
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

1

Comparison of Drop Rates in Different TCP Variants
against Various Routing Protocols

A. R. Britto Pradeep
PG Scholar

IT Department
Karunya University, India

N. Dhinakaran
Assistant Professor

IT Department
Karunya University, India

P. Anitha Christy Angelin
Assistant Professor

IT Department
Karunya University, India

ABSTRACT

In a network, the most common transport protocol is the

Transmission Control Protocol. The Transmission Control

Protocol comes in many variants like TCP, Tahoe, Reno,

NewReno, Vegas, STCP and so on. Each of these variants

would work differently in different networks according to the

parameters of that network. On the other hand, there are mainly

four common routing protocols used in networks like DSDV,

DSR, AODV and TORA. In this paper, we have simulated

different networks with differing parameters to analyze the

behavior of the most common protocols DSDV and AODV with

different variants of TCP. By creating different networks in ns2

simulator, we could deeply analyze the behavior of the protocols

with these TCP variants in the basis of the amount of packet

drops in each case. The lesser the amount of drops the better the

algorithm. This paper implicitly analyses which TCP variant has

lesser drop rates with which routing protocol.

General Terms

Routing Protocols, TCP Variants, Packet Drops.

Keywords

Transmission Control Protocol, TCP Variants, DSDV, AODV.

1. INTRODUCTION
The most common transport protocol used in internet for data

transmission is Transmission Control Protocol. There are many

variants of TCP each variant being used for a specific purpose.

The five variants we use in this paper are TCP, Tahoe, Reno,

NewReno Vegas. We call these variants as Agents. First, we

take each algorithm and compare the variants for 50 nodes.

Then, the number of nodes is increased to 100. In each case, the

behavior of the TCP variants is observed in terms of packet

drops. The remaining part of this segment will explain briefly

the five TCP agents and the two protocols DSDV and AODV

which are being used in this paper.

2. ROUTING PROTOCOLS

2.1 DSDV
In the Destination Sequenced Distance Vector protocol routing

messages are exchanged between neighbouring mobile nodes

(i.e., mobile nodes that are within range of one another). Routing

updates may be triggered or routine. Updates are triggered in

case routing information from one of the neighbours forces a

change in the routing table. A packet for which the route to its

destination is not known is cached while routing queries are sent

out. The packets are cached until route-replies are received from

the destination. There is a maximum buffer size for caching the

packets waiting for routing information beyond which packets

are dropped. All packets destined for the mobile node are routed

directly by the address dmux to its port dmux. The port dmux

hands the packets to the respective destination agents. A port

number of 255 is used to attach routing agent in mobile nodes.

The mobile nodes also use a default-target in their classifier (or

address demux). In the event a target is not found for the

destination in the classifier (which happens when the destination

of the packet is not the mobile node itself), the packets are

handed to the default-target which is the routing agent. The

routing agent assigns the next hop for the packet and sends it

down to the link layer. The routing protocol is mainly

implemented in C++.

The Route Selection Strategy of DSDV is such that a router uses

only the recently updated information. In case of repetitive

sequence numbers, it goes for the best metric. Stale entries are

deleted regularly. The advantages of DSDV being, it can be used

for creating ad hoc networks with small number of nodes. Also,

DSDV promises loop free path. The disadvantage is regular

updating of routing tables, causes battery depletion and

bandwidth exhaustion. The same reason states for its non-

usability with highly dynamic networks as in [1].

2.2 AODV
The Ad hoc On-demand Distance Vector protocol is a

combination of both DSR (Dynamic Source Routing) and

DSDV protocols. It has the basic route-discovery and route-

maintenance of DSR and uses the hop-by-hop routing, sequence

numbers and beacons of DSDV. The node that wants to know a

route to a given destination generates a ROUTE REQUEST. The

route request is forwarded by intermediate nodes, which also

creates a reverse route for itself from the destination. When the

request reaches a node with route to destination it generates a

ROUTE REPLY containing the number of hops required to

reach the destination. All nodes that participate in forwarding

this reply to the source node create a forward route to

destination. This state created from each node from source to

destination is a hop-by-hop state and not the entire route as is

done in source routing. The advantages of AODV are that the

routes are established only on demand and the sequence

numbers are used only to find the latest route to the destination

as in [2]. It also has a reduced connection setup delay. The

disadvantages are that stale information, heavy overheads

caused by multiple ROUTE REPLY messages and unnecessary

bandwidth consumption caused by periodic beaconing.

3. TCP AND ITS VARIANTS

3.1 TCP
TCP provides a connection oriented, reliable, byte stream

service. The term connection-oriented means the two

applications using TCP must establish a TCP connection with

each other before they can exchange data as shown in the figure

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

2

1. It is a full duplex protocol, meaning that each TCP connection

supports a pair of byte streams, one flowing in each direction.

TCP includes a flow-control mechanism for each of these byte

streams that allow the receiver to limit how much data the

sender can transmit. TCP also implements a congestion-control

mechanism. TCP is a reliable connection oriented end-to-end

protocol which has many mechanisms to provide reliable

communication. But a small number of packets are lost due to

congestion and buffer overflow. In such cases, TCP ensures

reliability by using sequence numbers and time-out intervals.

The packet of the particular sequence number is resent after the

time-out timer runs out. TCP runs on the concept of

“Conservation of Packets” [3]. The TCP provides different

facilities as discussed below in the following list.

i. Stream Data Transfer:

 TCP transfers a contiguous stream of bytes. TCP does this by

grouping the bytes in TCP segments, which are passed to IP for

transmission to the destination. TCP decides how to segment the

data and forwards the data at its own convenience.

ii. Reliability:

 TCP assigns a sequence number to each byte transmitted, and

expects a positive acknowledgment (ACK) from the receiving

TCP. If the ACK is not received within a timeout interval, the

data is retransmitted. The receiving TCP uses the sequence

numbers to rearrange the segments when they arrive out of

order, and to eliminate duplicate segments.

iii. Flow Control:

 The receiving TCP, when sending an ACK back to the sender,

also indicates to the sender the number of bytes it can receive

beyond the last received TCP segment, without causing overrun

and overflow in its internal buffers. This is sent in the ACK in

the form of the highest sequence number it can receive without

problems.

iv. Multiplexing:

 To allow for many processes within a single host to use TCP

communication facilities simultaneously, the TCP provides a set

of addresses or ports within each host. Concatenated with the

network and host addresses from the internet communication

layer this forms a socket. A pair of sockets uniquely identifies

each connection.

v. Logical Connections:

 The reliability and flow control mechanisms described above

require that TCP initializes and maintains certain status

information for each data stream. The combination of this status,

including sockets, sequence numbers and window sizes, is called

a logical connection. Each connection is uniquely identified by

the pair of sockets used by the sending and receiving processes.

vi. Full Duplex:

 TCP provides for concurrent data streams in both directions.

3.2 TCP Tahoe
TCP Tahoe is the congestion control mechanism suggested by

Van Jacobson. The actual TCP data transmission is clocked by

the acknowledgements received. But at the start of the

transmission, there would not be any acknowledgement. To

overcome this, the Tahoe suggests a mechanism called “slow-

start”. According to this mechanism, the congestion window size

is taken as 1 at the beginning of start or a restart of data

transmission. After sufficient acknowledgements are received,

the congestion window size is additionally increased. After

congestion is achieved, the window size is multiplicatively

decreased. This is called Additive Increase Multiplicative

Decrease [4]. Whenever a packet is lost, the “go back n” method

is used, and the entire pipe is emptied. This results in a high-

bandwidth delay.

3.3 TCP Reno
TCP Reno has all the advantages of Tahoe like the slow start

mechanism and the time-out intervals. Also, it has some

intelligent mechanisms to detect the packet losses previously.

After each packet loss, the entire pipe is not emptied. It uses a

Fast Retransmit mechanism in which when 3 duplicate

acknowledgements are received, it is understood that there is

packet loss. Hence even before the actual packet loss is detected,

the packet is retransmitted. It has the disadvantage of reducing

the window size more than required and hence cannot afford

Fast Recovery [5]. If window size is reduced very much, then

the normal course grained timeout.

3.4 TCP New Reno
The TCP New Reno [6] is more advanced than TCP Reno. It is

able to detect multiple packet losses. It also enters the fast

recovery mechanism like Reno, but it does not end up reducing

the congestion window size. It waits till the acknowledgements

of all the congested packets are received. The actual

disadvantage of the New Reno is that it takes a whole Round

Trip Time to detect a single packet loss.

3.5 TCP Vegas
The TCP Vegas [7] is a modified version of Reno. It works on

the proactive measures to control congestion rather than reactive

measures. It uses an algorithm to check for timeouts. It also

overcomes the problem of requiring enough duplicate

acknowledgements to detect a packet loss. It also uses a slightly

modified slow start mechanism. It has the mechanism to detect

congestion even before packet losses occur, but it also retains

the other mechanisms of Reno and Tahoe. Overall, the Vegas

has a new retransmission mechanism, a modified slow start

algorithm and congestion avoidance scheme.

4. TCP CHARACTERSTICS

4.1 Congestion Window
In any network, when the number of packets in the network

increases randomly, it leads to message delay or at times loss of

data. This situation is called network congestion. In TCP, to

avoid congestion, we use congestion windows, which determine

the number of byes that can be outstanding at any time. This is a

means of stopping the link between two places from getting

overloaded with too much traffic. The size of the window is

calculated by estimating how much congestion is there between

the two places. Usually, it is the sender that maintains the

congestion window. When a connection is set up, the congestion

window is set to the Maximum Segment Size allowed on that

connection. Further variance in the collision window is dictated

by an Additive Increase/Multiplicative Decrease approach. This

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

3

means that if all segments are received and the

acknowledgements reach sender on time, some constant is added

to the window size. The window keeping growing linearly until

a timeout occurs or the receiver reaches its limit. If a timeout

occurs, the window size is halved [8].

4.2 Congestion Control
TCP uses a number of mechanisms to achieve high performance

and avoid „congestion collapse‟, where network performance

can degrade by several orders of magnitude [9]. These

mechanisms control the rate of data entering the network,

keeping the data flow below a rate that would trigger collapse.

Acknowledgements for data sent are used by senders to infer

network conditions between TCP sender and receiver. Modern

implementations of TCP contain four intertwined algorithms:

slow-start, congestion avoidance, fast retransmit and fast

recovery.

4.2.1 Slow Start
It operates by observing that the rate at which new packets

should be injected into the network is the rate at which the

acknowledgments are returned by the other end. Slow start adds

another window to the sender's TCP: the congestion window,

called "cwnd". When a new connection is established with a

host on another network, the congestion window is initialized to

one segment (i.e., the segment size announced by the other end,

or the default, typically 536 or 512). Each time an ACK is

received, the congestion window is increased by one segment.

The sender can transmit up to the minimum of the congestion

window and the advertised window.

The congestion window is flow control imposed by the sender,

while the advertised window is flow control imposed by the

receiver. The former is based on the sender's assessment of

perceived network congestion; the latter is related to the amount

of available buffer space at the receiver for this connection. The

sender starts by transmitting one segment and waiting for its

ACK. When that ACK is received, the congestion window is

incremented from one to two, and two segments can be sent.

When each of those two segments is acknowledged, the

congestion window is increased to four. This provides an

exponential growth, although it is not exactly exponential

because the receiver may delay its ACKs, typically sending one

ACK for every two segments that it receives. At some point the

capacity of the internet can be reached, and an intermediate

router will start discarding packets. This tells the sender that its

congestion window has gotten too large. Early implementations

performed slow start only if the other end was on a different

network. Current implementations always perform slow start.

4.2.2 Congestion Avoidance
Congestion can occur when data arrives on a big pipe (a fast

LAN) and gets sent out a smaller pipe (a slower WAN).

Congestion can also occur when multiple input streams arrive at

a router whose output capacity is less than the sum of the inputs.

Congestion avoidance is a way to deal with lost packets. The

assumption of the algorithm is that packet loss caused by

damage is very small (much less than 1%), therefore the loss of

a packet signals congestion somewhere in the network between

the source and destination.

There are two indications of packet loss: a timeout occurring and

the receipt of duplicate ACKs. Congestion avoidance and slow

start are independent algorithms with different objectives. But

when congestion occurs TCP must slow down its transmission

rate of packets into the network, and then invoke slow start to

get things going again. In practice they are implemented

together. Congestion avoidance and slow start require that two

variables be maintained for each connection: a congestion

window, cwnd, and a slow start threshold size, ssthresh. The

combined algorithm operates as follows:

1. Initialization for a given connection sets cwnd to one segment

and ssthresh to 65535 bytes.

2. The TCP output routine never sends more than the minimum

of cwnd and the receiver's advertised window.

3. When congestion occurs (indicated by a timeout or the

reception of duplicate ACKs), one-half of the current window

size (the minimum of cwnd and the receiver's advertised

window, but at least two segments) is saved in ssthresh.

Additionally, if the congestion is indicated by a timeout, cwnd is

set to one segment (i.e., slow start).

4. When new data is acknowledged by the other end, increase

cwnd, but the way it increases depends on whether TCP is

performing slow start or congestion avoidance. If cwnd is less

than or equal to ssthresh, TCP is in slow start; otherwise TCP is

performing congestion avoidance. Slow start continues until

TCP is halfway to where it was when congestion occurred (since

it recorded half of the window size that caused the problem in

step 2, and then congestion avoidance takes over. Slow start has

cwnd begin at one segment, and be incremented by one segment

every time an ACK is received.

As mentioned earlier, this opens the window exponentially: send

one segment, then two, then four, and so on. Congestion

avoidance dictates that cwnd be incremented by

segsize*segsize/cwnd each time an ACK is received, where

segsize is the segment size and cwnd is maintained in bytes.

This is a linear growth of cwnd, compared to slow start's

exponential growth. The increase in cwnd should be at most one

segment each round-trip time (regardless how many ACKs are

received in that RTT), whereas slow start increments cwnd by

the number of ACKs received in a round-trip time.

4.2.3 Fast Retransmit
TCP may generate an immediate acknowledgment (a duplicate

ACK) when an out- of-order segment is received. This duplicate

ACK should not be delayed. The purpose of this duplicate ACK

is to let the other end know that a segment was received out of

order, and to tell it what sequence number is expected. Since

TCP does not know whether a duplicate ACK is caused by a lost

segment or just a reordering of segments, it waits for a small

number of duplicate ACKs to be received. It is assumed that if

there is just a reordering of the segments, there will be only one

or two duplicate ACKs before the reordered segment is

processed, which will then generate a new ACK. If three or

more duplicate ACKs are received in a row, it is a strong

indication that a segment has been lost. TCP then performs a

retransmission of what appears to be the missing segment,

without waiting for a retransmission timer to expire.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

4

4.2.4 Fast Recovery
After fast retransmit sends what appears to be the missing

segment, congestion avoidance, but not slow start is performed.

This is the fast recovery algorithm. It is an improvement that

allows high throughput under moderate congestion, especially

for large windows. The reason for not performing slow start in

this case is that the receipt of the duplicate ACKs tells TCP

more than just a packet has been lost. Since the receiver can

only generate the duplicate ACK when another segment is

received, that segment has left the network and is in the

receiver's buffer. That is, there is still data flowing between the

two ends, and TCP does not want to reduce the flow abruptly by

going into slow start. The fast retransmit and fast recovery

algorithms are usually implemented together as follows.

1. When the third duplicate ACK in a row is received, set

ssthresh to one-half the current congestion window, cwnd, but

no less than two segments. Retransmit the missing segment. Set

cwnd to ssthresh plus 3 times the segment size. This inflates the

congestion window by the number of segments that have left the

network and which the other end has cached.

2. Each time another duplicate ACK arrives, increment cwnd by

the segment size. This inflates the congestion window for the

additional segment that has left the network. Transmit a packet,

if allowed by the new value of cwnd.

3. When the next ACK arrives that acknowledges new data, set

cwnd to ssthresh (the value set in step 1. This ACK should be

the acknowledgment of the retransmission from step 1, one

round-trip time after the retransmission. Additionally, this ACK

should acknowledge all the intermediate segments sent between

the lost packet and the receipt of the first duplicate ACK. This

step is congestion avoidance, since TCP is down to one-half the

rate it was at when the packet was lost.

4.3 Flow Control
In computer networking, flow control is the process of managing

the data rate between two nodes to prevent a fast sender from

outrunning a slow receiver. It provides mechanism for the

receiver to control the transmission speed, so that it is not

overwhelmed. Flow Control should be distinguished from

congestion control, which is used for controlling the flow of data

when congestion has occurred actually.In a connection between

a client and a server, the client tells the server the number of

bytes it is willing to receive at one time from the server; this is

the client's receive window, which becomes the server's send

window. Likewise, the server tells the client how many bytes of

data it is willing to take from the client at one time; this is the

server's receive window and the client's send window. Since the

window size can be used in this manner to manage the rate at

which data flows between the devices at the ends of the

connection, it is the method by which TCP implements flow

control, one of the “classical” jobs of the transport layer. Flow

control is vitally important to TCP, as it is the method by which

devices communicate their status to each other.

By reducing or increasing window size, the server and client

each ensure that the other device sends data just as fast as the

recipient can deal with it. Flow control is a technique whose

primary purpose is to properly match the transmission rate of

sender to that of the receiver and the network. It is important for

the transmission to be at a high enough rates to ensure good

performance, but also to protect against overwhelming the

network or receiving host. Congestion control is primarily

concerned with a sustained overload of network intermediate

devices such as IP routers. TCP uses the window field, briefly

described previously, as the primary means for flow control.

During the data transfer phase, the window field is used to adjust

the rate of flow of the byte stream between communicating

TCPs.

Flow control mechanisms can be classified by whether or not the

receiving node sends some feedback to the sender. It is

important because it is possible for a sender to send data at a

faster rate than the receiver can receive and process them.

4.4 Sliding Window
The sliding window is a technique used in tcp to provide flow

control such that all packets arrive in the same sequential order

in which they were sent. Sliding Window Protocols are a feature

of packet-based data transmission protocols. They are used

anywhere reliable in-order delivery of packets is required, such

as in the data link layer (OSI model) as well as in TCP (transport

layer of the OSI model). Conceptually, each portion of the

transmission (packets in most data link layers, but bytes in TCP)

is assigned a unique consecutive sequence number, and the

receiver uses the numbers to place received packets in the

correct order, discarding duplicate packets and identifying

missing ones. The problem with this is that there is no limit of

the size of the sequence numbers that can be required. By

placing limits on the number of packets that can be transmitted

or received at any given time, a sliding window protocol allows

an unlimited number of packets to be communicated using

fixed-size sequence numbers.

For the highest possible throughput, it is important that the

transmitter is not forced to stop sending by the sliding window

protocol earlier than one round-trip delay time (RTT). The limit

on the amount of data that it can send before stopping to wait for

an acknowledgment should be larger than the bandwidth-delay

product of the communications link. If it is not, the protocol will

limit the effective bandwidth of the link.

5. Evaluation Environment
The experiments were conducted in two different scenarios and

in ten different ways. In all cases, some parameters were made

constant. The parameters that were changed were the

transmission agent and the routing protocol. The ns2 simulator

[10] was used to analyze the protocols against the TCP variants.

The table 1 shows the parameters that were common in all the

scenarios.

Table 1. Common Properties in Scenarios

Characteristics Value

Channel Type Wireless Channel

Radio Propagation Two Ray Ground

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

5

Network Interface
Wireless Physical

Interface

MAC Type 802.11

Interface Queue Drop Tail

Antenna Omni Antenna

Maximum Packets in Interface

Queue
50

Simulation Time 200s

The TCP agent was changed for each scenario as TCP, TCP

Tahoe, TCP Reno, TCP NewReno and TCP Vegas with two

routing protocols DSDV and AODV. Also, each experiment was

conducted for 50 mobile nodes and 100 mobile nodes. Hence,

totally 20 different experiments were conducted from which four

graphs were obtained for the observation of the performance of

different TCP variants for DSDV and AODV routing protocols.

6. RESULTS AND ANALYSIS

6.1 AODV in 50 Nodes
In this analysis, five different experiments were conducted. In

each experiment, a different TCP variant was used. Each time

the routing protocol was AODV. There was no change in the

experimental environment which is described in the above table

1. The total number of nodes was 50. The nodes did not have

any mobility. All nodes were kept stable for the full course of

the evaluation. In the graph, the variants are denoted in short as

T for TCP Tahoe, R for TCP Reno, NR for TCP New Reno and

V for TCP Vegas. The Fig 1 shows that for the same scenario

and parameters, the performance of TCP Tahoe seems to be

convincing because it has very little amount of drops compared

to the other variants of TCP. This is in the case of 50 nodes

which use the AODV protocol for routing. The second best next

to TCP Tahoe is TCP Vegas. The performance of the other

agents can be in the order of TCP, TCP Reno, TCP NewReno

and TCP itself.

Fig 1: TCP Drop Rates with AODV in 50 Nodes

6.2 AODV in 100 Nodes

The Fig 2 shows the graph between time and the number of

dropped packets for each scenario using different TCP agent. At

the start of the experiment, the TCP Vegas has a very little

number of drops per time.

Fig 2: TCP Drop Rates with AODV in 100 Nodes

But as time goes on, the scene changes with the amount of

packet drops in Vegas slowly starts increasing. The other

variants like TCP, TCP Reno and TCP NewReno start with the

same amount of packet drops at the start of the simulation. But

on the course of the simulation, these three variants have a rapid

change in the amount of packet drops. It constantly keeps on

varying from high to low and vice versa.

The TCP Tahoe variant starts with a very high drop rate. But as

the time increases on to the 2/4th of the simulation, the TCP

Tahoe shows a very good sign of reduction in packet drop rate.

And along with time, the drop rate slowly keeps rising. But at

the end of the simulation, the TCP Tahoe stands at the bottom of

the graph. It denotes that even when the number of nodes is

increased to double the previous number, the performance of

TCP Tahoe is relatively better than the other variants of TCP.

6.3 DSDV in 50 Nodes
The Fig 3 shows the graph of Time versus the Number of

Dropped Packets, in the scenario where the TCP agent is

changed each time and the number of nodes is 50, with DSDV

as the routing protocol. The TCP NewReno has the highest

number of packet drops versus time, according to the shown

graph. The TCP and TCP Reno are moving along the same line

in the amount of packet drops versus time. They are the second

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

6

largest packet dropping agents next to TCP NewReno. The next

one is the TCP Vegas which starts with lesser packet drops and

as time increases, the number of packet drops also increases. But

it is lesser than the other variants like TCP, TCP reno and TCP

NewReno. In DSDV also, similar to AODV, the TCP Tahoe

variant is the agent that has least amount of packet drops against

time. In case of DSDV also, the amount of packet drops in

Tahoe variant is highly negligible.

Fig 3: TCP Drop Rates with DSDV in 50 Nodes

6.4 DSDV in 100 Nodes
The Fig 4 shows the graph between the Time and the number of

packet drops, by different TCP agents when using DSDV as the

routing protocol with 100 nodes. The graph clearly states that

the TCP NewReno is the largest packet dropping agent when

DSDV is used with 100 mobile modes. The next highest

dropping agent is the TCP itself. The TCP Vegas is the third

highest packet dropping agent next to the TCP NewReno and the

TCP itself. The TCP Vegas agent started with a lesser number of

packet drops as in the previous scenario. But as time increased,

the number of packets being dropped increased in the case of

TCP Vegas. The next agent is TCP Reno which has closer curve

to the TCP Vegas. But at the end of the simulation, the TCP

Reno has lesser number of packets dropped when compared to

the TCP Vegas variant. As in all the previous cases, the TCP

Tahoe has the least amount of packet drops when compared to

all the other TCP Variants. Even when increasing the number of

nodes to 100, when using DSDV as the routing protocol, the

TCP Tahoe proves to be the efficient agent according to the

number of packets dropped.

Fig 4: TCP Drop Rates with DSDV in 100 Nodes

7. CONCLUSION
To compare the performances of different TCP variants like

TCP, TCP Reno, TCP NewReno, TCP Vegas and TCP Tahoe

with the routing protocols DSDV and AODV, we have

experimented in 20 different ways to find that TCP Tahoe has

the least number of packet drops against the simulation time.

Some of the other variants, though they start with a lesser

number of packet drops, the TCP Tahoe variant has always the

least amount of packet drops in all cases like when using AODV

and DSDV, be it 50 nodes or 100 nodes. Hence, irrespective of

the number of nodes being increased and the simulation time

being increasing, the TCP Tahoe always has the least packet

drops. In future, the same experiments can be repeated with

increased number of nodes and with other routing protocols.

Also, these 20 experiments were done assuming that all the

nodes were in constant position. Hence, in future, the efficiency

of the TCP agents can be studied after introducing some amount

of mobility to the nodes.

8. REFERENCES
[1] The Working Concept of DSDV Protocol, [Online] http://

.wikipedia.org/Wiki/Destiation-Sequenced_Distance_Vecto
r_routing

[2] The Working Concept of AODV Protocol, [Online] http://

.wikipedia.org/Wiki/Ad_hoc_On-Demand_Distance_Vecto

r_Routing.

[3] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The
Protocols, Addison-Wesley, 1994

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.6, April 2011

7

[4] K. Fall and S. Floyd, "Simulation-based comparison of

Tahoe, Reno, and SACK TCP," Computer Communication
Review, vol. 26, pp. 5--21, July 1996.

[5] Jitendra Padhye , Victor Firoiu , Donald F. Towsley , James

F. Kurose, “Modeling TCP Reno performance: a simple

model and its empirical validation,” IEEE/ACM

Transactions on Networking (TON), v.8 n.2, p.133-145,
April 2000

[6] S.Floyd, T.Henderson “The New-Reno Modification to

TCP‟s Fast Recovery Algorithm” RFC 2582, Apr 1999.

[7] Lawrence S. Brakmo and Larry L. Peterson, "TCP Vegas:

End to end congestion avoidance on a global Internet,"

IEEE Journal on Selected Areas in Communications,
vol.13, pp.1465-1480, October 1995.

[8] V. Jacobson, "Congestion Avoidance and Control",
SIGCOMM '88, Sept. 1988, pp. 314-329.

[9] S.Floyd, “Promoting the Use of End-toEnd Congestion

Control in the Internet”, IEEE/ACM Transactions on
Networking, vol. 7, no.4, August 1999

[10] NS-2 homepage, [Online] http://www.isi.edu/nsnam/ns,
2011

