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ABSTRACT 

The coping, modifying a block of code is identified as cloning 

and is the most basic means of software reuse. It has been 

extensively used within the software development 

community. An official survey which is carried out within 

large, long term software development project suggested that 

25-30% of modules in system may be cloned. This paper 

begins with background concept of code cloning, presents 

overcall taxonomy of current techniques and tools, and 

classify evolution tools in two different format as static code 

clone and dynamic code cloning, this together presented with 

program analysis, secondly as a solution the static code is 

divided into four parts as   T1, T2, T3, T4, to finally develop a 

process to detect and remove code cloning.  
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1.   INTRODUCTION 

A code fragment CF1, which is a sequence of code line is 

clone to another code fragment CF2, if they have similar 

properties i.e. F (CF1) = F(CF2), where “F” is a similar 

function .Two fragments that have similar properties are 

referred as clone pair (CF1, CF2) and when many fragment 

are similar then they form clone class or clone group. [2]   

Although it has got some short term advantages (e.g. time) 

[2], but it has a crucial drawback in long run. Several studies 

show that software with code cloning is more difficult to 

maintain, then the software without code [3, 4, 5], because the 

code clone increases maintenance costs [2]. Code cloning is 

found to be more serious problem in industrial software [2, 6]. 

It is observed to have negative impact on software evolution. 

[5] It may adversely affect the software system quality, 

maintainability and comprehensibility. [6] This paper 

provides an improved analysis, identification and removal 

technique for these code clones. 

2.   CODE ANALYSIS 

Program analysis is carried out to extract the embedded 

knowledge in program code and is divided into two parts. 

Static code analysis and Dynamic code analysis, which is used 

to improve software quality and productivity. 

 2.1   Static Code Analysis (SCA) 

This code analysis is performed without execution of 

program; normally analysis is performed with a formal 

method with human analysis being called code review. [7] 

SCA is divided into different parts which are shown below in 

a table 1: 

Table 1: Parts of SCA 

T1 Identical code fragments  

T2 Syntactically identical fragment  

T3 Copied modules which is modified in  

identifier ,types ,layout  

T4 Two or more module  that are performed 

same function but are written in different 

places 

 

2.1.1   Analysis tools 

There are no specific tools which can be used for all 

languages to detect code cloning [8]. The tools are completely 

language independent. Some of the static code analysis tools 

are given below: 

 RATS: Rough Auditing Tools for security for C, 

C++ .[8] 

 FXCOP: Free Static Analysis for Microsoft from 

Microsoft.[8] 

 CAST: Application intelligent platform which used 

for Oracle, People soft, .NET,[8] 

 Model Checking: It is considered for the systems 

which have finite state or may reduce to finite state.  

It checks whether the model meets a given 

specification based on it input. [8] 

 

Fig 1: Model based checking 
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2.1.2   Data flow analysis 

This is the technique for gathering information about the 

possible set of value that can be calculated at various points in 

the computer program, since it is easy to compute the 

information at this point. Source units are to be represented as 

sub graph in program dependent graph [2]. The techniques 

that look in to this graph to find clone [10, 11], some matrix 

based approach is presented to calculate data and control flow 

metric [12, 13]. 

2.1.3   Normalization 

This is method is optional to remove space, comments. 

 Space: almost all approach takes less attention to white 

space, although line base approaches retain break. Some 

metrics-based approaches however use formatting and 

layout as part of their comparison [14, 15]. 

 Comments: Most of the approaches remove or ignore 

comments but Marcus and Maletic [15] used to comment 

as part of their concept similarity method. 

2.1.4   Manual analysis 

After selecting the original source code, the clones are subject 

to manual analyses [16] which are filtered by human experts. 

Visualization of cloned source code [17] can help in speed up 

manual filtering step. 

2.2   Dynamic Code Analysis 

This analysis of code is performed by executing program 

which is build for particular software.  The target program is 

executed with sufficient test i.e. given input given to produce 

interesting behavior. The main objective of dynamic code 

cloning is to reduce debugging time by automatically time by 

automatically pinpointing the cloning.  The cloning program 

is executed with the tools in order to find the different code 

clone which is shown in the figure 2. The used tool depends 

on the type of cloning is wanted. Different types of tools are 

used for different cloning procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Analysis in executing program 

 Tokenization Tools: Each line of source code is divided 

into token based on the lexical rules of the programming 

language. They are many different rules in acquiring the 

token for the particular lexical. ex: java strip package 

name and read class names when the function is only 

implicit. All white space and comment between the token 

are remove CCfinder [18] and dup [19]. These are leading 

rules which are used in tokenizing the source code. 

 Parsing Tools: The entire source code is parsed to build a 

parse tree or ATS (abstract syntax tree). The source unit is 

compare with the parse tree in order to find clone [20, 21]. 

Metric base approach also be used in order to find cone 

based on metrics. [13, 15] 

 Dataflow Analysis and Control: The semantic 

approaches programs the dependence graph [PDG] [22] 

from the source code. The nodes are statements and edges 

represent the control and data dependency, and then look 

for isomorphic subgroup to find clone [10, 11]. Backward 

and forward pieces are added to increase the size of 

isomorphic sub graph until it is not possible to add more 

pieces. This algorithm is very slow it takes 13 minutes to 

run 3419 loc. It is more accurate but takes time to process.   

 Match Detection Tools: These algorithms all strikes 

between providing more accurate results and running in a 

useable amount of time. The transformed code is fed into 

comparison algorithm where comparison is done to find 

matches, often small comparison units are joining together 

to find large unit. The output is match detection, which is 

the list of matches represent to form a set of clone’s pairs. 

Each clones pairs are mark and represented separately 

[19]. 

 Automated Heuristic: The heuristic rules are defined 

based on length, diversity, frequency and others characters 

of clones in order to rank or filter the clone automatically. 
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Fig 3: Clone detection process 
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3.   CLONE DETECTION 

A code detector tries to find pieces of code which have high 

similarities in the system source text. The detector compares 

every possible clone and tools supports may be required to 

identify the actual clone .This section provides the basic steps 

in clone detection process. The process is presented in fig 3. 

4.   CLONE REMOVAL 

The fig 4 depicts the process of code clone removal. When the 

clone is detected, only the conceptual view of the clone is 

seen, if it is similar to the clone which was detected before, 

then the similar old method is applied.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If it is static code, as it is language independent a new method 

is applied. If it is a dynamic code then the clone program is 

executed with the tools, different type is code clone tools are 

there for different software. 

5.   CONCLUSION  

Clone detection is live problem in industry and an active 

research area with plenty of work on detecting and removing 

clones from software. Code clone detection and removal is 

still not settled well. Code clone tools should be incorporated 

into standard IDE to achieve widespread adoption; CCFinder 

is one of the few tools that do a good job and providing only 

interesting clone while still running in a reasonable time. The 

result of this paper may serve as a roadmap to a potential user 

of clone detection techniques, to help them in selecting the 

right tools or techniques for their interests. 
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