
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.7, April 2011

34

Code Cloning: The Analysis, Detection and Removal

Mohammed Abdul Bari Dr. Shahanawaj Ahamad
Senior Lecturer Assistant Professor

 Department of Computer Science Department of Computer Science
College of Science & Arts College of Science & Arts

University of Al-Kharj University of Al-Kharj
Wadi Al-Dawasir-11991 Wadi Al-Dawasir-11991

 Kingdom of Saudi Arabia Kingdom of Saudi Arabia

ABSTRACT

The coping, modifying a block of code is identified as cloning

and is the most basic means of software reuse. It has been

extensively used within the software development

community. An official survey which is carried out within

large, long term software development project suggested that

25-30% of modules in system may be cloned. This paper

begins with background concept of code cloning, presents

overcall taxonomy of current techniques and tools, and

classify evolution tools in two different format as static code

clone and dynamic code cloning, this together presented with

program analysis, secondly as a solution the static code is

divided into four parts as T1, T2, T3, T4, to finally develop a

process to detect and remove code cloning.

Keywords

Code Clone, Static Code Clone, Dynamic Code Clone,

Legacy Program, Program Analysis.

1. INTRODUCTION

A code fragment CF1, which is a sequence of code line is

clone to another code fragment CF2, if they have similar

properties i.e. F (CF1) = F(CF2), where “F” is a similar

function .Two fragments that have similar properties are

referred as clone pair (CF1, CF2) and when many fragment

are similar then they form clone class or clone group. [2]

Although it has got some short term advantages (e.g. time)

[2], but it has a crucial drawback in long run. Several studies

show that software with code cloning is more difficult to

maintain, then the software without code [3, 4, 5], because the

code clone increases maintenance costs [2]. Code cloning is

found to be more serious problem in industrial software [2, 6].

It is observed to have negative impact on software evolution.

[5] It may adversely affect the software system quality,

maintainability and comprehensibility. [6] This paper

provides an improved analysis, identification and removal

technique for these code clones.

2. CODE ANALYSIS

Program analysis is carried out to extract the embedded

knowledge in program code and is divided into two parts.

Static code analysis and Dynamic code analysis, which is used

to improve software quality and productivity.

 2.1 Static Code Analysis (SCA)

This code analysis is performed without execution of

program; normally analysis is performed with a formal

method with human analysis being called code review. [7]

SCA is divided into different parts which are shown below in

a table 1:

Table 1: Parts of SCA

T1 Identical code fragments

T2 Syntactically identical fragment

T3 Copied modules which is modified in

identifier ,types ,layout

T4 Two or more module that are performed

same function but are written in different

places

2.1.1 Analysis tools

There are no specific tools which can be used for all

languages to detect code cloning [8]. The tools are completely

language independent. Some of the static code analysis tools

are given below:

 RATS: Rough Auditing Tools for security for C,

C++ .[8]

 FXCOP: Free Static Analysis for Microsoft from

Microsoft.[8]

 CAST: Application intelligent platform which used

for Oracle, People soft, .NET,[8]

 Model Checking: It is considered for the systems

which have finite state or may reduce to finite state.

It checks whether the model meets a given

specification based on it input. [8]

Fig 1: Model based checking

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.7, April 2011

35

2.1.2 Data flow analysis

This is the technique for gathering information about the

possible set of value that can be calculated at various points in

the computer program, since it is easy to compute the

information at this point. Source units are to be represented as

sub graph in program dependent graph [2]. The techniques

that look in to this graph to find clone [10, 11], some matrix

based approach is presented to calculate data and control flow

metric [12, 13].

2.1.3 Normalization

This is method is optional to remove space, comments.

 Space: almost all approach takes less attention to white

space, although line base approaches retain break. Some

metrics-based approaches however use formatting and

layout as part of their comparison [14, 15].

 Comments: Most of the approaches remove or ignore

comments but Marcus and Maletic [15] used to comment

as part of their concept similarity method.

2.1.4 Manual analysis

After selecting the original source code, the clones are subject

to manual analyses [16] which are filtered by human experts.

Visualization of cloned source code [17] can help in speed up

manual filtering step.

2.2 Dynamic Code Analysis

This analysis of code is performed by executing program

which is build for particular software. The target program is

executed with sufficient test i.e. given input given to produce

interesting behavior. The main objective of dynamic code

cloning is to reduce debugging time by automatically time by

automatically pinpointing the cloning. The cloning program

is executed with the tools in order to find the different code

clone which is shown in the figure 2. The used tool depends

on the type of cloning is wanted. Different types of tools are

used for different cloning procedure.

Fig 2: Analysis in executing program

 Tokenization Tools: Each line of source code is divided

into token based on the lexical rules of the programming

language. They are many different rules in acquiring the

token for the particular lexical. ex: java strip package

name and read class names when the function is only

implicit. All white space and comment between the token

are remove CCfinder [18] and dup [19]. These are leading

rules which are used in tokenizing the source code.

 Parsing Tools: The entire source code is parsed to build a

parse tree or ATS (abstract syntax tree). The source unit is

compare with the parse tree in order to find clone [20, 21].

Metric base approach also be used in order to find cone

based on metrics. [13, 15]

 Dataflow Analysis and Control: The semantic

approaches programs the dependence graph [PDG] [22]

from the source code. The nodes are statements and edges

represent the control and data dependency, and then look

for isomorphic subgroup to find clone [10, 11]. Backward

and forward pieces are added to increase the size of

isomorphic sub graph until it is not possible to add more

pieces. This algorithm is very slow it takes 13 minutes to

run 3419 loc. It is more accurate but takes time to process.

 Match Detection Tools: These algorithms all strikes

between providing more accurate results and running in a

useable amount of time. The transformed code is fed into

comparison algorithm where comparison is done to find

matches, often small comparison units are joining together

to find large unit. The output is match detection, which is

the list of matches represent to form a set of clone’s pairs.

Each clones pairs are mark and represented separately

[19].

 Automated Heuristic: The heuristic rules are defined

based on length, diversity, frequency and others characters

of clones in order to rank or filter the clone automatically.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.7, April 2011

36

Source file

Remove the unwanted Code; divide the source file in to small parts so

that it can be compare

Use extraction techniques to match the code

Code clone

detected

Static code cloning Dynamic code cloning

Filter the code with tolls or manual analyzed

Filtered code fragment

Stop

Yes

No Program analysis

Fig 3: Clone detection process

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.7, April 2011

37

3. CLONE DETECTION

A code detector tries to find pieces of code which have high

similarities in the system source text. The detector compares

every possible clone and tools supports may be required to

identify the actual clone .This section provides the basic steps

in clone detection process. The process is presented in fig 3.

4. CLONE REMOVAL

The fig 4 depicts the process of code clone removal. When the

clone is detected, only the conceptual view of the clone is

seen, if it is similar to the clone which was detected before,

then the similar old method is applied.

If it is static code, as it is language independent a new method

is applied. If it is a dynamic code then the clone program is

executed with the tools, different type is code clone tools are

there for different software.

5. CONCLUSION

Clone detection is live problem in industry and an active

research area with plenty of work on detecting and removing

clones from software. Code clone detection and removal is

still not settled well. Code clone tools should be incorporated

into standard IDE to achieve widespread adoption; CCFinder

is one of the few tools that do a good job and providing only

interesting clone while still running in a reasonable time. The

result of this paper may serve as a roadmap to a potential user

of clone detection techniques, to help them in selecting the

right tools or techniques for their interests.

6. REFERENCE

[1] N. Davey, S.D.H Fied, R.J.Frank and D.S.W.Tansley “

The Development of a Software Clone Detector”,

University of Hertfordshire , UK, 1995.

[2] Chanchal K.Roy,James R. Cordy, Rainer Koschke ,”

Comparison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach “, School

of Computing ,Queen’s University , Canada ,2009.

[3] Chanchal Kumar Roy and James R. Cordy ,” A Survey on

Software Clone Detection Research “, School of

Computing ,Queen’s University ,Canada, 2007.

[4] J Howard Johnson,” Identifying Redundancy in Source

Code Using Fingerprints”, In Proceeding of the

Conference of the Centre for Advanced Studies

Conference (CASCON’93), Toronto, Canada, October

1993.

[5] Brenda Baker, “On Finding Duplication and Near-

Duplication in Large Software Systems”, In Proceedings

of the Second Working Conference on Reverse

Engineering (WCRE’95), Toronto, Ontario, Canada, July

1995.

[6] B. Baker, “On Finding Duplication and Near-Duplication

in Large Software Systems”, in Proceedings of the 2nd

Working Conference on Reverse Engineering, WCRE

1995, (1995)

Clone detected Pre-refinement

Similar static measure Static code Dynamic code

Provide the different view or the abstract view for

which the clone has to be detected

Code clone removed

Code clone is done by

executing the program

depending on the

software

New technique

Previous code detection method

Fig 4: Clone removal process

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.7, April 2011

38

[7] Wikipedia, “Static Code Analysis “, 2010.

[8] Thomas LaToza, “A Literature Review of Clone Detection

Analysis “, 2005.

[9] Martin Johns, “A Practical Guide to Vulnerability

Checkers “, University of Hamburg, 2006.

[10] R. Komondoor and S. Horwitz, “Using Slicing to Identify

Duplication in Source Code”, in: Proceedings of the 8th

Int. Symposium on Static Analysis, (2001).

[11] J. Krinke, “Identifying Similar Code with Program

Dependence Graphs”, in Proceedings of the 8th Working

Conference on Reverse Engineering, (2001).

[12] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and

M. Bernstein, “Pattern Matching for Clone and Concept

Detection, Journal of Automated Soft. Engg., 1996.

[13] J. Mayrand, C. Leblanc and E. Merlo,” Experiment on

the Automatic Detection of Function Clones in a

Software System Using Metrics, in proceedings of the

12th International Conference on Software Maintenance,

1996.

[14] N. Davey, P. Barson, S. Field and R. Frank,” The

Development of a Software Clone Detector”,

International Journal of Applied Software Technology,

1996.

[15] J. Mayrand, C. Leblanc and E. Merlo,” Experiment on

the Automatic Detection of Function Clones in a

Software System Using Metrics”, in Proceedings of the

12th Int. Conference on Software Maintenance, ICSM

1996.

[16] R. Koschke, R. Falke and P. Frenzel,” Clone Detection

Using Abstract Syntax Suffix Trees” in Proceedings of

the 13th Working Conference on Reverse Engg. WCRE

2006.

[17] C.K. Roy and J.R. Cordy, NICAD, “Accurate Detection

of Near-Miss Intentional Clones Using Flexible Pretty-

Printing and Code Normalization” in Proceedings of the

16th IEEE International Conference on Program

Comprehension, ICPC 2008.

[18] T. Kamiya, S. Kusumoto and K. Inoue, CCFinder: A

Multilinguistic, “Token-Based Code Clone Detection

System for Large Scale Source Code”, IEEE

Transactions on Software Engineering,2008.

[19] B. Baker,” A Program for Identifying Duplicated Code”,

in: Proceedings of Computing Science and Statistics 24th

Symposium on the Interface, 2004.

[20] I. Baxter, A. Yahin, L. Moura and M. Anna,” Clone

Detection Using Abstract Syntax Trees”, in Proceedings

of the 14th International Conference on Software

Maintenance, 2008.

[21] V. Wahler, D. Seipel, J. Gudenberg and G. Fischer,

“Clone Detection in Source Code by Frequent Itemset

Techniques”, in Proceedings of the 4th IEEE

International Workshop Source Code Analysis and

Manipulation, 2004.

AUTHORS PROFILE

Mr. Mohammed Abdul Bari is an Information System

Architect and expert in handling software process

improvement. His research area includes Business Process

Reengineering, Process Modeling, Information System

Redesign and Reengineering. He did B.E. in Computer

Science & Engineering from Bangalore University, INDIA

and M.S. in Information Systems from London South Bank

University, United Kingdom, currently pursuing Ph.D. in

Computer Science from University of Newcastle, District

Columbia, U.S.A.

Dr. Shahanawaj Ahamad is an active academician and

researcher in the field of Software Reverse Engineering with

experience of ten years, working with Al-Kharj University’s

College of Science & Arts in Wadi Al-Dawasir, K.S.A. He is

the member of various national and international academic

and research groups, member of journal editorial board and

reviewer. He is currently working on Legacy Systems

Migration, Evolution and Reverse Engineering, published

more than twenty papers in his credit in national and

international journals and conference proceedings. He holds

M. Tech. followed by Ph.D. in Computer Science major

Software Engineering, supervised many bachelor projects and

master thesis, currently supervisor of Ph.D. theses.

