
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.8, April 2011

32

Minimization of Functional Dependencies

R N.Kulkarni
Dept. of Information Science & Engineering

Ballari Institute of technology & Management
Bellary - 583104.

Archana B.A
Dept. of Information Science & Engineering

Ballari Institute of Technology & Management
Bellary - 583104.

H Naga Sirisha
Dept. of Information Science & Engineering

Ballari Institute of technology & Management
Bellary - 583104.

B.S Vasundhara Takur
Dept. of Information Science & Engineering

Ballari Institute of technology & Management
Bellary - 583104.

ABSTRACT
Nowadays many organizations are maintaining computer based

information systems. These information systems are valuable

assets to the organization. Most of the business information or

corporate decisions are buried across the systems in the

organization and due to the need based modifications sometimes

the attributes are scattered throughout the program and even there

is a redundancy in the stored data. These business information and

corporate decisions represents the business rules of the

organization and they are in the form of functional dependencies.

These functional dependencies are unevenly scattered and

sometimes redundant too. In a database, the records containing

these unevenly scattered functional dependencies may be

distributed throughout the database, leading to anomalies.

This paper proposes a methodology for the minimization of

the functional dependencies available either in a program code or

in a database using the minimal cover process. By minimizing

these functional dependencies, the redundant and irrelevant

attributes are removed and the structure of the application

program is kept intact in the maintenance phase.

Keywords

Functional dependencies, minimal cover, minimization, business

rules.

1. INTRODUCTION

Computers today are playing a vital role in business processes.

They are used to keep track of day to day transactions, perform

business calculations, etc. Business forms are used as main input

to the process of derivation of a set of functional dependencies [8]

i.e. all the business rules are represented in the form of functional

dependencies with in a program or database. Such rules are often

invisible in a program, since they are distributed (buried) across

hundreds or thousands of lines of code [5].

Due to the need based maintenance approach being followed in

organisations today, perennial updation is done in order to cope

with the advancement of technologies in the areas of storage,

processing, Graphical User Interfaces [1] etc. However, perennial

updation leads to the uneven scattering of functional dependencies

and irrelevant documentation. Sometimes it also leads to

redundancy of attributes, which in turn occupy more storage

space.

The business rules which are inherent within the program have to

be maintained without any loss of information or the structure of

the program code. In case of systems that have a function-oriented

design, the functionality has to be abstracted from modules. A

module is a logically separable part of a program [2]. When the

modules are loosely coupled, they are modifiable. For modules to

be loosely coupled (good principle of software engineering) the

interdependencies between the modules have to be minimized.

Usually, the loosely coupled modules have greater cohesion.

Cohesion of a module represents how tightly the internal elements

are bound to one another [2]. A module can be made highly

cohesive when the functional dependencies within it are

minimized and the redundant attributes (elements) are eliminated.

A module that is highly cohesive and also has low coupling with

other modules is said to be functionally independent of other

modules [7].

In case of data bases, the records might contain attributes that are

unevenly scattered and moreover these records might also be

distributed. This may lead to discrepancies in the storage and

create anomalies. Normalization is done in order to minimize

redundancy and also minimize the insertion, deletion and update

anomalies [3].

The minimization of functional dependencies hence makes the

program or database more structured, modifiable, less redundant

and easy to abstract the functionality of the program.

2. TAXONOMY

Referenced Attribute: A variable is said to be referenced in a

statement if the value of that variable is used during the execution

of the statement without getting itself modified. For ex., A = B +

C. The values of B & C are used or referenced in the statement

[6].

Defined Attribute: A variable is said to be defined, in a statement

if the execution of that statement can alter the value referenced or

used in the statement, and A is said to be defined [6].

Functional Dependency (FD): A functional dependency, denoted

by X→ Y, between two sets of attributes X and Y that are subsets

of R (where R is a relation schema) specifies a constraint on the

possible tuples that can form a relation state r of R. The constraint

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.8, April 2011

33

is that for any two tuples t1 and t2 in r that we have t1[X] = t2[X],

they must also have t1[Y] = t2[Y].This means that the values of the

Y component of a tuple in r depend on the values of X component

[3].

Minimal Cover: Minimal cover of a set of functional

dependencies E in the standard canonical form and without

redundancy that is equivalent to E. We can find at least one

minimal cover F for any set of dependencies E [1].

Canonical Form: Every dependency in a set of functional

dependencies F has a single attribute for its right hand side [3].

Software Maintenance: Software maintenance refers to the post-

delivery activities and involves modifying the code and associated

documents in order to eliminate the effect of residual errors that

come to surface during use [4].

3. PROPOSED METHODOLOGY
The functional dependencies present in a program or a

data base is taken as an input. The input given must be in the

canonical form, i.e. each functional dependency must define one

attribute. For example, if there is a dependency say, A→BC, then

the canonical form of this dependency will be A→B and A→C.

All the functional dependencies that are identified have two parts

the LHS and the RHS part. The RHS contains the attribute that is

being defined and the LHS has the set of attributes that define the

RHS.

The LHS is written in binary form. All the attributes are

listed and the value of each attribute is either 1 if it participates in

a particular functional dependencies or its value is 0.

The functional dependencies that define the same RHS

are grouped. And each group is further subjected to minimization

of the functional dependencies by using the basic logical operators

on them. Only two FDs are considered per iteration. The outcome

of minimization will either retain both the FDs or will retain only

one FD. The minimized functional dependencies from each such

group are combined to obtain a final set of minimized functional

dependencies.

3.1 Algorithm to minimize the functional

dependencies

// to find the minimized set of functional dependencies from a

given set of functional dependencies (FDs).

Input: A set of functional dependencies from a program or a

database.

Output: A set „min‟ consisting of all the minimized functional

dependencies.

Step 1: Transform the FDs into canonical form.

Step2: Form m group of FDs having the same attribute on the

 RHS.

Step3: k=1

 i=1

 j=1

Step4: ∀ groupk up to groupm

 do

Step5: ∀ fdi and fdj in groupk

 do

 if fdj ← NULL

 min ← min U {fdi}

 res← fdi.LHS && fdj.LHS

 if res = {

 goto step5

 if fdi.LHS ⊆ fdj.LHS

 if res = {

 goto step5
 if fdi.LHS ⊂ fdj.LHS

 min min U {fdi.LHS || fdj.LHS}

 goto step5

Since the algorithm divides the initial set of functional

dependencies into many groups and then performs the basic

operations on each group, and later combines the minimized

functional dependencies obtained from each group into a single

minimized set min, it can be categorized as the divide and

conquer algorithm design technique. Hence, the basic asymptotic

notation for the proposed algorithm can be Θ (nlogn) [9].

4. CASE STUDY
Let us assume that the set of attributes {A, B, C, D, G, H, K} is

present either in a database.

These set of attributes define the following functionality:

ACD→K

ABC→B

AC→K

AC→D

AB →K

ABD→G

AC→K

A→H

AD→H

A→K

G→K

We represent the LHS of the FDs in binary values. If the attribute

is participating in the dependency it is represented as 1, if the

attribute is not present, it is represented as 0.The table shows the

above functional dependencies in binary form:

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.8, April 2011

34

Table 1. Functional dependencies with the binary representation of LHS

FD No. A B C D G H J K Dependency

1 1 0 1 1 0 0 0 0 K

2 1 1 1 0 0 0 0 0 B

3 1 0 1 0 0 0 0 0 K

4 1 0 1 0 0 0 0 0 D

5 1 1 0 0 0 0 0 0 K

6 1 1 0 1 0 0 0 0 G

7 1 0 1 0 0 0 0 0 K

8 1 0 0 0 0 0 0 0 H

9 1 0 0 1 0 0 0 0 H

10 1 0 0 0 0 0 0 0 K

11 0 0 0 0 1 0 0 0 K

We first group the FDs that are having the same RHS. Hence we obtain 5 different groups for the set of RHS {K, H, D, G, B}. Let us

consider the group of FDs determining the RHS „K‟.

Table 2. Grouping the FDs that determine the attribute ‘K’

FD No. A B C D G H J K Dependency

1 1 0 1 1 0 0 0 0 K

2 1 1 1 0 0 0 0 0 B

3 1 0 1 0 0 0 0 0 K

4 1 0 1 0 0 0 0 0 D

5 1 1 0 0 0 0 0 0 K

6 1 1 0 1 0 0 0 0 G

7 1 0 1 0 0 0 0 0 K

8 1 0 0 0 0 0 0 0 H

9 1 0 0 1 0 0 0 0 H

10 1 0 0 0 0 0 0 0 K

11 0 0 0 0 1 0 0 0 K

Hence, the group of FDs determining the attribute „K‟ is:

group 1 = {ACD→K, AC→K, AB→K, AC→K, A→K, G→K}

min= { }

For every 2 FDs in the group1, step5 is carried out for five

iterations. They are as follows:

Iteration 1:

For the first two FDs of the group, ACD→ K and AC→ K, i.e.

10110000→K and 10100000→K

res= 10100000

min= min U {AC→ K}

Here the LHS of the second FD is a proper subset of the LHS of

the FD in „min‟ and hence the second FD is retained into „min‟

and the first FD is discarded.

Iteration 2:
The next FD in the group is AB→ K. Now, the two FDs to be

compared are AB→ K and AC→ K, i.e. 11000000→K and

10100000→K

res= 10000000.

min= {AC→K} U {ABC→ K; (i.e., 110 || 101)}

Here LHS of second FD is a partial subset of the LHS of the FD

in „min‟ and hence only the result of the OR operation is taken

and both the input FDs are discarded.

Iteration 3:

The next FD in the group is AC→K. Now, the two FDs to be

compared are AC→ K and ABC→ K, i.e. 10100000→K and

11100000→K.

res= 10100000.

min= {ABC→K} U {AC→ K}.

Here the LHS of first FD is a proper subset of the second FD and

hence the first FD is retained and second FD is discarded from

„min‟.

Iteration 4:
The next FD in the group is A→ K. Now, the two FDs to be

compared are A→K and ABC→ K, i.e. 10000000→K and

10100000→K

res= 10000000→K.

min= {ABC→K} U {A→ K}

Here the LHS of first FD is a proper subset of the second FD and

hence first FD is retained and the second FD is discarded from

„min‟.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.8, April 2011

35

Iteration 5:
The next FD in the group is G→ K. Now the two FDs are G→ K

and A→ K.

res=00000000

Here both the FDs are different and hence both the FDs are

retained.

Therefore, min= {A→K} U {G→ K}.

Iteration 1 of group2:

There is only one FD ABC→B in the group2, the other FDs do not

exist i.e. they are NULL. Hence, there is one iteration that adds

the FD ABC→B to the set „min‟.

min= {A→K, G→K, ABC→B}

Again, the step 4 is repeated and the group of FDs that determine

the attribute B are obtained i.e.

Group2 = {ABC→B}

min= {A→K, G→K}

Similar process is carried out for all the other groups of FDs

determining the attributes D, G, H present in the RHS. The final

minimized set of functional dependencies for the given input is:

min = {A→K, G→K, ABC→B, AC→D, ABD→G, A→K}.

5. CONCLUSION
This paper presents an automatic tool that takes the functional

dependencies which are abstracted from database or program as

input and then applies the algorithm on the abstracted functional

dependencies. The functional dependencies are linked to form the

attributes closure. Repeating the algorithm on functional

dependencies sets, a minimized set of functional dependencies are

obtained.

6. REFERENCES
[1] Dr. Shivanand M. Handigund, Rajkumar N. Kulkarni, “An

Ameliorated Methodology for the Abstraction and

Minimization of Functional Dependencies of Legacy „C‟

program Elements”, International Journal of Computer

Applications, Volume 16- No 3, February 2011.

[2] Pankaj Jalote, “An Integrated Approach to Software

Engineering”, Third Edition, Narosa Publishing House.

[3] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of

Database Systems”, Fifth Edition, Pearson Education.

[4] Pratap K. J. Mohapatra, “Software Engineering (A Lifecycle

Approach)”, New Age International (P) Limited, New Delhi.

[5] Philip A. Hausier, Mark G. Pleszkoch, Richard C. Linger,

Alan R. Hevner, “Using Function Abstraction to Understand

Program Behaviour”, IEEE-1990.

[6] K K Aggarwal and Yogesh Singh, “Software Engineering”,

Revised Second Edition, New Age International (P) Limited,

New Delhi.

[7] Rajib Mall, “Fundamentals of Software Engineering”, Third

Edition, PHI Learning Private Limited, New Delhi 2010.

[8] Joobin Choobineh, Santosh S. Venkatraman, “A

methodology and Tool for Automated Derivation of

Functional Dependencies”, IEEE-1989.

[9] Anyny Levitin, “Introduction to The Analysis & Design of

Algorithms, Pearson Education.

http://ijcaonline.org/

