schneider, Claus Unger, and Firoz

Kaderali. Methods for protecting a mobile agent‘s route. In

Information Security, Second International Workshop

(ISW’99), number 1729 in LNCS. Springer Verlag, 1999.

[5] Dirk Westhoff, Markus Schneider, Claus Unger, and Firoz

Kaderali. Protecting a mobile agent‘s route against

collusions. In Selected Areas in Cryptography, 6th Annual

International Workshop (SAC’99), number 1758 in LNCS.

Springer Verlag, 2000.

[6] Dong Chun Lee and Jeom Goo Kim. Adaptive migration

strategy for mobile agents on internet. In Technologies for

E-Services (TES 2001), Second International Workshop,

Proceedings, number 2193 in LNCS. Springer Verlag,

2001.

[7] Fred B. Schneider. Towards fault-tolerant and secure

agentry. In Distributed Algorithms, 11th International

Workshop (WDAG’97), Proceedings, number 1320 in

LNCS. Springer Verlag, 1997.

[8] Garrigues, C., et al. Promoting the development of secure

mobile agent applications. J. Syst. Software (2009),

doi:10.1016/ j.jss.2009.11.001

[9] Giovanni Vigna. Cryptographic traces for mobile agents. In

G. Vigna, editor, Mobile Agents and Security, number 1419

in LNCS. Springer Verlag, 1998.

[10] Lotfi Benachenhou, Samuel Pierre, ‖ Protection of a mobile

agent with a reference clone,‖ Elsevier , Computer

Communications , vol 29, pp. 268-278, 2006.

[11] M.Aggarwal,Nupur,Pallavi, " Protecting Dynamic Mobile

Agent against Denial of Service Attacks",AIP,Conference

Proceedings,1324 (316),pp 316-318,2010.

[12] M. Schenider, B.Cubaleska ―A method of protecting

mobile agents against denial of service attacks‖ , Springer-

Verlag Berlin Heidelberg , LNAI 2446, pp. 297–311, 2002.

[13] N.Desai,K.Garg,M.Mishra, Modelling Hierrarchical

Mobile Agent Security Prorotocol Using CP Nets,

Springer-Verlag Berlin Heidelberg, LNCS 4873, pp 637-

649,2007.

[14] Price, Sean M. 'Host-Based Security Challenges and

Controls: A Survey of Contemporary Research',

Information Security Journal: A Global Perspective, vol 17:

4, pp 170 — 178, 2008.

[15] Stefan Dobrev, Paola Flocchini, Guiseppe Prencipe, and

Nicola Santoro. Mobile search for a black hole in an

anonymous ring. In Distributed Computing (DISC 2001),

15th International Conference, Proceedings, number 2180

in LNCS. Springer Verlag, 2001.

[16] Tomas Sander and Christian F. Tschudin. Protecting

mobile agents against malicious hosts. In G. Vigna, editor,

Mobile Agents and Security, number 1419 in LNCS.

Springer Verlag, 1998.

[17] Venkatesan S, et al. ―Advanced mobile agent security

models for code integrity and malicious availability

check.‖, J Network Comput Appl,

doi:10.1016/j.jnca.2010.03.010 ,2010 .

[18] W.A.Jansen, ―Countermeasures for mobile agent security,‖

Elsevier, Computer Communications, vol. 23 , pp. 1667-

1676 , 2000.

