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ABSTRACT 

This paper aims to develop a new Genetic Algorithm based 

approach to solve the Combined Environmental Economic 

Power Dispatch Problem. The essential features of our proposed 

algorithm include a diploid based complex-encoding with 

meiosis specific attributes and new mutation operators that 

performs global search during the initial generations and local 

search in the later generations. Using the parallel searching 

mechanism and the new defined mutation operators, the local 

searching ability of the algorithm is improved, as well as the 

algorithm’s efficiency.  

Results of comparative tests on a sample power system are 

presented, showing the better computation efficiency and 

convergence property of the proposed methodology. 
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1. INTRODUCTION  
The dispatch strategy for an energy system is a primary 

objective in the operation of power systems. It is a 

computational process based on a set of rules controlling the 

interaction among various system components in order to 

operate the power system in an economic and efficient manner. 

In accordance with the objectives, the dispatch strategies can be 

divided in: 

- economic dispatch, attempting to schedule the committed 

generating unit outputs to meet the load demand at minimum 

production and transmission (operating) cost; 

- environmental dispatch, attempting to reduce the 

environmental impact of power generation ; 

- economic/environmental dispatch, attempting to achieve both 

objectives (minimizing the operating fuel cost and emission 

cost) in a single dispatch. 

The classical Economic Dispatch (ED) is to allocate the total 

required generation among the available generating units in 

order to minimize the total generation cost while simultaneously 

satisfying all equality and inequality constraints. To balance the 

load variations, the power output of generators has to be 

adapted. This leads to minimizing system losses at all time and 

decrease the operational costs. Thus, it is a critical task of 

electric utilities to deliver power as demanded in order to 

maintain the reliability and continuity of electricity supply. The 

literature of the ED problems and its different numerical 

solution methods are investigated in [1] [2]. 

Fossil-fueled electric power plants produce harmful emission 

such as Sulfur Oxides, Nitrogen Oxides and Carbon Dioxide. 

Recently, in order to meet severe environmental standards 

imposed by legislation, pollution minimization has become 

another important operational goal. Thus, improvements in 

scheduling the unit outputs must result in both monetary profits 

and reduced emissions of gaseous pollution. A survey of the 

commonly environmental dispatch algorithms has been given in 

[3] and [1]. 

The Combined Environmental Economic Dispatch (CEED) 

problem is a bicriterial optimization problem with two 

conflicting objective functions: operating costs and 

environmental impact of emissions. Due to the 

contrasting/conflicting goals and non-commensurable natures of 

fuel cost and emission minimization objectives, conventional 

approach which optimizes the integrated two objective functions 

seems not appropriate for this class of multiobjective 

optimization problems [4].  

Therefore, conventional optimization methods based on 

derivatives and gradients are not suitable for this nonlinear and 

multimodal optimization problem. 

Not longer after considering the environmental feature in the ED 

problem, different solution methods have progressively been 

reported in the literature concerning the CEED problem. 

Researchers’ methods considered emissions either in the 

objective function (by converting into a single-objective 

problem and assigning relative weights to each objective [5], 

[6]) or treated them as additional operational constraints that 

must be satisfied [7], [8]. 

With increasing size and complexity of the problem, many 

researchers have proposed the use of heuristic optimization 

approaches. Evolutionary computation techniques such as 

genetic algorithms (GA), evolutionary strategies (ES), 

evolutionary programming (EP), genetic programming (GP) and 

related fields such as swarm intelligence (Ant Colony 

Optimization and Particle Swarm Optimization) and other 
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evolutionary computation techniques are suited to deal with the 

problem at hand.  

2. THE PROBLEM FORMULATION 
Input-output characteristics of power generation units are the 

most important initial data for solving the problem of optimal 

planning and operation of power plants. 

The input for a thermal plant (fuel input) is usually measured in 

MJ/h (or Btu/h), and the output (power output) is measured in 

MW. The input for a hydroelectric unit is expressed in terms of 

volume of water per unit time (m3/h) and the output is the same 

(electric power). 

The widely used input-output characteristic of the ith generating 

unit is a quadratic function [9]: 

 

hBtucPbPaPHT iGiiGiiGi /.....)( 2
                     (1) 

 

where the suffix i stands for the unit number.  

HT is the heat input, PGi is the net output power and ai , bi, and 

ci  are the coefficients of the input - output characteristic.  

The constant ci is equivalent to the fuel consumption of the 

generating unit operation without power output. 

A typical input-output curve is shown in Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Input-output curve 

 

The PGi
min and PGi

max are the minimum and maximum limit on 

the generated output of the ith generating unit: 

 

 
maxmin

GiGiGi PPP                                                             (2) 

 

Such of curves are developed for each generating unit involved.  

The fuel cost characteristics (FCC) is calculated by multiplying 

the fuel input with the corresponding fuel cost (K= constant) 

expressed in an arbitrary monetary unit (UM): 

   

)(*)( GiGi PHTKPFCC                                              (3) 

 

Thus, the FCC for the unit i can be written in the form of a 

quadratic polynomial similar to the heat input equation: 

 

UMcPbPaPFCC iGiiGiiGi ......)( 2
                     (4) 

 

2.1 Objective functions 
Fuel cost objective 

If there are n generators committed to the system and the active 

power load PD is given, then the ED problem can therefore be 

stated as: 

 

Minimize )()(
1

n

i

GG i
PFCCPFCC ,                           (5)                                                

 

the total generation cost subject to given constraints: 

 (i) LossD

n

i

G PPP
i
)(

1

                                                   (6)                                                          

 

equality constraint: the total system generation equals the total 

system load  (PD) plus system losses (PLoss). 

 

(ii)  niPPP GiGiGi ,...,1,maxmin
                                 (7)  

 

the inequality constraints: active power output of each 

generating unit is ranging between its lower and upper limits to 

ensure stable operation.                                   

PG is the vector of real power outputs of generators and is 

defined as PG = [PG1, PG2,…., PGn]
T. 

Using the B-coefficient method, network losses are expressed 

using George’s formula [10]: 

 

 
ji G

n

i

n

j

ijGLoss PBPP
1 1

                                                    (8)                                                        

 

where Bij = loss (or B-coefficients). 

Further constraints can be added depending on the study 

requirements: valve point effects, the use of multiple fuel types, 

prohibited operating zones, etc. 

 

Emission objective 

The amount of emission from an unit (such as Nox, Sox, Cox, 

thermal emissions, etc.) depends on the amount of power 

generated by the unit. Thus, in order to solve a CEED model, 

emissions must be expressed by functions that relate emissions 

with power production for each unit. Generally, the total ton/h 

emission of these pollutants can be expressed as: 

 

 hKgPPPE iGii

n

i

GiiG /)......()(
1

2
            (9)       

 

Also, αi, βi and γi are the emission coefficients of generator i. 

The pollution control cost can be obtained by assigning a cost 

factor to the pollution level expressed as: 

                        

)(*)( GG PEWPPCC                                                 (10) 
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2.2 Multiobjective Economic/Environmental 

dispatch formulation 
A multiobjective optimization problem can be stated as follows: 

 

))(),...,(()( 1 xfxfxoptF p                                        (11) 

           subject to:   x  

                              0)(xgi               

               0)(xhj  

where: 

Ω is the decision space (the finite set of feasible solutions)  

Rp is the objective space  

F: Ω       Rp consists of p real valued objective functions 

gi(x) and hj(x)are the nonlinear and linear constraints. 

 

The solutions that are non-dominated within the entire search 

space are denoted as Pareto-optimal solutions and represent 

optimal trade-offs among all objectives. A Pareto optimal 

solution cannot be improved with respect to any objective 

without worsening at least one other objective. 

The combined environmental and economic dispatch (CEED) 

problem can be formulated and solved as a multiobjective 

optimization problem: 

 

 Minimize )](),([ GG PPCCPFCC                                  (12) 

3. CLASSICAL LAMBDA ITERATION 

METHOD FOR THE CEED PROBLEM 
The total objective function combines the two objectives (cost of 

generation and cost of the pollution level control) into a single 

objective function by using a price penalty factor h:  

 

)(*)( GGT PPCChPFCCF                                 (13)  

  

There are various price penalty factors suggested in the literature 

[8]. In this article the maximum price penalty factor for a 

generator is considered: 

                             

maxmax

maxmax

/)(

/)(

GjGj

GiGi

PPPCC

PPFCC
h                                                  (14)        

 

Where: i is the highest fuel-cost unit 

            j is the highest pollutant-emission unit 

 

Using Lagrangian Multipliers, an augmented function for the 

CEED problem can be written as: 

 

))((),(
1

n

i

GiLossDTG PPPFPL               (15)                                     

 

Necessary conditions for the optimization are: 

 

(i)      0/),( GiGi dPPdL – coordination equation      (16)                                  

(ii)     0/),( dPdL Gi  

Rearranging the coordination equation, 

 

)/1(

)()(2

GiLoss

iiiGiiii

dPdP

hbPha
                                    (17)                        

 

 where  Gj

n

j

ijGiLoss PBdPdP
1

2/                                  (18)                             

 

The initial value chosen for lambda is the mid-point of the 

interval (λmin, λmax), i.e λ=( λmin+ λmax)/2, by assuming that the 

transmission losses are zero: 

 

}/)({min min

,...,1min GiGiTni dPPdF                           (19)    

}/)({max max

,...,1max GiGiTni dPPdF  

Then the coordination equation is solved iteratively (imposing 

the generator power limits) until equation (6) is satisfied by 

modifying λ. This technique is known as successive 

approximation.  

4. THE PROPOSED APPROACH 
In this study, a random-weighted GA (RWGA) [11] based on 

complex-encoding is proposed. A normalized vector 

),( 21

iii www is randomly generated for each solution 

)(t

i Px during the selection phase at each generation. By 

changing weights during the running time, this approach 

provides multiple search directions and thus an increased ability 

to evaluate the area uniformly over the entire frontier. 

The total objective function combines the two objectives (cost of 

generation and cost of the pollution level control) into a single 

objective function by using a weighted sum: 

 

)()()( 21 xPCChwxFCCwxFT                          (20)                               

 

The problem is subject to the equality constraint given in 

equation (6) and generation limits inequality constraint given in 

equation (7). 

This procedure applied in our study is given as follows: 

 

Step1(Initialization): The GA begins with generating a random 

initial population P(0) of  candidate solutions.  

Set t=0. 

 

Step2(Evaluation): Assign a fitness value to each solution xi  

P(t) by performing the follow steps: 

(i) Generate the weights as follows: 

 

|)
2

cos()
2

sin(|
2

1
)(

maxmax

1
G

t

G

t
tw                         (21) 

)(1)( 12 twtw                    

 

where  t= number of generation, t=1,2,…, Gmax 

            Gmax is the maximum number of generations.  

(ii) Calculate:  objective function from equation (20) 
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Step 3(Selection): Minimizing F is based on finding a maximum 

fitness value in the searching process: 

 

)(

)(
)(

max

i

i
ii

xF

xf
xfitnessf ,                                    (22)                                             

}|)({max)( )(max t

iii PxxFxf   

 

Calculate the selection probability of each solution xi P(t):  

 

PS

j

j

i
i

ff

ff
p

1

min

min

)(

                                                       (23)                                                          

 

 

Where: PS is the population size; 

 

           }|)({min )(min tPxxFf                        (24) 

 

Select parents using the fitness-proportion selection based on 

probabilities calculated in (23).  

 

Step 4(Genetic operators): Thereafter crossover and mutation 

operators are applied on the population. 

 

Step 5: If the stopping condition is satisfied, return P(t). 

Otherwise set t =t+1 and go to Step 2. 

4.1 Mapping of the problem 
Chromosome representation is an essential component of any 

genetic algorithm. One of the major advantages that increase 

GA’s accuracy and ability in searching for feasible solutions is 

the flexibility of chromosome representation. 

The most common representation of genetic information in GA 

is based on the haploid model, i.e. one string of genetic 

information for each individual in the population; the sting can 

be represented by binary code, gray code or real code. 

The concept of diploidy in human genetics has inspired 

researchers in Evolutionary Computation to develop new diploid 

encoding schemes [12], [13]. 

Goldberg and Smith [14] reported the first experimental and 

theoretical results. Since then, various studies have focused on 

the effects of the cardinality of genotypic representation. A 

comparison of the results obtained in the literature [15] 

demonstrated that diploidy-based GA retains greater diversity 

and shows more robustness than simple GA. 

In this study we use complex-encoding GA based on diploid 

genotype [16]. To improve its performance, we propose meiosis 

specific features: duplication and recombination with real valued 

representation scheme for solution (Figure 2) and a new 

mutation operator for imaginary genes of the chromosomes. 

A population of constant size PS consisting of n-dimensional 

real-valued diploid chromosomes is given by: 

 

max

)()(

1

)( ,...,1],,...,[ GtCCP t

PS

tt
                            (25) 

 

An individual (chromosome) is a n-dimension vector given by: 

 

PSkPPC t

kn

t

k

t

k ,...,1),,...,( )()(

1

)(
                              (26) 

 

and each gene 
)(t

kiP is a pair ),( )()( t

ki

t

ki
consisting of the 

modulus and angle of the complex representation of that allele. 

 

 

begin 

   t:= 0;  

   initialize population P(0) randomly;  

   evaluate P(0) 

   while t ≤Gmax 

      //roulette wheel selection 

          for all member of population 

          r:=random[0,1]; k:=0; partial_sum:=0 

          repeat 

           k:=k+1; 

           partial_sum:=partial_sum + fitness(k);      

          until(

k

kfitness

sumpartial
r

)(

_
   or new population is full) 

          select_individual:=k 

          repeat 

      //meiosis 

        for all member of population 

          mate pairs at random 

          //replicate_ chromosome1 

                 chromatid1:=chromosome1;  

                 chromatid2:=chromatid1 

         //replicate_ chromosome2 

                 chromatid3:=chromosome2;  

                 chromatid4 :=chromatid3 

         //forming gamete1, gamete2 

                // crossover (chromatid1, chromatid3) 

         //forming gamete3, gamete4 

                //crossover (chromatid2, chromatid4) 

     //fertilization 

          generate from gametes by randomly selection: 

          offspring1 

          offspring2 

     //non-uniform mutation 

          i:=random{1,2,…,N}; randi:=random[0,1]   

          if (pmut > randi) 

          offspring1[i]               offspring1mut[i] 

          offspring2[i]               offspring2mut[i] 

          endif 

        repeat 

       evaluate P(t+1) 

     repeat 

 end  
 

Figure 2. The proposed GA for CEED problem 

 

Initialization: 

The initial population is randomly generated using equations 

(27) and (28) as follows: 
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minmax
)1( GiGi
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PP
rand                                        (27)                    

 niPSkrandki ,...,1;,...,1,2][)1(
           (28)                                               

 

The resultant gene 
)1(

kiP which corresponds to an allele is given 

by:    

2
cos

minmax
)1()1()1( GiGi

kikiki

PP
P                          (29) 

niPSk ,...,1;,...,1  

 

One can note that: 

niPSkPPP GikiGi ,...,1;,...,1,max)1(min
 

 

Evaluation and selection: 

Once the individuals of current population are evaluated 

according to their fitness, the individuals that will be the parents 

of the next generation are selected according to the desired 

selection scheme. This study uses the proportional (roulette 

wheel) selection. Next, the selected individuals are paired off 

randomly to give rise to new offsprings. 

Genetic operators: 

The reproduction of the individuals in this study is inspired by 

the organic mechanism of a meiotic cell division. In this context, 

the term "meiosis" refers to the process whereby a nucleus 

divides by two divisions (meiosis I and meiosis II) into four 

gametes. Meiosis halves the number of chromosomes before 

sexual reproduction, thereby ensuring that chromosome number 

does not double with each generation. Before meiosis, each 

chromosome is replicated, forming two sisters "chromatids" that 

remain linked together.  

The two sister chromatids forming each homolog are then 

separated during the second meiotic division.  

In order to perform crossover for two chosen chromatids, both 

the modules and angles of the arguments are changed as 

described below.  

Let us consider that we perform the crossover operator for 

chromatid 1 and chromatid 3.  

Their modules are:  

 )......( 11111 nk  and respectively 

 )......( 33133 nk   

and their angles are:  

 )......( 11111 nk  and respectively 

 )......( 33133 nk  

After performing their crossover, two gametes are obtained: 

gamete1 has:   

 

    ,....))1((...., 311 kkc rr                     (30) 

    ,....))1((...., 311 kkc rr                                                                                                                                                       

gamete2 has: 

 

 

    ,....))1((...., 312 kkc rr                     (31) 

    ,....))1((...., 312 kkc rr                                                                        

 

where r is a random number between 0 and 1. 

The probability of crossover is pc, so that an average of pc x 

100% chromosomes undergo crossover. 

Fertilization (putting together two gametes resulted from 

meiosis) is done by randomly combining gametes from the gene 

pool: two of the gametes from the four that have been formed, 

are then selected randomly to form two new offsprings. 

The next genetic operator, mutation, is a mechanism for 

extending the search on the new areas of search space. Mutation 

modifies the genotype, and thus the phenotype, by random 

altering of bit’s values inside chromosome with given 

probability. In this paper we use non-uniform mutation [9] for 

the module of an argument.  

Let us consider that we perform the non-uniform mutation 

operator for a resultant offspring.  

If )......( 1 nk is the modulus component and k is 

selected at random for mutation, the result is: 

)......( 1 n

mut

k

mut
, where: 

 

5.0),()( 1

max rgenfP kGik                                                                                       

mut

k =   5.0),()( 1

min rgenfPGikk              (32) 

                otherwisek ,  

Where ))1(()(
max

2
G

gen
rgenf                                  (33)                                                                                      

 

r1, r2 are randomly generated numbers in interval (0,1); 

gen is the current generation; 

τ is a system parameter determining the degree of dependency 

on the iteration number. In this study we set τ=3. 

For an angle of an argument we propose a new mutation 

operator defined as follows:  

if )......( 1 nk is the angle component and k  is 

selected at random for mutation, the result is: 

)......( 1 n

mut

k

mut
, where: 

     

                5.0),0,)(max( 1rgenfk                                                        

mut

k   5.0),2,)(min( 1rgenfk          (34) 

                 otherwisek ,  

Where

)1(

2
max1)(

G

gen

rgenf                                          (35)                                                                                

 

and the other parameters are the same as those described above. 

As can be seen from equations (33) and (35), the amplitude of 

the change decrease as one approaches the maximum number of  

generations. Thus, these mutation operators perform global 

search during the initial generations and local search in the later 
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generations. Moreover, the local searching ability of the 

algorithm is improved, as well as the algorithm’s efficiency. 

A large number of studies which explore the interactions among 

different GA parameters showed that in general GAs will work 

well with high crossover and low mutation probability. 

Therefore, common to each run were the following parameter 

settings: population size was 50, number of generations was 

1000, crossover rate was 80% and mutation rate was 3%.  

4.2. APPLICATION STUDY 
The techniques used in this study and simulations were carried 

out using C++ language in the Microsoft Visual Studio 

Development environment. The algorithm gives: 

-    Best solutions with respect to individual objectives: fuel cost 

and emission objectives are optimized individually;  

- Best compromise solution obtained by performing 

multiobjective optimization.  

Studies were performed on a CEED problem as in [17], [18] for 

a six-generator system. The generator cost coefficients, emission 

coefficients and generation limits of units system are taken from 

the ones above and are given in Table 1 and in Table 2.  

For comparison purposes with the reported results, the system is 

considered as lossless, although the proposed algorithm permits 

their consideration.  

 

 

 

Table 1. Fuel cost and emission coefficients 

Unit Cost function Emissions cost 

ai bi ci αi βi γi 

1 0.15247 38.53973 756.79886 0.00419 0.32767 13.85932 

2 0.10587 46.15916 451.32513 0.00419 0.32767 13.85932 

3 0.02803 40.39655 1049.9977 0.00683 -0.54551 40.2669 

4 0.03546 38.30553 1243.5311 0.00683 -0.54551 40.2669 

5 0.02111 36.32782 1658.5696 0.00461 -0.51116 42.89553 

6 0.01799 38.27041 1356.6592 0.00461 -0.51116 42.89553 

 

Table 2. Operating limits 

Generator Lower limit 

(PGi
min) 

Upper limit 

(PGi
max) 

1 10 125 

2 10 150 

3 35 225 

4 35 210 

5 130 325 

6 125 315 

 

A total load of 500 MW is considered and fuel cost and emission 

objectives are at first optimized individually in order to explore 

the extreme points obtained by the proposed approach: 

- Pure Economic Objective:  w1 =1, w2=0 

- Pure Emission Objective: w1 =0, w2=1 

The best results of cost and emission when optimized 

individually and the best compromise solution are given in 

Table 3. Convergence characteristics of best fuel cost and best 

emission are shown in Figure 3.  

These graphs clearly indicate that the proposed approach 

converges rapidly to the optimal solution.

 

Table 3. Best individually optimized objectives and best compromise 

Generator Best fuel cost Best emission Best compromise solution 

PG1 23.892 49.186 25.731 

PG2 21.243 44.681 22.149 

PG3 88.741 63.169 89.154 

PG4 74.143 72.119 92.152 

PG5 150.792 131.172 141.124 

PG6 141.189 139.673 129.690 

Fuel cost 26914 28120 27089.79 

Emission 268.49 239.12 261.219 

 Total operation Cost: 

38787.176 

 

 
Figure 3. Convergence of fuel cost and emission objective functions
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The optimum solution for combined environmental and 

economic dispatch is given in Table 5. The results are compared 

against the results obtained from conventional -iteration 

method [19] and Recursive method [20].The execution time of 

the proposed algorithm for this 6-unit system was about 0.3 

seconds for all cases (individually optimization/combined 

environmental and economic optimization). From the results, it 

is quite evident that the proposed approach outperforms the 

other two methods. This demonstrates the performance and 

applicability of the proposed approach in solving this 

multiobjective optimization problem. 

Tables 3 and 5 also reveal that the total fuel cost and total 

emission are in between the respective values of separate 

economic and emission optimization. Figure 4 shows the best 

objective values obtained by the 100 runs performed when using 

the proposed algorithm. The average and standard deviation for 

these 100 runs are shown in the figure.  

Table 4 includes the average, maximum, minimum and standard 

deviation obtained after performing these independent runs. 

“Hits” is the number of runs in which we obtained a solution 

differing by less than 0,1% from the best solution obtained. 

“Average” means the best objective function value for 100 runs 

of the algorithm. It shows the quality of candidate solutions 

through iterations. The difference between max and min 

objective values expresses the search range of the algorithms. 

“St. Dev” denotes standard deviation, which expresses the 

searching capacity of each algorithm. As Table 4, the proposed 

algorithm has a small mean value and a small standard 

deviation. That is, this algorithm has better convergence 

stability, is more robust and is able to reach good solutions 

across 100 runs. 

Table 4. Performances of the proposed algorithm 

100 runs Hits Average St.dev 

[27086.07 ,  27094.96] 17 27089.79 3.24 

 

Table 5. Comparison of test results obtained from the above mentioned methods 

Method P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

Fuel Cost 

($/h) 

Emission 

(kg/h) 

Proposed 

method 

25.731 22.149 89.154 92.152 141.124 129.690 27089.79 261.419 

Conv.                

-iteration 

21.119 22.047 79.214 99.611 149.418 128.591 27092.50 261.635 

Recursive 

method 

26.124 28.246 68.421 97.125 147.115 132.969 27092.50 261.634 

 

Best solutions for the proposed algorithm

27080,00

27085,00

27090,00

27095,00

27100,00

1 10 19 28 37 46 55 64 73 82 91 100

Run number

O
b

je
c
ti

v
e
 v

a
lu

e
s

St.Dev

St.Dev

Obj. values

average

 
                                              Figure 4. Best objective values for the proposed algorithm – 100 runs 

 

5. CONCLUSIONS
A novel form of Genetic Algorithm is presented in this study. 

The essential features of our proposed algorithm include a 

diploid based complex-encoding with meiosis specific features 

and new mutation operators that performs global search during 
the initial generations and local search in the later generations. 

Using the parallel searching mechanism and the new defined 

mutation operators, the local searching ability of the algorithm is 

improved, as well as the algorithm’s efficiency. 

The numerical results of the simulations verified the advantages 

of the proposed approach. 

Since in the proposed approach any number of objectives can be 

considered, the authors are currently exploring further 

extensions of the proposed methodology to include more 

objective functions or constraints with regard to more realistic 

problems, as well as other data sets and standard test problems. 
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