
International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.6, April 2011 

1 

Comparison of Drop Rates in Different TCP Variants 
against Various Routing Protocols 

A. R. Britto Pradeep 
PG Scholar  

IT Department 
Karunya University, India 

 

N. Dhinakaran 
Assistant Professor 

IT Department 
Karunya University, India 

 

P. Anitha Christy Angelin 
Assistant Professor 

IT Department 
Karunya University, India 

 

ABSTRACT 

In a network, the most common transport protocol is the 

Transmission Control Protocol. The Transmission Control 

Protocol comes in many variants like TCP, Tahoe, Reno, 

NewReno, Vegas, STCP and so on. Each of these variants 

would work differently in different networks according to the 

parameters of that network. On the other hand, there are mainly 

four common routing protocols used in networks like DSDV, 

DSR, AODV and TORA. In this paper, we have simulated 

different networks with differing parameters to analyze the 

behavior of the most common protocols DSDV and AODV with 

different variants of TCP. By creating different networks in ns2 

simulator, we could deeply analyze the behavior of the protocols 

with these TCP variants in the basis of the amount of packet 

drops in each case. The lesser the amount of drops the better the 

algorithm. This paper implicitly analyses which TCP variant has 

lesser drop rates with which routing protocol.   

General Terms 

Routing Protocols, TCP Variants, Packet Drops. 

Keywords 
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1. INTRODUCTION 
The most common transport protocol used in internet for data 

transmission is Transmission Control Protocol. There are many 

variants of TCP each variant being used for a specific purpose. 

The five variants we use in this paper are TCP, Tahoe, Reno, 

NewReno Vegas. We call these variants as Agents. First, we 

take each algorithm and compare the variants for 50 nodes. 

Then, the number of nodes is increased to 100. In each case, the 

behavior of the TCP variants is observed in terms of packet 

drops. The remaining part of this segment will explain briefly 

the five TCP agents and the two protocols DSDV and AODV 

which are being used in this paper.  

2. ROUTING PROTOCOLS 

2.1 DSDV 
In the Destination Sequenced Distance Vector protocol routing 

messages are exchanged between neighbouring mobile nodes 

(i.e., mobile nodes that are within range of one another). Routing 

updates may be triggered or routine. Updates are triggered in 

case routing information from one of the neighbours forces a 

change in the routing table. A packet for which the route to its 

destination is not known is cached while routing queries are sent 

out. The packets are cached until route-replies are received from 

the destination. There is a maximum buffer size for caching the 

packets waiting for routing information beyond which packets 

are dropped. All packets destined for the mobile node are routed 

directly by the address dmux to its port dmux. The port dmux 

hands the packets to the respective destination agents. A port 

number of 255 is used to attach routing agent in mobile nodes. 

The mobile nodes also use a default-target in their classifier (or 

address demux). In the event a target is not found for the 

destination in the classifier (which happens when the destination 

of the packet is not the mobile node itself), the packets are 

handed to the default-target which is the routing agent. The 

routing agent assigns the next hop for the packet and sends it 

down to the link layer. The routing protocol is mainly 

implemented in C++. 

The Route Selection Strategy of DSDV is such that a router uses 

only the recently updated information. In case of repetitive 

sequence numbers, it goes for the best metric. Stale entries are 

deleted regularly. The advantages of DSDV being, it can be used 

for creating ad hoc networks with small number of nodes. Also, 

DSDV promises loop free path. The disadvantage is regular 

updating of routing tables, causes battery depletion and 

bandwidth exhaustion. The same reason states for its non-

usability with highly dynamic networks as in [1]. 

2.2 AODV 
The Ad hoc On-demand Distance Vector protocol is a 

combination of both DSR (Dynamic Source Routing) and 

DSDV protocols. It has the basic route-discovery and route-

maintenance of DSR and uses the hop-by-hop routing, sequence 

numbers and beacons of DSDV. The node that wants to know a 

route to a given destination generates a ROUTE REQUEST. The 

route request is forwarded by intermediate nodes, which also 

creates a reverse route for itself from the destination. When the 

request reaches a node with route to destination it generates a 

ROUTE REPLY containing the number of hops required to 

reach the destination. All nodes that participate in forwarding 

this reply to the source node create a forward route to 

destination. This state created from each node from source to 

destination is a hop-by-hop state and not the entire route as is 

done in source routing. The advantages of AODV are that the 

routes are established only on demand and the sequence 

numbers are used only to find the latest route to the destination 

as in [2]. It also has a reduced connection setup delay. The 

disadvantages are that stale information, heavy overheads 

caused by multiple ROUTE REPLY messages and unnecessary 

bandwidth consumption caused by periodic beaconing. 

3. TCP AND ITS VARIANTS 

3.1 TCP 
TCP provides a connection oriented, reliable, byte stream 

service. The term connection-oriented means the two 

applications using TCP must establish a TCP connection with 

each other before they can exchange data as shown in the figure 
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1. It is a full duplex protocol, meaning that each TCP connection 

supports a pair of byte streams, one flowing in each direction. 

TCP includes a flow-control mechanism for each of these byte 

streams that allow the receiver to limit how much data the 

sender can transmit. TCP also implements a congestion-control 

mechanism. TCP is a reliable connection oriented end-to-end 

protocol which has many mechanisms to provide reliable 

communication. But a small number of packets are lost due to 

congestion and buffer overflow. In such cases, TCP ensures 

reliability by using sequence numbers and time-out intervals. 

The packet of the particular sequence number is resent after the 

time-out timer runs out. TCP runs on the concept of 

“Conservation of Packets” [3]. The TCP provides different 

facilities as discussed below in the following list. 

i. Stream Data Transfer:  

    TCP transfers a contiguous stream of bytes. TCP does this by 

grouping the bytes in TCP segments, which are passed to IP for 

transmission to the destination. TCP decides how to segment the 

data and forwards the data at its own convenience.  

ii. Reliability: 

    TCP assigns a sequence number to each byte transmitted, and 

expects a positive acknowledgment (ACK) from the receiving 

TCP. If the ACK is not received within a timeout interval, the 

data is retransmitted. The receiving TCP uses the sequence 

numbers to rearrange the segments when they arrive out of 

order, and to eliminate duplicate segments. 

iii. Flow Control: 

    The receiving TCP, when sending an ACK back to the sender, 

also indicates to the sender the number of bytes it can receive 

beyond the last received TCP segment, without causing overrun 

and overflow in its internal buffers. This is sent in the ACK in 

the form of the highest sequence number it can receive without 

problems. 

iv. Multiplexing: 

    To allow for many processes within a single host to use TCP 

communication facilities simultaneously, the TCP provides a set 

of addresses or ports within each host. Concatenated with the 

network and host addresses from the internet communication 

layer this forms a socket. A pair of sockets uniquely identifies 

each connection.  

v. Logical Connections: 

    The reliability and flow control mechanisms described above 

require that TCP initializes and maintains certain status 

information for each data stream. The combination of this status, 

including sockets, sequence numbers and window sizes, is called 

a logical connection. Each connection is uniquely identified by 

the pair of sockets used by the sending and receiving processes. 

vi. Full Duplex: 

    TCP provides for concurrent data streams in both directions.  

3.2 TCP Tahoe 
TCP Tahoe is the congestion control mechanism suggested by 

Van Jacobson. The actual TCP data transmission is clocked by 

the acknowledgements received. But at the start of the 

transmission, there would not be any acknowledgement. To 

overcome this, the Tahoe suggests a mechanism called “slow-

start”. According to this mechanism, the congestion window size 

is taken as 1 at the beginning of start or a restart of data 

transmission. After sufficient acknowledgements are received, 

the congestion window size is additionally increased. After 

congestion is achieved, the window size is multiplicatively 

decreased. This is called Additive Increase Multiplicative 

Decrease [4]. Whenever a packet is lost, the “go back n” method 

is used, and the entire pipe is emptied. This results in a high-

bandwidth delay. 

3.3 TCP Reno 
TCP Reno has all the advantages of Tahoe like the slow start 

mechanism and the time-out intervals. Also, it has some 

intelligent mechanisms to detect the packet losses previously. 

After each packet loss, the entire pipe is not emptied. It uses a 

Fast Retransmit mechanism in which when 3 duplicate 

acknowledgements are received, it is understood that there is 

packet loss. Hence even before the actual packet loss is detected, 

the packet is retransmitted. It has the disadvantage of reducing 

the window size more than required and hence cannot afford 

Fast Recovery [5]. If window size is reduced very much, then 

the normal course grained timeout. 

3.4 TCP New Reno 
The TCP New Reno [6] is more advanced than TCP Reno. It is 

able to detect multiple packet losses. It also enters the fast 

recovery mechanism like Reno, but it does not end up reducing 

the congestion window size. It waits till the acknowledgements 

of all the congested packets are received. The actual 

disadvantage of the New Reno is that it takes a whole Round 

Trip Time to detect a single packet loss. 

3.5 TCP Vegas 
The TCP Vegas [7] is a modified version of Reno. It works on 

the proactive measures to control congestion rather than reactive 

measures. It uses an algorithm to check for timeouts. It also 

overcomes the problem of requiring enough duplicate 

acknowledgements to detect a packet loss. It also uses a slightly 

modified slow start mechanism. It has the mechanism to detect 

congestion even before packet losses occur, but it also retains 

the other mechanisms of Reno and Tahoe. Overall, the Vegas 

has a new retransmission mechanism, a modified slow start 

algorithm and congestion avoidance scheme. 

4. TCP CHARACTERSTICS 

4.1 Congestion Window 
In any network, when the number of packets in the network 

increases randomly, it leads to message delay or at times loss of 

data. This situation is called network congestion. In TCP, to 

avoid congestion, we use congestion windows, which determine 

the number of byes that can be outstanding at any time. This is a 

means of stopping the link between two places from getting 

overloaded with too much traffic. The size of the window is 

calculated by estimating how much congestion is there between 

the two places. Usually, it is the sender that maintains the 

congestion window. When a connection is set up, the congestion 

window is set to the Maximum Segment Size allowed on that 

connection. Further variance in the collision window is dictated 

by an Additive Increase/Multiplicative Decrease approach. This 



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.6, April 2011 

3 

means that if all segments are received and the 

acknowledgements reach sender on time, some constant is added 

to the window size. The window keeping growing linearly until 

a timeout occurs or the receiver reaches its limit. If a timeout 

occurs, the window size is halved [8]. 

4.2 Congestion Control 
TCP uses a number of mechanisms to achieve high performance 

and avoid „congestion collapse‟, where network performance 

can degrade by several orders of magnitude [9]. These 

mechanisms control the rate of data entering the network, 

keeping the data flow below a rate that would trigger collapse. 

Acknowledgements for data sent are used by senders to infer 

network conditions between TCP sender and receiver. Modern 

implementations of TCP contain four intertwined algorithms: 

slow-start, congestion avoidance, fast retransmit and fast 

recovery. 

4.2.1 Slow Start 
It operates by observing that the rate at which new packets 

should be injected into the network is the rate at which the 

acknowledgments are returned by the other end. Slow start adds 

another window to the sender's TCP: the congestion window, 

called "cwnd". When a new connection is established with a 

host on another network, the congestion window is initialized to 

one segment (i.e., the segment size announced by the other end, 

or the default, typically 536 or 512). Each time an ACK is 

received, the congestion window is increased by one segment. 

The sender can transmit up to the minimum of the congestion 

window and the advertised window.  

The congestion window is flow control imposed by the sender, 

while the advertised window is flow control imposed by the 

receiver. The former is based on the sender's assessment of 

perceived network congestion; the latter is related to the amount 

of available buffer space at the receiver for this connection. The 

sender starts by transmitting one segment and waiting for its 

ACK. When that ACK is received, the congestion window is 

incremented from one to two, and two segments can be sent. 

When each of those two segments is acknowledged, the 

congestion window is increased to four. This provides an 

exponential growth, although it is not exactly exponential 

because the receiver may delay its ACKs, typically sending one 

ACK for every two segments that it receives. At some point the 

capacity of the internet can be reached, and an intermediate 

router will start discarding packets. This tells the sender that its 

congestion window has gotten too large. Early implementations 

performed slow start only if the other end was on a different 

network. Current implementations always perform slow start. 

4.2.2 Congestion Avoidance 
Congestion can occur when data arrives on a big pipe (a fast 

LAN) and gets sent out a smaller pipe (a slower WAN). 

Congestion can also occur when multiple input streams arrive at 

a router whose output capacity is less than the sum of the inputs. 

Congestion avoidance is a way to deal with lost packets. The 

assumption of the algorithm is that packet loss caused by 

damage is very small (much less than 1%), therefore the loss of 

a packet signals congestion somewhere in the network between 

the source and destination.  

There are two indications of packet loss: a timeout occurring and 

the receipt of duplicate ACKs. Congestion avoidance and slow 

start are independent algorithms with different objectives. But 

when congestion occurs TCP must slow down its transmission 

rate of packets into the network, and then invoke slow start to 

get things going again. In practice they are implemented 

together. Congestion avoidance and slow start require that two 

variables be maintained for each connection: a congestion 

window, cwnd, and a slow start threshold size, ssthresh. The 

combined algorithm operates as follows:  

1. Initialization for a given connection sets cwnd to one segment 

and ssthresh to 65535 bytes. 

2. The TCP output routine never sends more than the minimum 

of cwnd and the receiver's advertised window.  

3. When congestion occurs (indicated by a timeout or the 

reception of duplicate ACKs), one-half of the current window 

size (the minimum of cwnd and the receiver's advertised 

window, but at least two segments) is saved in ssthresh. 

Additionally, if the congestion is indicated by a timeout, cwnd is 

set to one segment (i.e., slow start).  

4. When new data is acknowledged by the other end, increase 

cwnd, but the way it increases depends on whether TCP is 

performing slow start or congestion avoidance. If cwnd is less 

than or equal to ssthresh, TCP is in slow start; otherwise TCP is 

performing congestion avoidance. Slow start continues until 

TCP is halfway to where it was when congestion occurred (since 

it recorded half of the window size that caused the problem in 

step 2, and then congestion avoidance takes over. Slow start has 

cwnd begin at one segment, and be incremented by one segment 

every time an ACK is received.  

As mentioned earlier, this opens the window exponentially: send 

one segment, then two, then four, and so on. Congestion 

avoidance dictates that cwnd be incremented by 

segsize*segsize/cwnd each time an ACK is received, where 

segsize is the segment size and cwnd is maintained in bytes. 

This is a linear growth of cwnd, compared to slow start's 

exponential growth. The increase in cwnd should be at most one 

segment each round-trip time (regardless how many ACKs are 

received in that RTT), whereas slow start increments cwnd by 

the number of ACKs received in a round-trip time. 

4.2.3 Fast Retransmit 
TCP may generate an immediate acknowledgment (a duplicate 

ACK) when an out- of-order segment is received. This duplicate 

ACK should not be delayed. The purpose of this duplicate ACK 

is to let the other end know that a segment was received out of 

order, and to tell it what sequence number is expected. Since 

TCP does not know whether a duplicate ACK is caused by a lost 

segment or just a reordering of segments, it waits for a small 

number of duplicate ACKs to be received. It is assumed that if 

there is just a reordering of the segments, there will be only one 

or two duplicate ACKs before the reordered segment is 

processed, which will then generate a new ACK. If three or 

more duplicate ACKs are received in a row, it is a strong 

indication that a segment has been lost. TCP then performs a 

retransmission of what appears to be the missing segment, 

without waiting for a retransmission timer to expire. 
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4.2.4 Fast Recovery 
After fast retransmit sends what appears to be the missing 

segment, congestion avoidance, but not slow start is performed. 

This is the fast recovery algorithm. It is an improvement that 

allows high throughput under moderate congestion, especially 

for large windows. The reason for not performing slow start in 

this case is that the receipt of the duplicate ACKs tells TCP 

more than just a packet has been lost. Since the receiver can 

only generate the duplicate ACK when another segment is 

received, that segment has left the network and is in the 

receiver's buffer. That is, there is still data flowing between the 

two ends, and TCP does not want to reduce the flow abruptly by 

going into slow start. The fast retransmit and fast recovery 

algorithms are usually implemented together as follows. 

1. When the third duplicate ACK in a row is received, set 

ssthresh to one-half the current congestion window, cwnd, but 

no less than two segments. Retransmit the missing segment. Set 

cwnd to ssthresh plus 3 times the segment size. This inflates the 

congestion window by the number of segments that have left the 

network and which the other end has cached.  

2. Each time another duplicate ACK arrives, increment cwnd by 

the segment size. This inflates the congestion window for the 

additional segment that has left the network. Transmit a packet, 

if allowed by the new value of cwnd.  

3. When the next ACK arrives that acknowledges new data, set 

cwnd to ssthresh (the value set in step 1. This ACK should be 

the acknowledgment of the retransmission from step 1, one 

round-trip time after the retransmission. Additionally, this ACK 

should acknowledge all the intermediate segments sent between 

the lost packet and the receipt of the first duplicate ACK. This 

step is congestion avoidance, since TCP is down to one-half the 

rate it was at when the packet was lost. 

4.3 Flow Control 
In computer networking, flow control is the process of managing 

the data rate between two nodes to prevent a fast sender from 

outrunning a slow receiver. It provides mechanism for the 

receiver to control the transmission speed, so that it is not 

overwhelmed. Flow Control should be distinguished from 

congestion control, which is used for controlling the flow of data 

when congestion has occurred actually.In a connection between 

a client and a server, the client tells the server the number of 

bytes it is willing to receive at one time from the server; this is 

the client's receive window, which becomes the server's send 

window. Likewise, the server tells the client how many bytes of 

data it is willing to take from the client at one time; this is the 

server's receive window and the client's send window. Since the 

window size can be used in this manner to manage the rate at 

which data flows between the devices at the ends of the 

connection, it is the method by which TCP implements flow 

control, one of the “classical” jobs of the transport layer. Flow 

control is vitally important to TCP, as it is the method by which 

devices communicate their status to each other.  

By reducing or increasing window size, the server and client 

each ensure that the other device sends data just as fast as the 

recipient can deal with it. Flow control is a technique whose 

primary purpose is to properly match the transmission rate of 

sender to that of the receiver and the network. It is important for 

the transmission to be at a high enough rates to ensure good 

performance, but also to protect against overwhelming the 

network or receiving host. Congestion control is primarily 

concerned with a sustained overload of network intermediate 

devices such as IP routers. TCP uses the window field, briefly 

described previously, as the primary means for flow control. 

During the data transfer phase, the window field is used to adjust 

the rate of flow of the byte stream between communicating 

TCPs. 

Flow control mechanisms can be classified by whether or not the 

receiving node sends some feedback to the sender. It is 

important because it is possible for a sender to send data at a 

faster rate than the receiver can receive and process them. 

4.4 Sliding Window 
The sliding window is a technique used in tcp to provide flow 

control such that all packets arrive in the same sequential order 

in which they were sent. Sliding Window Protocols are a feature 

of packet-based data transmission protocols. They are used 

anywhere reliable in-order delivery of packets is required, such 

as in the data link layer (OSI model) as well as in TCP (transport 

layer of the OSI model). Conceptually, each portion of the 

transmission (packets in most data link layers, but bytes in TCP) 

is assigned a unique consecutive sequence number, and the 

receiver uses the numbers to place received packets in the 

correct order, discarding duplicate packets and identifying 

missing ones. The problem with this is that there is no limit of 

the size of the sequence numbers that can be required. By 

placing limits on the number of packets that can be transmitted 

or received at any given time, a sliding window protocol allows 

an unlimited number of packets to be communicated using 

fixed-size sequence numbers.  

For the highest possible throughput, it is important that the 

transmitter is not forced to stop sending by the sliding window 

protocol earlier than one round-trip delay time (RTT). The limit 

on the amount of data that it can send before stopping to wait for 

an acknowledgment should be larger than the bandwidth-delay 

product of the communications link. If it is not, the protocol will 

limit the effective bandwidth of the link. 

5. Evaluation Environment 
The experiments were conducted in two different scenarios and 

in ten different ways. In all cases, some parameters were made 

constant. The parameters that were changed were the 

transmission agent and the routing protocol. The ns2 simulator 

[10] was used to analyze the protocols against the TCP variants. 

The table 1 shows the parameters that were common in all the 

scenarios. 

Table 1. Common Properties in Scenarios 

Characteristics Value 

Channel Type Wireless Channel 

Radio Propagation Two Ray Ground 
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Network Interface 
Wireless Physical 

Interface 

MAC Type 802.11 

Interface Queue Drop Tail 

Antenna Omni Antenna 

Maximum Packets in Interface 

Queue 
50 

Simulation Time 200s 

 

The TCP agent was changed for each scenario as TCP, TCP 

Tahoe, TCP Reno, TCP NewReno and TCP Vegas with two 

routing protocols DSDV and AODV. Also, each experiment was 

conducted for 50 mobile nodes and 100 mobile nodes. Hence, 

totally 20 different experiments were conducted from which four 

graphs were obtained for the observation of the performance of 

different TCP variants for DSDV and AODV routing protocols. 

6. RESULTS AND ANALYSIS 

6.1 AODV in 50 Nodes 
In this analysis, five different experiments were conducted. In 

each experiment, a different TCP variant was used. Each time 

the routing protocol was AODV. There was no change in the 

experimental environment which is described in the above table 

1. The total number of nodes was 50. The nodes did not have 

any mobility. All nodes were kept stable for the full course of 

the evaluation. In the graph, the variants are denoted in short as 

T for TCP Tahoe, R for TCP Reno, NR for TCP New Reno and 

V for TCP Vegas. The Fig 1 shows that for the same scenario 

and parameters, the performance of TCP Tahoe seems to be 

convincing because it has very little amount of drops compared 

to the other variants of TCP. This is in the case of 50 nodes 

which use the AODV protocol for routing. The second best next 

to TCP Tahoe is TCP Vegas. The performance of the other 

agents can be in the order of TCP, TCP Reno, TCP NewReno 

and TCP itself. 

 

Fig 1: TCP Drop Rates with AODV in 50 Nodes 

6.2 AODV in 100 Nodes 

The Fig 2 shows the graph between time and the number of 

dropped packets for each scenario using different TCP agent. At 

the start of the experiment, the TCP Vegas has a very little 

number of drops per time.  

 

Fig 2: TCP Drop Rates with AODV in 100 Nodes 

But as time goes on, the scene changes with the amount of 

packet drops in Vegas slowly starts increasing. The other 

variants like TCP, TCP Reno and TCP NewReno start with the 

same amount of packet drops at the start of the simulation. But 

on the course of the simulation, these three variants have a rapid 

change in the amount of packet drops. It constantly keeps on 

varying from high to low and vice versa.  

 

The TCP Tahoe variant starts with a very high drop rate. But as 

the time increases on to the 2/4th of the simulation, the TCP 

Tahoe shows a very good sign of reduction in packet drop rate. 

And along with time, the drop rate slowly keeps rising. But at 

the end of the simulation, the TCP Tahoe stands at the bottom of 

the graph. It denotes that even when the number of nodes is 

increased to double the previous number, the performance of 

TCP Tahoe is relatively better than the other variants of TCP. 

6.3 DSDV in 50 Nodes 
The Fig 3 shows the graph of Time versus the Number of 

Dropped Packets, in the scenario where the TCP agent is 

changed each time and the number of nodes is 50, with DSDV 

as the routing protocol. The TCP NewReno has the highest 

number of packet drops versus time, according to the shown 

graph. The TCP and TCP Reno are moving along the same line 

in the amount of packet drops versus time. They are the second 
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largest packet dropping agents next to TCP NewReno. The next 

one is the TCP Vegas which starts with lesser packet drops and 

as time increases, the number of packet drops also increases. But 

it is lesser than the other variants like TCP, TCP reno and TCP 

NewReno. In DSDV also, similar to AODV, the TCP Tahoe 

variant is the agent that has least amount of packet drops against 

time. In case of DSDV also, the amount of packet drops in 

Tahoe variant is highly negligible. 

 

Fig 3: TCP Drop Rates with DSDV in 50 Nodes 

6.4 DSDV in 100 Nodes 
The Fig 4 shows the graph between the Time and the number of 

packet drops, by different TCP agents when using DSDV as the 

routing protocol with 100 nodes. The graph clearly states that 

the TCP NewReno is the largest packet dropping agent when 

DSDV is used with 100 mobile modes. The next highest 

dropping agent is the TCP itself. The TCP Vegas is the third 

highest packet dropping agent next to the TCP NewReno and the 

TCP itself. The TCP Vegas agent started with a lesser number of 

packet drops as in the previous scenario. But as time increased, 

the number of packets being dropped increased in the case of 

TCP Vegas. The next agent is TCP Reno which has closer curve 

to the TCP Vegas. But at the end of the simulation, the TCP 

Reno has lesser number of packets dropped when compared to 

the TCP Vegas variant. As in all the previous cases, the TCP 

Tahoe has the least amount of packet drops when compared to 

all the other TCP Variants. Even when increasing the number of 

nodes to 100, when using DSDV as the routing protocol, the 

TCP Tahoe proves to be the efficient agent according to the 

number of packets dropped. 

 

Fig 4: TCP Drop Rates with DSDV in 100 Nodes 

7. CONCLUSION 
To compare the performances of different TCP variants like 

TCP, TCP Reno, TCP NewReno, TCP Vegas and TCP Tahoe 

with the routing protocols DSDV and AODV, we have 

experimented in 20 different ways to find that TCP Tahoe has 

the least number of packet drops against the simulation time. 

Some of the other variants, though they start with a lesser 

number of packet drops, the TCP Tahoe variant has always the 

least amount of packet drops in all cases like when using AODV 

and DSDV, be it 50 nodes or 100 nodes. Hence, irrespective of 

the number of nodes being increased and the simulation time 

being increasing, the TCP Tahoe always has the least packet 

drops. In future, the same experiments can be repeated with 

increased number of nodes and with other routing protocols. 

Also, these 20 experiments were done assuming that all the 

nodes were in constant position. Hence, in future, the efficiency 

of the TCP agents can be studied after introducing some amount 

of mobility to the nodes. 
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