
International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.2, April 2011 

15 

JavaMarker: A Marking System for Java Programs 
 

Marzieh Ahmadzadeh 
School of Computer Engineering & 

IT 
Shiraz University of Technology 

Shiraz, Iran 

 

Sahar Namvar 
School of Computer Engineering & IT 

Shiraz University of Technology 
Shiraz, Iran 

 

Mansoore Soltani 
School of Computer Engineering & 

IT 
Shiraz University of Technology 

Shiraz, Iran 

 

ABSTRACT 
In this paper a marking system for Java programming is presented 

which has been developed as a plug-in for a widely used editor, 

Eclipse. This system runs student submitted programs against 

previously defined test cases. Depending on the percentage of 

correct running code, a proper mark is awarded. Since this 

program was implemented in order to be used in a principles of 

programming course, we require students to practice coding with 

a correct style. Therefore, this system checks the style of the code 

and produces messages when a better style is expected. In some 

cases penalty marks are considered for improper code style. 

For this system to play an educational role, we allow students to 

submit more than once. With this we aim to help them learn from 

their mistakes. The number of submissions differs from one 

exercise to another and is defined dynamically by our system 

administration.  

   We call this system JavaMarker. 

General Terms 

Design, Experimentation, Languages. 

Keywords 

Eclipse, Plug-in, Java, Marking System. 

1. INTRODUCTION 
Learning to program is a learning-by-doing task which requires an 

excessive effort of course administration to run the course 

efficiently.  One of the important, and also difficult, tasks is to 

mark huge numbers of assignments and to provide effective 

feedback in a timely manner. However, this is not always possible 

because of the high number of students and the broad range of 

content which requires frequent exercises. Therefore, course 

administrators are rarely able to mark students’ programs and 

provide feedback when and where it is necessary. One solution to 

speed the process up is to increase the number of teaching 

assistants. This creates the problem of inconsistency in marking. 

Although one can plan to assign one exercise to one teaching 

assistant and another exercise to another teaching assistant, still an 

inconsistency in overall marking can be observed. Adding to that, 

it is not possible to provide feedback exactly when it is required. 

   Further, there are some very simple concepts in terms of the 

quality of the code that we want our students to get used to. But 

they do not take it seriously because no compiler error is issued if 

they do not care about that style. For example, we emphasize that 

indentation is important since it makes the program more 

readable. We have observed cases where all the lines of the code 

start from the same column even in late semester. Therefore, we 

looked for an opportunity to enforce the use of a correct style. 

This also requires instant feedback. Even if we have to reduce 

marks in the early stages of programming, students will learn to 

pay attention to code quality the next time around. 

   All of these issues motivated us to develop a system that marks 

students programs automatically. From an educational point of 

view we would have the ability to provide instant feedback and 

from the administrative side we would assure that marking is 

consistent throughout the semester.  

   Of course several programs have been introduced in literature to 

mark students’ programming exercises [6, 7, 8]. In these systems, 

developers have implemented an editor from scratch. Perhaps the 

focus on qualities such as correctness of the program has 

prevented an implementation of a comprehensive editor.  

   Since one of our educational objectives is to prepare students to 

enter industry, we aim to prepare them as much as possible and do 

not want them to get surprised when they start working just 

because they have not seen professional editors previously. 

Therefore, implementing our system in the form of a plug-in for a 

professional editor seemed a good idea.  

   Fortunately, there exists Eclipse [3], which is widely used for 

programming in Java and provides a large amount of facilitating 

tools that helps programmers to focus on the task of 

programming. Further, adding developed plug-ins is allowed.  

   This persuaded us to implement an Eclipse plug-in for our 

intended system. 

   What will be seen in this paper is as follows. In section two 

related works are explained. The strategy that we used in our 

marking is described in section three. Our way of incorporating 

the strategy in our developed system is explained in section four. 

Future work is discussed in section five. 

2. RELATED WORKS  
To be able to implement our marking system, we needed to look 

for strategies that were used in literature. We came across two sets 

of related works. 

   First were the developments of marking systems that have 

spanned nearly two decades [2, 4, 5, 7, 9]. These systems share 

the same properties. They were developed to evaluate C or Java 

programming language and they all evaluated programs by both 

comparing the outputs with predefined sets of test data and the 

quality of code in terms of style. Of course, there existed some 

other systems that were implemented in order to evaluate 

programs written in other languages such as Scheme [10]. 

   Our aim was to enforce using real world programming editors. 

This not only helps students to do their projects in later courses 

such as Software Engineering easier, but also prepares them to 

work in industry. Therefore, works that were introduced in 

literature were of little help. In all the reviewed works either a 



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.2, April 2011 

16 

simple editor was implemented and integrated with the evaluation 

system [2] or, where the use of existing systems were required, 

the marking systems were not integrated [3,4]. Therefore, these 

systems were deemed to be ad hoc.  

   Second were the strategies that were needed to mark students’ 

programs for which two issues needed to be considered; marking 

the execution of the program and the quality of the code. 

   The fact that the nature of assignments can be completely 

different from each other forced the developer of such systems to 

implement the strategy of comparing the generated results by a 

program against expected outputs character by character. This 

approach, which has been used by most of these introduced 

systems, is similar to our method of assessing the correctness of a 

program. 

   There were extensive reports on the metrics that were used for 

assessing program quality in the literature [1, 2, 11]. We used 

these metrics in our system and have explained them in section 

3.1. 

3. MARKING STRATEGY 
In our programming course in which Java language is taught, two 

criteria are considered to award marks to students. The first 

criterion is concerned with submitting a working code. This 

depends on the proportion of the code that outputs correct results. 

If all segments of the code run correctly, a full mark is given 

otherwise, a percentage of the mark is awarded. The second 

criterion is the quality of the code in terms of programming style.  

   In order to develop an automated marking system which marks 

students’ programs similar to human marking strategies, we 

considered both criteria in our plug-in. Our incorporated strategy 

is discussed in section 3.1 and 3.2.  

3.1 Metrics for Program Quality 
Several issues were considered for program quality based on 

previous research [1, 2, 11] in addition to some other factors that 

we thought we must habituate novice students to use. After 

collecting all the cases, it was decided that not all of these issues 

should contribute to students’ marks but they are still of such 

importance that we wanted to point them out for educational 

purposes. Therefore, we divided the style cases into two groups. 

The first group contained instances that resulted in mark reduction 

if they were excluded from the program. For the second group no 

mark penalty was considered but a warning message was issued to 

notify students of not regarding that special case.  

   To mark the code style, we designed a table in our database in 

which the optimum number of each style issue was entered. For 

example, one of our considerations was the total number of 

defined methods for a specific assignment. Therefore, we have a 

field in our table that shows the interval that is accepted (i.e. 

minimum and maximum number of defined methods). If the 

number of methods was in that interval, a full mark was awarded; 

otherwise, a percentage of the mark was given. The computation 

of this percentage comes from Benford [2]. 

   Parameters such as depth of inheritance, total number of 

children of a class, the number of defined methods, number of 

variables defined in a method, number of loops, size of methods, 

number of global variables, number of defined and unused 

methods, [2], incorrect blank or break line [2, 11], number of 

private methods, number of final classes and number of static 

methods play a role in having a proper code style. These 

parameters are included in the first group that we award/reduce 

marks for. As stated previously, the computation of the mark is 

based on the optimum numbers that are specified in our table. 

   The type of comments used (i.e. use of // or /*), providing initial 

comment, incorrect blank line (excluding before and after 

methods) and incorrect indentation are among the second group of 

parameters [11]. Therefore, a warning message is issued and no 

mark is reduced.    

 

3.2 Metrics to Measure a Correct Code 
To measure the correctness of a program, we designed several test 

cases for each assignment to evaluate students’ programs against. 

We considered different numbers of test cases depending on the 

type of assignment because some programs needed more testing 

than others. This included cases where the program should have 

run normally plus all possible cases where we expected the 

program to report an error.  

   The idea of preventing students from unlimited numbers of 

submissions was first introduced by Reek [9] in order to enforce 

in students to think about what went wrong in their program. In 

this way, random modifications by students to get the right result 

could be avoided. 

   The strategy is to divide the total mark depending on the number 

of outputs. For example, if the program generates 5 outputs and 

each of the five has the same importance in weight, we consider 

20% of the total for each output.  Since these percentages are 

defined dynamically for each assignment, different weighting is 

also possible. 

   Another issue that we considered was the state in which we   

awarded the mark. If a program ran up to one point and then 

stopped due to the occurrence of an exception, we gave marks up 

to that point and issued the exception to let students know that 

their program did not end normally. 

   If the program did not output all the required outputs, just a 

percentage of the total mark related to correct output was 

awarded. This included the situation when an infinite loop was 

generated and the program needed to be timed out. 

   If a program was submitted with a compiler error, we reported 

the proper message and no mark was awarded.  

4. ECLIPSE PLUG-IN: JavaMarker 
For JavaMarker to function effectively for our current and future 

requirements, a careful design was needed. We divided the 

explanation of this system into three parts. The first part, which is 

hidden from the user’s view, explains the architecture of the 

system and is discussed in part 4.1.  The second part shows the 

perspectives that are created by the system and viewed by the 

users. This part is shown in section 4.2. The final part, section 4.3, 

describes what happens when students submit their programs.  



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.2, April 2011 

17 

Figure 1:  A sample view of JavaMarker 

 

4.1 Architecture 
The marking system consists of two parts; a database and 

facilitating code for database connection plus, the actual plug-in 

code. The database and related code were designed to exist on the 

server while the plug-in runs from the client side. When a 

program is submitted, it is first saved temporarily on the client 

side. It is then executed (i.e. compiled and run) by our plug-in. 

And finally the code, resulting mark and other related information 

is sent to a table in our database.  

   The tables were designed in such a way that the whole system 

can run flexibly and efficiently. To have such a flexible system 

several issues were involved. 

   Among these issues was the problem of transforming the 

configurations of laboratory computers from time to time. 

Therefore, the path that a student’s program was temporarily 

saved could not be statically defined. For this the path information 

was read from a table in the database. In case we were not allowed 

to use a specific path, we were able to allocate a new path by 

specifying it in the corresponding table. 

   Another issue was the number of allowed submissions, which 

differed from one exercise to another. For early assignments we 

considered more submissions to let students learn the important 

issues that allocate marks to themselves. In later assignments, the 

number of submissions was reduced. The allowed number of 

submissions is specified in a table. Each row in the table 

corresponds to one assignment. 

   Sometimes in our course we encourage pair programming, 

therefore the same mark is awarded to two students of the same 

group. Since every two students log in with the same account, the 

information regarding a group’s name and account is also kept in 

a table to enable us to award marks to both of them. 

   As stated before, students are given marks based on the 

percentage of correct output. Some outputs are more important 

than others. Therefore, the allocated percentage varies from one 

output to another. For this, each of the test cases was divided into 

parts and a percentage of the mark was assigned to them. This is 

the information that is read from the table when a program is 

tested against our test cases.  

   A further important issue was a time for program time out if an 

indefinite loop is encountered. This can also be set dynamically 

by assigning a field of database table. 

   Since one assignment can be completely different from another 

assignment, it should be taken into account that the process of 

marking cannot be static. For example, we are not able to allocate 

10% of the style mark for the depth of inheritance in all of our 

assignments because most of the early programs do not contain 

any inheritance relations. Instead, in early programs, issues such 

as correct indentation would have more importance. For this, we 

used a kind of weighting strategy and formed a table in which 

attributes are our defined metrics for program quality in terms of 

style issues. Each row of this table belongs to one of our 

assignments and the value of attributes shows the percentage of 

the total style mark that is allocated to the attribute. Thus, if a 

value of an attribute such as depth of inheritance was set to zero, 

no mark would have been awarded for this attribute. This of 

course is dependent on what is expected from the students. For 

example, a program might be written efficiently if a hierarchy of 

inheritance is considered. However, the weight of this attribute is 

set to zero if inheritance has not been taught yet. 

   All of the cases that were explained in section 3.1 have different 

weights in different programs. These weights are specified 

separately for each assignment in the related designated tables. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.2, April 2011 

18 

4.2 Perspectives 
As can be seen in Figure 1, JavaMarker creates several views.  

A new menu item has appeared on the upper left of the screen 

which is the submit button. When students think that their 

program is ready to be submitted, they only need to click this 

button.  

   The right hand view is where students can see their mark. If the 

program has no compiler error, the awarded mark can be seen 

under the ‘Run’ part. If some compiler errors exist, the proper 

message is shown under the ‘Compiler’ part and no mark is 

awarded. If the program runs incompletely (i.e. it works for some 

test cases but not for others or the execution stops abnormally due 

to the existence of an exception), a percentage of the mark is 

granted and a description is given regarding the reasons for the 

mark reduction. Again the related mark is shown under the ‘Run’ 

part. 

   Underneath the code view, ‘Question View’ can be seen in 

which assignment numbers are shown in a hierarchical 

representation. Clicking on one of the assignments, program 

specification is shown on the right hand side of the question view.  

   As explained earlier, in the right hand view of the editor, the 

awarded mark can be seen. This mark corresponds to both the 

execution of the program and code style. Since the message 

regarding the execution of the program is short (i.e. 50% test case 

1, 25% test case 2), the message is given in the same view. 

However messages relating to program style are more descriptive 

and need more space. Therefore, a separate view is considered for 

exhibiting those comments. This view is shown in Figure 2. 

 

Figure 2: A sample view to comment on the style of the code  

4.3 Execution 
It is time to submit the code when our student is satisfied with 

his/her program and thinks that the program is error free.  

Clicking on the submit button, a list of exercises is shown and 

he/she selects the exercise that he/she intends to submit. Of course 

the exercises that passed the deadline are excluded from the list. 

The reason that we provide such a list is that some students are 

quicker than others so we allow them to deliver their code well 

ahead of the deadline. This way they can start or even submit the 

next exercise sooner. As can be seen from Figure 3 only exercises 

7 to 9 were allowed for submission at the time of providing this 

snapshot.  

 

  Figure 3: A sample view to submit an assignment 

 

 Before accepting students’ codes, our program checks the total 

number of allowed submissions and our student’s number of 

submissions from the related table. If he/she is allowed to submit, 

the program is accepted. Then the information of the test cases, 

including input, corresponding output, the percentage of allocated 

mark to each output and to each test case, is sent to the client side 

from our database which is in the server. After examining the 

code and granting the mark, all of the information, including 

source code and corresponding mark, is sent to the database.  

Figure 4 shows the execution of three slightly different programs. 

Since these programs do not require an input and only generate a 

specific output, only one test case is sufficient. The first program 

was correct. All of the output matched with the expected ones 

therefore, 100% was awarded.  The second case was run up to a 

point but stopped due to the presence of an exception. Therefore, 

the related mark (60%) was awarded and a message regarding the 

presence of an exception issued. Sixty percent of the mark was 

granted to the third program since only 60% of outputs were 

generated. 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.2, April 2011 

19 

 

Figure 4: A view of the execution of different programs 

 

 

5. CONCLUSION & FUTURE WORK 
Since this program is still in the early stages of its life, there are 

some issues that must be resolved in the future.  

   For instance, it is normal that we set some constraints for 

carrying out some exercises to ensure that students practice what 

we ask them to. For example, we might ask them to check the 

divisibility of a number to a special number n. We might also 

emphasize that they are not allowed to use remainder operator 

because we want them to practice working with loops. Another 

example is that we might ask them to solve a problem without 

using stack, but they can use an array and treat it as a stack, which 

is not what we desire. These are some implications that our 

program is not able to manage at the moment. 

   Also at the time of this writing, students are required to have all 

their classes in a single file.  

   In addition, to test students’ programs based on our arbitrary 

input, we would like to have a mechanism to evaluate program 

correctness for any program that does not input a data. There are 

some situations in which an input is not provided from an input 

device. Instead, variables get initialized by a programmer. For 

instance, a program may generate values for an array and then 

order the array. We would like to see whether the ordering is done 

correctly. The only way to do this is to ask students to initial the 

variables with what we tell them to enable us to match the 

generated output to the expected one. In the future we have to 

design a mechanism to measure the correctness of outputs 

independent of a variable’s initial value. 

  

 

  Another limitation of our current program is the lack of ability to 

grade the process with which the program is written. We would 

like to see that our novice programmer has a relatively correct 

view of the problem in mind before he/she starts to code.  This 

can be easily recognized when you observe students write their 

code. But we found it fairly difficult to incorporate in the marking 

system because there are a huge number of considerations 

involved.  

   Further, our current program is not able to mark programs that 

include graphical features. 

   Finally we would like to add a plagiarism detection tool to our 

plug-in to create a relatively full educational package. 

 

6. REFERENCES 
[1] Al-Ja'afer, J.,  and Sabri, K. 2005. Automark++ a Case Tool 

to Automatically Mark Student Java Programs. The 

International Arab Journal of Information Technology, Vol. 

2, No. 1, January 2005  

[2] Benford, S., Burke, E.,  Foxley, E.  and Higgins, C.  1995. 

The Ceilidh system for the automatic grading of students on 

programming courses. In Proceedings of the 33rd annual 

Southeast regional conference (ACM-SE 33). ACM, New 

York, NY, USA, 176-182.  

[3] Clayberg, E. and Rubel, D.  2008, Eclipse Plug-ins. 3rd 

Edition by Addison-Wesley Professional. 

http://www.informit.com/authors/bio.aspx?a=8bc01c91-798b-4ea5-90eb-b380f8b23589
http://www.informit.com/authors/bio.aspx?a=9a4f0e24-aafa-4e78-aab1-1bf0a5395abb
http://www.awprofessional.com/


International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.2, April 2011 

20 

[4] Daly, C. AND Waldron, J. 2004. Assessing the assessment of 

programming ability. In Proceedings of the 35th SIGCSE 

Technical Symposium on Computer Science Education. 210-

213.  

[5] Daly, C. 1999 RoboProf and an Introductory Computer 

Programming Course. In Proceedings of the 4th Annual 

SIGCSE/SIGCUE ITiCSE Conference on Innovation and 

Technology in Computer Science Education. 155-158.  

[6] Jackson, D. AND Usher, M. 1997. Grading Student 

Programming Using ASSYST. In Technical Symposium on 

Computer Science Education, Proceedings of the 28th 

SIGCSE (San Jose, CA), 335-339. 

[7] Joy, M., Griffiths, N., and Boyatt, R., 2005.The BOSS 

Online Submission and Assessment System., ACM Journal 

on Education Resources in Computing, vol.5, No.3, 

September 2005, Article 2. 

[8] Higgins, C., Hegazy, T., Symeonidis, P., AND Tsintsifas, A. 

2003. The CourseMaster CBA system:Improvements over 

Ceilidh. J. Edu. Inf.Technol. 8, 3, 287-304. 

[9] Reek, K. A. 1989. The TRY system – or – how to avoid 

testing student programs. SIGCSE Bull. 21, 1, 112-116.  

[10] Saikkonen, R., Malmi, L., AND Korhonen, A. 2001. Fully 

automatic assessment of programming exercises. In 

Proceedings of the ITiCSE 2001Conference, ACM Press, 

New York, 133-136.  

[11]  Sun Microsystem. April 20, 1999.  Code Conventions for 

the Java Programming Language. 

http://www.oracle.com/technetwork/java/codeconventions-

150003.pdf. Last Accessed on 6/1/2011 

 

 
 


