
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.4, April 2011

42

Architecture of SIMD Type Vector Processor

Mohammad Suaib

National Institute of
Technology Hamirpur, India

Abel Palaty
National Institute of

Technology Hamirpur, India

Kumar Sambhav Pandey
National Institute of

Technology Hamirpur, India

ABSTRACT

Throughput and performance are the major constraints in

designing system level models. As vector processor used deeply

pipelined functional unit, the operation on elements of vector

was performed concurrently. It means the elements were

processed one by one. Improvement can be made in vector

processing by incorporating parallelism in execution of these

concurrent operations so that these operations can be performed

simultaneously. This paper presents a design and

implementation of SIMD-Vector processor that implements this

parallelism on short vectors having 4 words. The operation on

these words is performed simultaneously i.e. the operation on

these words is performed in one cycle. This reduces the clock

cycles per instruction (CPI). To implement parallelism in vector

processing requires parallel issue and execution of vector

instructions. Vector processor operates on a vector and

superscalar processor issues multiple instructions at a time. This

means parallel pipelines are implemented and then made these

to support vector data. SIMD-Vector processor will operate on

short vector say 4 words vector in a superscalar fashion i.e. 4

words will be fetched at a time and then executed in parallel.

This requires redundant functional units e.g. if addition is to be

performed on two vectors multiple adders are needed. We have

designed the architecture of SIMD type Vector processor. All

the designing parameters are explained.

Keywords

SIMD type Vector processor, vertical and horizontal parallelism,

ILP.

1. INTRODUCTION
Parallel processing is the need of today’s architectures. Parallel

processing reduces the execution time taken by any program.

The execution time taken by any program is determined by three

factors: First, the number of instructions executed. Second,

number of clock cycles needed to execute each instruction and

the third is the length of each clock cycle. Here we shall try to

reduce the number of clock cycles by introducing a new

processor named SIMD type of vector processor. Superscalar

and VLIW architectures improve the performance by reducing

the Cycles Per Instruction (CPI). This architecture take the

advantages of superscalar processor as well as vector processor.

SIMD-Vector architecture supports In-order issue with out-of-

order completion. All the vector instructions are issued in-order

and kept in Instruction cache. After checking the structural and

data hazard all the vector instructions are executed in out-of-

order sequence. Reorder buffer is used to write the output in-

order. Hence we get the correct output sequence.

Technology is changing rapidly and significantly in past few

years. For microprocessor technologies multimedia applications

are the main stream computing. In this scenario we can improve

the performance of the processor by exploiting data level

parallelism (DLP) and instruction level parallelism (ILP). To

exploit DLP, instructions are executed in single instruction

multiple data (SIMD) fashion. We adopt the SIMD processors

into general purpose processors [2]. Multimedia processors has a

lot of inherent parallelism so it can be easily exploited by SIMD

instructions at low cost and energy overhead.

Here we can see a lot of superior theoretic performance. But

practically it is not possible due to some limitations. If we add

more processing unit into our SIMD-Vector architecture then it

sufficiently increase the hardware cost as well as complexity of

the processor. So as a result we worked on short vector. SIMD-

Vector architecture supports the instructions of vector length 4.

In this architecture we assume that all the instructions are vector

and should be of the length of four. This architecture has 4

execution units. All the four vector elements are processed on

four different processing units. This execution is performed

parallel in one clock cycle. Hence we can reduce the clock

cycles to perform multimedia applications. To reduce the

complexity of the system chaining is not used to improve the

performance of vector processing. If some instructions have the

vector length less than four then available vector elements are

sent to execution engines and remaining are circuited to ground.

Short vector implementation introduces large parallelization

overhead such as loop handling and address generation [1].

There are many examples of SIMD processors such as IBM’s

VMX, AMD’s 3D Now!, Intel’s SSE and Motorola’s Altivec. In

these processors we can embed vector processing with taking

the advantage of 4 way superscalar processor.

The SIMD-Vector architecture brings new levels of performance

and energy efficiency. Organization of paper is as follows. In

section 2 the motivations of this work is introduced. Section 3

describes the SIMD-Vector architecture. SIMD-Vector is

compared with other conventional vector architecture in section

4. Then the evaluation result is shown in section 5. Section 6

describes the conclusion of whole work. Finally section 7 gives

the future work.

2. MOTIVATION
A vector ISA packages multiple homogeneous, independent

operations into a single short instruction which results into a

compact code. The code is compact because a single short

vector instruction can describe N operation. This reduces

instruction bandwidth requirements.

Reduction in instruction bandwidth: A single vector instruction

comprises of N operations thereby reducing the instruction

bandwidth. In the proposed scheme throughput and performance

can be enhanced by introducing parallelism. It can be done by

incorporating superscalar issue in vector processing.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.4, April 2011

43

Hardware reduction: In vector instruction N operations are

homogeneous. This saves hardware in the decode and issue

stage. The opcode is decoded once and all N operations can be

issued as a group to the same functional unit. In our proposed

scheme, this is taken as the basic design constraint.

SIMD extensions and vector architecture are quite similar. The

principle difference is that how the instructions control is

implemented and communication between execution unit and

memory unit. With the help of pipelining technology vector

processor can overlap computation, load, store operations on

vector elements. So vector length may be long and variable. This

kind of parallelism is called vertical parallelism. Instruction

latency is bigger than one cycle per vector element. While

SIMD extension duplicates the execution units to perform the

parallel execution. This type of parallelization is called

horizontal parallelism. Due to limitation of hardware cost we

cannot add much execution units so the vector length should be

fixed and short.

 for (int a=0;a<64;a++)

 {

 z[a]=x[a]+y[a]:

 }

 (a) Scalar form

 for (int a=0;a<64;a+=4)

 {

 z[a+3:a]=x[a+3:a]+y[a+3:a]

 }

 (b) SIMD-Vector form

For above given example there are 64 iterations in scalar

architecture. Scalar architecture takes one clock cycle instruction

latency. While using SIMD-Vector architecture four vector

instructions can be executed in one clock cycle simultaneously.

So instruction latency is just greater than 16.

3. SIMD TYPE VECTOR PROCESSOR
In this section we describe the architecture of SIMD-Vector

processor, pipelining and working of proposed architecture.

3.1 Proposed Architecture
In proposed architecture SIMD unit is the functional unit to

perform the vector operations. It is similar as conventional

SIMD unit. Architectural overview of proposed scheme is given

in Figure 1.
For a given set of vector operations each time SIMD unit

executes one vector instruction at a time concurrently as vector

instruction has four vector element only. To handle the long

vector operations we need the smart compiler for vectorizing the

instructions. All the vectorized instructions should be of length

4. We add a additional unit called vector code cache (VCC) to

handle the long vector operations. We restrict the size of

VCCache to 1 KB that can store 256 operations of 32 bit

instruction encoding that is enough for most of the multimedia

applications. Loop controller generates the loop control signal to

complete long vector operations with keeping in mind that 4

operation can be done in one clock cycle. It is very tedious to

provide the memory location to all the vector element using

conventional memory system. To support the strided memory

location to vector elements we need an address generator unit

[3]. This address generator unit is connected to vector register

file and memory via load-store unit. And all remaining units are

as conventional with standard meaning. Figure 2 shows the

SIMD unit having 4 execution units that can execute 4

operations in parallel in one clock cycle.

Table 1. Architectural parameter

Parameter Explanation Bit Size

BS Bit size of SIMD unit 128

BVRF Bit size of vector register file 128

BLS Bit size of load store unit 128

BVE Bit size of vector element 32

LV Vector length 4

We have described some parameters for SIMD type Vector

processor that are listed in table 1. Our vector register should

support 4 vector element of 32 bit each. So length of vector

register file (VRF) would be 128. Generally we take the SIMD

unit of 128 bit length. Memory unit that is load-store unit would

also be 128 bit long. These type of architecture is well supported

by IBM's Altivec ISA [4] and Intel's SSE ISA. We are taking 32

bit long vector element. Our proposed architecture would

support the instructions of vector length 4.

3.2 Pipelining In SIMD Type Vector

processor
In Figure 3 it is shown that how pipeline technology is exploited

in SIMD-Vector architecture. At x axis clock cycle is plotted

and y axis vector instructions (VI) are shown. Five stage

pipelines are shown in Figure 3. By seeing pipeline structure it is

easily understood there are four functional unit that can be

operated simultaneously on 4 vector element in one clock cycle.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.4, April 2011

44

IF ID

Loop
Controller

SIMD UnitI Cache

VRFLD/ST
Address

Generator

D Cache

Data Bus

Fig 1: Proposed Architecture of SIMD type Vector Processor

3.3 Working Of SIMD Type Vector

Processor
In SIMD-Vector, superscalar implementation is converted to

support vector data instead of scalar data. To implement parallel

operations on vector redundant functional units are needed.

SIMD-Vector behavior is shown in figure 4.

4. COMPARISON WITH OTHER

ARCHITECTURE
In this section we have compared SIMD-Vector architecture

with SIMD extensions and vector architecture. Proposed

architecture take the advantages of SIMD as well as vector

processors. The width of SIMD-Vector VRF file is much

smaller than vector architecture implemented in recent single

chip processors [5,6].

CU

Regs Regs Regs Regs

PE1 PE2 PE3 PE4

mem mem mem mem

Data Bus

Fig 2: SIMD unit

Fig 3: Pipelining in SIMD type Vector Processor

Fig 4: Working of SIMD-Vector processor

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.4, April 2011

45

Table 2. Architecture Comparison

Feature SIMD-

Vector

SIMD Vector

Vector

Length

4 32 >=64

Memory

access

Automatic

address

generation

Sequential

access

Strided

access

Instruction

latency

1 cycle per

vector

element

1 cycle per

instruction

1 cycle per

element

Parallelism combined Vertical Horizontal

5. EVALUATION
By using proposed SIMD-Vector architecture we can enhance

the performance of the system. We have analyzed instruction

counts on many multimedia operations like fast fourier

transform, matrix multiplication, finite impulse response filter

infinite impulse response filter using scalar, SIMD and SIMD-

Vector architecture. Response of the analysis is shown n the

figure 5. This figure completely shows that when we use SIMD-

Vector architecture number of instructions are fairly less.

0

0.2

0.4

0.6

0.8

1

FFT MAT FIR IIR

Scalar

SIMD

SIMD-Vector

 Fig 5: Comparison of instruction counts

6. CONCLUSION
SIMD-Vector processor implements parallelisms on shorts

vector having four words. The operation on these words is

performed simultaneously i.e. the operation on these words is

performed in one cycle. This reduces the clock cycles per

instruction (CPI). The parallelism in vector processing requires

superscalar issue of vector instructions. Above paper gives the

architecture of proposed processor that can be exploited in

many multimedia applications.

7. FUTURE WORK
In the future, the parallelism in operation can be enhanced to

support longer vectors having more words. This leads to an

increase in the hardware as more parallelism requires more

functional units.

8. REFERENCES
[1] Shin, J., Hall, M.W., Chame, J.: Superword-Level

Parallelism in the Presence of Control Flow. In: CGO

2005, pp. 165–175 (2005).

[2] Lee, R.: Multimedia Extensions for General-purpose

Processors. In: SIPS 1997, pp. 9–23 (1997).

[3] Talla, D.: Architectural techniques to accelerate multimedia

applications on general-purpose processors, Ph.D. Thesis,

The University of Texas at Austin (2001).

[4] Diefendorff, K., et al.: Altivec Extension to PowerPC

Accelerates Media Processing. IEEE Micro 2000 20(2),

85–95 (2000).

[5] Corbal, J., Espasa, R., Valero, M.: Exploiting a New Level

of DLP in Multimedia Applications. In: MICRO 1999

(1999).

[6] Kozyrakis, C.E., Patterson, D.A.: Scalable Vector

Processors for Embedded Systems. IEEE Micro 23(6), 36–

45 (2003).

[7] K. Yeager, “The MIPS R10000 Superscalar

Microprocessor”, in Proceedings of IEEE Micro, Vol. 16,

No. 2, pp. 28-41, April 1996.

[8] James E. Smith, Gurindar S. Sohi, “The Microarchitecture

of Superscalar Processors”, in Proceedings of IEEE, Vol.

83, No. 12, pp. 1609-1624, December 1995).

[9] Open SystemC Initiative (OSCI), www.systemc.org.

Instruction

count

