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ABSTRACT 
India has made considerable progress as far as creation of 

irrigation potential is concerned. The gap between irrigation 

potential created and utilized is a matter of concern. The success 

of irrigation system operation and planning depends on the 

quantification of supply and demand and equitable distribution 

of supply to meet the demand if possible, or, to minimize the 

gap between the supply and demand. Hence, it is essential to 

forecast reservoir inflow for proper planning and management of 

canal irrigation projects. Autoregressive Integrated Moving 

Average (ARIMA) and X-12-ARIMA are one of the extensively 

used software packages for time series forecasting. This study 

focused on the Application of these software packages for 

Monthly Stream Flow Forecasting of Kangsabati River of India. 

Here, ARIMA (2, 1, 1) (2, 1, 2) and ARIMA-X-12 (2, 1, 1) (2, 

1, 2) models were found to have less Bayesian Information 

Criterion (BIC), Akaike Information Criterion (AIC) and many 

other statistical values, selected for mean monthly foresting. In 

the comparison of ARIMA and X-12-ARIMA models, the X-12-

ARIMA model is found more accurate then the ARIMA model 

for monthly stream flow forecasting. This study suggests that the 

selected models can be used successfully for monthly stream 

flow forecasting of Kangsabati river.  

 

Keywords: ARIMA, X-12-ARIMA, Stream flow 

forecasting, Time series analysis, Diagnostic checks. 

  

1. INTRODUCTION 

The pace of advancement of economic super structure of a 

nation primarily depends on the strength of its agricultural base. 

India continues to be an agriculture-incentive country with over 

70% of population living in rural areas. The agriculture sector 

provides food to population exceeding a billion, livelihood to 

nearly two-third of them, raw materials to country‘s agro-based 

industries and contributes nearly one sixth of the total earnings 

of the country. Steering the overall growth of the economy, 

agriculture sector contributes 22% to the Gross Domestic 

Product (GDP) [1] (AIC, 2006). Irrigation, the single largest 

user of the water resources, accounts for about 84% of all 

withdrawals in India [9] (Planning Commission, 2002). 

However, with increasing municipal and industrial needs, its 

share of water is likely to go down. Thus, in future, irrigation 

has to become efficient and produce more with less water. For 

this purpose, watershed management with focus on reduction of 

runoff by designing engineering structures is essential [8] 

(Nandgude et.al. 2011). The success of irrigation system 

operation and planning depends on the quantification of supply 

and demand and equitable distribution of supply to meet the 

demand if possible, or, to minimize the gap between the supply 

and demand. Hence, for proper planning, it is essential to have 

forecast of inflow to the reservoir. 

There are basically two types of model, i.e., process driven and 

data driven, for estimating reservoir inflow. Process-driven 

models are based on physical facts of the problem and 

constituted with combination of some experimental equations. 

The data driven models are more useful as they can be applied 

easily and stay away from complicated mathematical models. 

Common models of this group are regression models, time series 

models, artificial neural network (ANN) and fuzzy logic (FL). 

Regression models are frequently used to forecast stream flows 

as these are simple and easy to use. Graphical techniques 

developed by [6] Linsley et al. (1975) can be regarded as among 

the first regression models. Later on, multiple regression model 

developed by [12] Zuzel et al. (1975) and non-parametric 

regression model developed by [11] Smith (1975) are notable 

studies carried out in this subject. Other important data-driven 

models are time serial models, which are different forms of 

autoregressive integrated moving average (ARIMA) model.  

Most frequently used ones of this kind are autoregressive 

moving average (ARMA), autoregressive (AR), autoregressive 

integrated moving average (ARIMA), partial autoregressive 

moving average (PARMA) and seasonal autoregressive 

integrated moving average (SARIMA) models. Among these 

models, ARIMA model is the most suitable model for 

forecasting the inflow. ARIMA model is an extrapolation 

method for forecasting and like any other such method, it 

requires only the historical time series data on the variable under 

forecasting. Several improved version of ARIMA are also 

available. The most widely used variant X-11 is developed by 

[10] Shiskin et al. (1967) was further modified as X-11-ARIMA 

by [4] Dagum(1988). Later on the improved version of X-11-

ARIMA i.e., X-12-ARIMA was developed by [5] Findley et al. 

(1997). X-12-ARIMA provides facility to extend the original 

series with forecast to ensure that more of the observations are 

adjusted using the full weighted averages. The initial values can 

also be forecast backward in time. These forecasts are obtained 

using ARIMA time series model or regression model with 

ARIMA errors.  

 

2. STUDY AREA 
Kangsabati Irrigation Project, situated in the Western part of 

West Bengal, India has been chosen as the study area for this 

research study. Kangsabati dam, built just above the confluence 
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Fig 1: Catchment, reservoir and command area of Kangsabati Irrigation Project. 

 

of Kangsabati and its tributary Kumari, is located at 22° 57' 30" 

N latitude and 86° 45' 30" E longitude. Kangsabati dam was 

constructed in two phases. The dam was first constructed on 

Kangsabati river in 1965. Subsequently, the dam over tributary 

Kumari was constructed in 1973 and both dam were connected 

to form a single reservoir, viz., ―Kangsabati reservoir‖. Figure 1 

shows both the catchment and command area of Kangsabati 

reservoir. Total catchment area and gross command area of 

Kangsabati reservoir are about 3428 sq. km and 5568 sq. km, 

respectively. The reservoir supplies water to two main canal 

systems, namely, Right Bank Main Canal (RBMC) system and 

Left Bank Feeder Canal (LBFC) system. The design discharge 

of the head regulator at RBMC system, LBFC system and the 

spillway of the Kangsabati dam are 79.10, 199.55 and 6372 

cumec, respectively. The present study considers whole 

catchment of Kangsabati reservoir for reservoir inflow 

prediction. Daily inflows to the reservoir from the catchment 

were collected for the period of 17 years (1987-2003) from the 

Office of the Superintending Engineer, Irrigation and 

Waterways Department, Bankura, Govt. of West Bengal, India. 

 

3. METHODOLOGY 

3.1 ARIMA Modelling 

ARIMA models are the most general class of models for time 

series forecasting which can be stationarized by transformations 

such as differencing and logging. It was introduced by [2] Box 

and Jenkins (1970) which includes autoregressive as well as 

moving average parameters, and explicitly includes differencing 

in the formulation of the model. A general ARIMA model is 

summarized as ARIMA (p, d, q) where, p is the autoregressive 

parameters, d is the number of differencing passes and q is the 

moving average parameters.  A time series is a set of values of a 

continuous variable Y (Y1, Y2, ..., Yn), observed over time 

period t (1, 2, ..., n). In general, in a given time series the 

following can be recognized and separated. 

(1) Trend- It is a regular long-term component of variability 

that represents the whole evolution pattern of the series. 

(2) Seasonality- It is a regular short-term component whose 

shape occurs periodically at intervals of s lags of the index 

variable. 

(3) AR (p)- An autoregressive component of p order, which 

relates each value Zt =Yt – (trend and seasonality) to the p 

previous Z values, according to the following linear relationship 

1 1 2 2 ....t t t p t p tZ Z Z Z                                         (1) 

where  ( 1,... )i i p  are parameters to be estimated and t is 

a residual term. 

(4) MA(q)- A moving average component of q order, which 

relates each Zt value to the q residuals of the q previous Z 

estimates 

1 1 2 2 ....t t t t p t pZ                                          (2) 

where ( 1,... )i i p   are parameters to be estimated.  

The stationary series can be then modelled by an ARMA (p, q) 

process. The combined use of the  operator and the ARMA 

(p, q) process, results in an ARIMA (p, d, q) model. Further, 

ARIMA can account for the seasonal component of s lag period, 

by using both correlations between Zt and Zt-s values and those 

between the corresponding residuals t and t s  . Therefore, a 

seasonal ARIMA model is an ARIMA (p,d,q) model whose 

residuals t  can be further modelled by an ARIMA(P,D,Q)s 

structure with linear operators (P,D,Q) being functions of the Bs 

operator. 

The operators of a seasonal ARIMA model, defined as ARIMA 

(p,d,q)(P,D,Q)s, can be expressed by: 

AR (p) nonseasonal operator of p order,     2

1 21 ... p

pB B B B        ; 

AR (P) seasonal operator of P order,    11 ...
s sp

pB B B      ; 

MA (q) nonseasonal operator of q order, 

    2

1 21 ... q

qB B B B        ; 

MA (Q) seasonal operator of Q order, 

     
2

1 21 ...
s s Qs

QB B B B        ;  and  1
dd B    

 

3.2 Box-Jenkins methodology for Time-

Series modelling 

The Box-Jenkins methodology (Box and Jenkins 1970) for time 

series modelling is characterized by three phases via., model 



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.3, April 2011 

9 

identification, parameter estimation and diagnostic testing and 

forecasting (Figure 2). The first two phases of model are 

repeated several times to obtain satisfactory model. This model 

is then used for prediction purposes. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Schematic representation of the Box-Jenkins methodology for time series modelling. 

 

3.2.1 Phase I (Identification)  
The input series for ARIMA needs to be stationary. A stationary 

series should have a constant mean, variance, and 

autocorrelation through time. The purpose of identification 

phase is to determine the differencing required for producing 

stationarity and also the order of nonseasonal AR and MA 

operators for a given series. When the observed time series 

presents trend, differencing and transformation are often applied 

to the data to remove the trend and stabilize variance before an 

ARIMA model can be fitted.  

The autocorrelation function ( ( )ACF K ) at lag k 

of the Zt series is the linear correlation coefficient between Zt 

and Zt-k, calculated for k =0, 1, 2..., as 

 

   

cov

var var

t t k

k

t t k

Z Z

Z Z
 






                                       (3) 

 

The major tools used in the identification phase are plots of the 

series, correlograms of auto correlation (ACF), and partial 

autocorrelation (PACF). The PACF is defined as the linear 

correlation between Zt and Zt-k, controlling for possible effects 

of linear relationships among values at intermediate lags. 

Theoretically, both an AR (p) process and an MA (q) process 

should be associated with well-defined patterns of ACF and 

PACF. These are usually decreasing exponential or alternate in 

sign or decreasing sinusoidal patterns. A precise correspondence 

between ARMA (p, q) processes and defined ACF and PACF 

patterns is more difficult to recognize. When the order of at least 

one of the two components (AR or MA) is clearly detectable, the  

other can be identified by attempts in the following step of 

parameter estimation. Finally, the existence of a seasonal 

component of length s is underlined by the presence of a 

periodic pattern of period s in the ACF.  

 

3.2.2  Phase II (Estimation and Testing) 
After identifying the suitable ARIMA (p, d, q)(P,D,Q)s 

structure, subsequent steps of parameter estimation and testing 

are performed. Estimation stage consists of using the data to 

estimate and make inferences about parameters of tentatively 

identified model. The parameters are estimated such that an 

overall measure of residuals is minimized. The last stage of 

model building is the testing or diagnostic checking of model 

adequacy. This stage determines whether residuals are 

independent, homoscedastic and normally distributed. Several 

diagnostic statistics and plots of the residuals are used to 

examine the goodness of fit. After identifying tentative model, 

the process is again followed by the stage of parameter 

estimation and model verification. Diagnostic information may 

help to suggest alternative model(s). 

Validation of the goodness of fit of an ARIMA model can be 

developed according to the following steps: 

1) Evaluation of statistical significance of parameters by the 

usual comparison between the parameter value and the standard 

deviation of its estimate. For a test statistic that is valid only 

Phase-1 

Idetification 

Data preparation 

 Transform data to stabilize variance 

 Difference data to obtain stationary series 

Forecasting 

       Use model to forecast 
Phase-3 

Application 

Diagnostics 

 Check ACF/PACF of residuals 

 Do portmanteau test of residuals 

 Are the Residuals White noise? 

Estimation 

 Estimate parameters in potential models 

 Select best model using suitable criterion 
Phase-2 

Estimation and 

Testing 

Model selection 

 Examine data, ACF and PACF to 

identify  potential model 

NO 

Yes 

http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
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asymptotically, a parameter whose value exceeds twice its 

standard error can be considered significant. 

2) Analysis of the ACF of residuals: In this step, residuals t are 

considered as a new time series, and ACF and PACF are 

estimated to be sure that values at lag k >:0 are not statistically 

different from zero. 

3) Calculation of BIC: In this step, BIC is calculated for all 

models and according to the lowest BIC value, the appropriate 

model is selected. 

 2 2 , 1 lnBIC ln L S T p q T  

      
        

    

      (4) 

 For prediction purposes, ARIMA models are different from the 

analytical functions of time: Zt =f (t), because ARIMA 

forecasting uses previous values of the series and errors in the 

previous estimates. Actually, this peculiarity of ARIMA 

forecasting is valid in the short term because parameters of the 

model cannot account, in the long term, for changes in the 

dynamics of the series. 

 

3.2.3 Phase III (Application) 
After suitable form of ARIMA (p, d, q)(P,D,Q)s is selected and 

its parameter are estimated, the model is ready for forecasting 

future events at different lead time. The following equation is 

used for forecasting.  

      12 12

1 11 1 1 1t tB B Y B B e                       (5) 

 

3.3 X-12-ARIMA 

X-12-ARIMA is the successor to X-11-ARIMA. It is the latest 

in the family of seasonal adjustment methods that have been 

developed over several decades by the US Census Bureau and 

Statistics Canada, with contributions from others. The method is 

based on a moving-average technique, but is more sophisticated 

and readily able to provide adjustments tailored to each series. 

Key characteristics of X-12-ARIMA are: 

i. It contains a time-series-modelling component, which 

aids the identification of outliers, shifts in the level of a 

series and calendar effects and the estimation of 

seasonality at the start and end of the series. 

ii. Filters of several different lengths are readily available to 

identify the seasonality appropriate to each series.  

iii. For an individual series, it can provide multiplicative – 

proportionate – seasonal adjustments. 

iv. It includes systematic estimation and removal of 

calendar effects, for the differing lengths of months, 

public holidays etc.  

v. It has wide-ranging statistical diagnostics, available 

graphically where appropriate, enabling the nature, 

robustness and stability of the seasonal adjustments to be 

easily monitored.  

3.4 Forecasting 

For a given regARIMA model with parameters estimated by the 

X-12-ARIMA program, the forecast spec will use the model to 

compute point forecasts, and associated forecast standard errors 

and prediction intervals. The point forecasts are minimum mean 

squared error (MMSE) linear predictions of future yts based on 

the present and past yts assuming that the true model is used—

which means we assume the regARIMA model form is correct, 

that the correct regression variables have been included, that no 

additive outliers or level shifts will occur in the forecast period, 

that the specified ARIMA orders are correct, and that the 

parameter values used (typically estimated parameters) are equal 

to the true values. These are standard assumptions, though 

obviously unrealistic in practical applications. What is more 

realistically hoped is that the regARIMA model will be a close 

enough approximation to the true, unknown model for the 

results to be approximately valid. Two sets of forecast standard 

errors are produced. One assumes that all parameters are known. 

The other allows for additional forecast error that comes from 

estimating the regression parameters, while still assuming that 

the AR and MA parameters are known. For a reasonably long 

time series, [2] (Box and Jenkins 1970) the contribution to 

forecast error of the error in estimating the AR and MA 

parameters is generally small, thus providing a justification for 

ignoring this source of error when computing the forecast 

standard errors. If there are any user-defined regression 

variables in the model, X-12-ARIMA requires that the user 

supply data for these variables for the forecast period. For the 

predefined regression variables in X-12-ARIMA, the program 

will generate the future values required. If user-defined prior 

adjustment factors are specified, values for these should also be 

supplied for the forecast period. 

3.5 ARIMA Model for Stream Flow 

forecasting of Kangsabati Reservoir  

To fit an ARIMA and X-12-ARIMA models, a sufficiently large 

historical data set is required. In this study, inflow data for the 

period 1986 to 2003 were used. SPSS (Statistical Package for 

the Social Sciences), which has become a leader in predictive 

analytics technologies, is used here to implement the ARIMA 

model.  All the steps discussed in previous section are 

performed on the flow data using the SPSS package. For X-12-

ARIMA model, however, software package gretl was used. The 

collected daily inflow data of Kangsabati reservoir (1986 to 

2003) was converted into mean monthly data for monthly stream 

flow forecasting and mean weekly data for weekly stream flow 

forecasting.  

 

4. RESULTS AND DISCUSSION 

4.1 Identification 

Stationarity is a necessary condition in building an ARIMA 

model that is useful for forecasting. Most common method to 

check stationarity in data series is examining the graph or time 

plot of the data and ACF and PACF. To test whether the 

monthly data are stationary or non-stationary, ACF and PACF 

are determined against different lags. Figure 3 present ACF and 

PACF plots with upper and lower confidence limits. For a 

stationary series, all the ACF and PACF should lie within the 

confidence limit. It is evident from the Figure that both ACF and 

PACF have high values at certain lags. This shows that 

differencing is needed for the data sequence.  

4.2 Estimation and Testing 

ACF and PACF after differencing are plotted in Figure 4. In this 

case difference of order 1 was sufficient to achieve stationarity 

in mean. However, at periodic lag of 12, there are peaks, which 
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suggest seasonality in the data. This shows that, a more 

complicated mixture ARIMA model is required here. 

 

       

 

Lag Number 
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Partial ACF 

1.0 

0.5 

0.0 

-0.5 

-1.0 

inflow 

Lower Confidence Limit Upper Confidence Limit Coefficient 

Fig 3: ACF & PACF of the monthly data without 

differencing. 

 

 
Fig 4: ACF & PACF of the monthly differenced data. 

Alternative ARIMA models were estimated by considering the 

ACF and PACF graphs for the monthly data series. Here, 

altogether one hundred twenty six ARIMA and X-12-ARIMA 

models were analyzed. According to the minimum AIC and BIC 

criteria, twenty two models were selected. AIC and BIC value of 

the selected twenty two models are presented in Table 1. From 

the table it is seen that ARIMA (2,1,1)(2,1,2); ARIMA 

(1,1,1)(2,1,2); ARIMA(2,0,1)(2,2,2) and X-12-ARIMA 

(2,1,1)(2,1,2); X-12-ARIMA (1,1,1)(2,1,2); X-12-ARIMA 

(2,0,1)(2,2,2) models have comparatively lower BIC and AIC 

values. Hence, these models were selected and further diagnostic 

checks were performed to determine the most suitable model 

from amongst these six selected models (Table 2). Referring to 

Table 2, ARIMA (2,1,1) (2,1,2) and X-12-ARIMA (2,1,1)(2,1,2) 

are found to be the most suitable models. Though all the 

parameter values of the selected models are not less than other 

models, e.g., RMSE value of X-12-ARIMA (1,1,1) (2,1,2) is 

less than selected X-12-ARIMA model or  R-squared  value of 

ARIMA(2,0,1) (2,2,2) is less than selected ARIMA model and 

so on, but altogether ARIMA (2,1,1)(2,1,2) and X-12-ARIMA 

(2,1,1)(2,1,2) models show comparatively lower values for all 

statistical parameters. To further establish, this conclusion, 

model verification was performed by examining the 

autocorrelations and partial autocorrelations of the residuals of 

various orders. Figure 5 show ACF and PACF of residuals of 

ARIMA (2, 1, 1) (2, 1, 2) and X-12-ARIMA (2, 1, 1) (2, 1, 2) 

respectively. 

Table 1. ARIMA and X-12-ARIMA models with their 

corresponding AIC & BIC values 

Model 

(p,d,q)(P,D,

Q) 

ARIMA X-12-ARIMA 

AIC BIC AIC BIC 

(2,1,2)(2,1,2) 1876.914 1911.472 1830.604 1900.322 

(2,2,2)(2,2,1) 1831.803 1862.429 1821.703 1860.309 

(2,1,1)(2,1,2) 1822.768 1853.457 1804.803 1830.703 

(1,1,1)(2,1,2) 1822.503 1850.123 1803.604 1825.164 

(2,1,2)(2,2,2) 1824.279 1858.037 1812.753 1830.860 

(3,1,1)(2,2,2) 1824.340 1858.097 1813.111 1828.612 

(2,0,1)(2,2,2) 1821.819 1846.420 1810.529 1830.300 

(2,0,2)(2,2,2) 1822.703 1856.530 1820.436 1850.197 

(0,0,0)(2,2,2) 1840.061 1861.587 1832.060 1858.295 

(2,2,1)(1,2,0) 1938.696 1960.134 1919.135 1958.600 

(1,0,1)(1,1,1) 1875.458 1875.458 1864.268 1897.490 

(1,0,1)(0,1,1) 1873.665 1892.550 1866.625 1880.200 

(1,0,0)(1,1,1) 1873.945 1892.830 1865.196 1886.439 

(0,0,1)(1,1,1) 1874.713 1893.598 1863.500 1890.598 

(0,0,1)(0,1,1) 1872.875 1888.612 1860.400 1855.612 

(0,0,0)(1,1,1) 1891.930 1907.668 1881.490 1907.667 

(0,0,0)(0,1,1) 1890.164 1890.164 1850.150 1902.753 

(1,1,1)(1,1,0) 1911.321 1930.171 1900.350 1923.560 

(1,1,0)(1,1,1) 1916.152 1931.860 1905.543 1913.741 

(1,1,0)(0,1,1) 1917.715 1936.565 1905.985 1929.500 

(0,1,1)(1,1,1) 1889.293 1908.143 1879.085 1900.350 

(0,1,1)(0,1,1) 1887.642 1903.350 1865.250 1892.112 

Lag Number

242322212019181716151413121110987654321

A
C

F

1.0

0.5

0.0

-0.5

-1.0

inflow

Lower Confidence Limit

Upper Confidence Limit

Coefficient

Lag Number

242322212019181716151413121110987654321

A
C

F

1.0

0.5

0.0

-0.5

-1.0

inflow

Lower Confidence Limit

Upper Confidence Limit

Coefficient

Lag Number

242322212019181716151413121110987654321

P
ar

ti
al

 A
C

F

1.0

0.5

0.0

-0.5

-1.0

inflow

Lower Confidence Limit

Upper Confidence Limit

Coefficient
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Table 2. Estimates of the fitted ARIMA model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison of observed and forecasted mean 

monthly stream flow during December -02 and Decmber-03 

 

It is evident from Figure 5, the values of the ARIMA (2, 1, 1) (2, 

1, 2) and ARIMA-X-12 (2, 1, 1) (2, 1, 2) residuals lie within the 

upper and lower confidence limits. Moreover, these value lie 

between -0.5 to 0.5.  In case of other two models, all the values 

however, do not lie within upper and lower confidence limits. 

Thus, the ACF and PACF of the residuals also indicate ‗good 

fit‘ of the ARIMA (2, 1, 1) (2, 1, 2) and X-12-ARIMA (2, 1, 1) 

(2, 1, 2) models. Further analysis was done with the selected 

models ARIMA (2, 1, 1) (2, 1, 2) and X-12-ARIMA (2, 1, 1) (2, 

1, 2) to check whether the residuals of the model are 

independent, homoscedastic and normally distributed. The 

autocorrelation and partial autocorrelation upto 24 lags were 

computed and their significance was tested using Box-Ljung 

test. The results indicate that none of these correlations are 

significantly different from zero at a 95% confidence level. This 

shows that the selected ARIMA (2, 1, 1) (2, 1, 2) and X-12-

ARIMA (2, 1, 1) (2, 1, 2) models are appropriate models for the 

monthly mean stream flow forecasting. 

 

 

Fig 5: ACF and PACF of residuals of ARIMA (2, 1, 1) (2,1,2) 

and X-12-ARIMA  (2, 1, 1) (2, 1, 2) model. 

 

Model 

statistics 

Value (2,1,1) (2,1,2) Value (1,1,1) (2,1,2) Value (2,0,1) (2,2,2) 

ARIMA ARIMA-X-12 ARIMA 
ARIMA-X-

12 
ARIMA ARIMA-X-12 

Stationary R2    0.753 0.810 0.672 0.774 0.507 0.772 

R-squared 0.753 0.825 0.612 0.773 0.702 0.752 

RMSE 42.837 30.625 50.697 29.001 43.832 30.870 

MAE 23.376 17.248 28.351 15.118 22.572 17.574 

Box-Ljung 

Statistic 
8.454 5.424 9.793 8.974 12.042 9.03 

AIC 1822.76 1804.80 1822.50 1803. 60 1821.81 1818.52 

BIC 1846.42 1830.300 1850.12 1825. 16 1853.45  1830.31  

Month 

                            Mean Inflow, m3/s 

Observed 
Forecasted 

ARIMA 

Forecasted 

X-12-ARIMA 

Dec-02 4.22 12.12164 3.23743 

Jan-03 0.00 2.15339 6.2963 

Feb-03 1.86 3.410783 1.3065 

Mar-03 6.04 5.711706 4.8433 

Apr-03 2.60 3.945493 1.7312 

May-03 0.00 6.36742 2.94422 

Jun-03 16.99 64.7452 12.2429 

Jul-03 76.62 147.8672 93.8437 

Aug-03 120.98 234.4775 100.6419 

Sep-03 52.99 77.35611 44.81356 

Oct-03 171.97 200.3414 99.0086 

Nov-03 42.46 50.97314 60.2022 

Dec-03 3.33 21.11285 18.2366 
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4.3 Stream flow forecasting with ARIMA and 

X-12-ARIMA models 

The selected ARIMA (2, 1, 1) (2, 1, 2) and X-12-ARIMA (2, 1, 

1) (2, 1, 2) were used to forecast the mean monthly stream flow 

for the period December-02  to December-03 by using the 

observed data of the period January-86 to December-02. The 

forecasted data were compared with the observed data (Table 3 

and Figure 6). As evident from Figure 8, though both ARIMA 

(2, 1, 1) (2, 1, 2) and X-12-ARIMA (2, 1, 1) (2, 1, 2) are able to 

capture the flow trend, X-12-ARIMA (2, 1, 1) (2, 1, 2) performs 

better than ARIMA (2, 1, 1) (2, 1, 2) in capturing the flow 

magnitudes. Figure 7 present the scatter plots of forecasted and 

observed stream flow for ARIMA and X-12-ARIMA 

respectively. The scatter plots also show that X-12-ARIMA (2, 

1, 1) (2, 1, 2) forecasted values are spread uniformly around 1:1 

line; whereas ARIMA (2, 1, 1) (2, 1, 2) results in 

overestimation.  

 

 

Fig 6: Observed and forecasted mean monthly stream flow 

value during December -02 to Decmber-03. 

 

After obtaining satisfactory forecasting results over a short 

period, the selected ARIMA and X-12-ARIMA models were 

employed to forecast stream flow over a longer period, i.e., 

January-86 to January-03 (Figure 8). As evident, the X-12-

ARIMA model does reasonably well in long-term forecasting 

except for a few peak flows. 

 

 

Fig 7: Scatter plot for ARIMA (2, 1, 1) (2, 1, 2) and X-12-ARIMA 

(2, 1, 1) (2, 1, 2). 

 

Fig 8: Observed and forecasted mean stream flow 

forecasting during January -86 and January-03. 

 

5. SUMMARY AND CONCLUSION 

ARIMA and X-12-ARIMA are most sophisticated extrapolation 

method for forecasting. ARIMA model has been popularized by 

George Box and Gwilym Jenkins in the early 1970‘s, and there 

names have frequently been used synonymously with general 

ARIMA models applied to time series analysis and forecasting. 

Box and Jenkins (1970) effectively put together in a 

comprehensive manner the relevant information required to 

understand and use univariate time series ARIMA model. X-12-

ARIMA was developed by Findley et al. (1997). X-12-ARIMA 

provides facility to extend the original series with forecast to 

ensure that more of the observations are adjusted using the full 

weighted averages. The initial values can also be forecast 

backward in time. These forecasts are obtained using ARIMA 

time series model or regression model with ARIMA errors.  

ARIMA and X-12-ARIMA models offer a sound technique for 

predicting the magnitude of any variable. The strength of 

ARIMA lies in the fact that the method is suitable for any time 

series with any pattern of change and it does not require the 

forecaster to choose, a priori, the value of any parameter. Its 

limitations include its requirement of a long time series. Often it 

is called a ‗Black Box‘ model. Like any other method, this 
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technique also does not guarantee perfect forecasts. 

Nevertheless, it can be successfully used for forecasting long 

time series data. X-12-ARIMA provides facility to extend the 

original series with forecast to ensure that more of the 

observations are adjusted using the full weighted averages. In 

this study, several ARIMA and X-12-ARIMA models were 

developed and tested for monthly and weekly stream flow 

forecasting. The models were subjected to various diagnostic 

tests to evaluate their performance. 

The specific conclusions are drawn from this study are. 

1. ACF and PACF achieved stationarity after first difference. 

2. ARIMA (2, 1, 1) (2, 1, 2) and X-12 ARIMA (2, 1, 1) 

(2,1,2) are found to be the most suitable models for mean 

monthly forecasting. 

3. X-12 ARIMA (2, 1, 1) (2, 1, 2), however, performs better 

than ARIMA (2, 1, 1) (2, 1, 2) as ARIMA tends to 

overestimate the flow magnitude.   
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