
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

20

Text Summarization for Information Retrieval using
Pattern Recognition Techniques

Pritam Singh Negi

Department of Computer Science
H.N.B. Garhwal University

Srinagar Garhwal, India

M.M.S. Rauthan
Department of Computer Science

H.N.B. Garhwal University
Srinagar Garhwal, India

H.S. Dhami
Director, Information

Communication Technology
Kumaun University, Nainital

ABSTRACT
In the present work a model is proposed which is useful for text

summarization of the given document by using pattern recognition

techniques for improving the retrieval performance of the relevant

information. The design and implementation of the proposed

systems is concerned with methods for summarizing of the

retrieving information from a collection of documents or

corpuses. The quality of a system is measured by how useful it is

to the typical users of the system. In the basic approach, a query is

considered generated from an “ideal” document that satisfies the

information need. The system’s job is then to estimate the

likelihood of each document in the collection being the ideal

document and rank them accordingly. The recent development of

related techniques stimulates new modeling and estimation

methods that are beyond the scope of the traditional approaches.

Keywords: Information retrieval, Pattern Recognition, Text

summarization, Mathematical Model.

1. INTRODUCTION
The goal of proposed model is to identify documents relevant to a

user's query. In order to do this, system must assume some

measure of relevance between a document and a query, i.e., an

operational definition of a relevant document with respect to a

query. A fundamental problem in this model is thus to formalize

the concept of relevance; a different formalization of relevance

generally leads to a different model. Over the decades, many

different retrieval models have been proposed, studied, and tested.

Their mathematical basis spans a large spectrum, including

algebra, logic, probability and statistics. In this model, we can

calculate the probability of the pattern of the document on the

basis of part of speech and other conditions which are relevant to

the query.

2. LOGIC
For calculating the relevance of the document we will first define

and construct identifiers, those are basically based on grammatical

aspects of English language pertaining to which we have to

retrieve information from the given text. We are interested to

retrieve the information from the corpus of English language

regarding to their tense form, voice form, speech form, etc. So

firstly we have to construct the proper identifiers. As we know a

sentence of English language can be found in a particular tense,

voice, speech etc. So we can classify all these sentences into

particular classes for which we have need to construct some

identifiers pertaining to these particular classes.

Example:

1. Class of TENSE

2. Class of VOICE

Given text is firstly divided into the documents; here our mean to

a document is a single sentence with the help of sentence

boundary detection. After then we construct a matrix whose every

column shows a particular sentence and the entries of such

column are according to the presence and absence of the

identifiers. Thus these all documents (sentences) are arranged in a

matrix, whose number of rows and columns are equal to the

number of identifiers (t) and documents (d) respectively. This

matrix is thus said to be term by document matrix of order t×d.

The presence and absence of a particular identifier in a document

is defined as

Ti Dj = 1; if ith identifier present in the jth document Otherwise the

value of Ti Dj is 0.

Thus in general the sentence of different grammatical aspects can

be added together and gives any other sentence of the text

comprising all aspects simultaneously, provided that they don’t

belong to the same class.

2.1 TENSE RECOGNIZING IDENTIFIERS

T1= verb/verb-es/(is/am/are) verb (3rd form)

T2= is/am/are verb+ing/is/am/are being verb (3rd form)

T3= has/have verb (3rd form)/ has/ have been verb (3rd form)

T4= has/ have been ver+ing

T5=verb (2nd form)/ was/ were verb (3rd form)

T6=was/were verb+ing/ was/were being verb (3rd form)

T7=had verb (3rd form)/ had been verb (3rd form)

T8= had been verb+ing

T9= will/ shall verb (1st form)/will/shall be verb (3rd form)

T10= will/shall be verb+ing

T11= will/shall have verb (3rd form)/ will/shall have been verb (3rd

form)

T12=will/shall have been verb+ing form

MATHEMATICAL FORMALISM:

These 12 identifiers can be used for dividing entire English

language corpus into 12 different tenses. Any sentence exists

exactly one of the forms of above given 12 identifiers according

to its tense form.

As:

Ram plays hockey in the field.

Its equivalent document vector can be written as:

(1,0,0,…,0(up to 12 terms))

Shyam passed his exam with good marks.

(0,0,0,1,0,….(up to 12 terms))

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

21

2.2 VOICE RECOGNIZING IDENTIFIERS

In this phase the identifiers are defined in such a manner that they

will recognize the voice form in a corpus. We know there exist

two types of voice forms, one is active and second is passive

form. To identify weather a sentence is in an active voice or

passive voice, we have to go through the following procedure by

taking two following identifiers:

2.2.1: ACTIVE VOICE:

Verb (1st form), Verb(+es form),

Is/ am/ are ing- form,

Has/ have verb(3rd form)

Has been/ Have been verb(ing- form)

Verb (2nd form)

Was/ were verb(ing-form)

Had verb (3rd form)

Had been verb(ing form)

Will/ shall verb (1st form)

Will be/ shall be verb(ing-form)

Will have/ shall have verb (3rd form)

Will have been/ Shall have been verb(ing- form)

2.2.2: PASSIVE VOICE:

Is/ am/ are verb (3rd form)

Is/ am/ are being verb (3rd form)

Has/ have been verb (3rd form)

Was/ were verb (3rd form)

Was/ were being verb (3rd form)

Had been verb (3rd form)

Will/ Shall be verb(3rd form)

Will have been/ Shall have been verb (3rd form)

By using these two identifiers we can separate simple sentences

into two broad categories of active and passive voice. This is

obvious that any simple sentence can exist in one of the form

either active or passive at a time.

MATHEMATICAL FORMALISM:

We can now formalize any sentence into document vector, whose

first coordinate is active and the second one represents the class of

passive voice.

For example:

 “Jack has played a match” can be represented as (1,0), since it is

in active voice.

“The deer has been killed by the lion”, can be represented as (0,1),

since it is in passive voice.

On the basis of above mention conditions we can categorized the

sentences. For example if sentence is in Present indefinite and

Active voice then the sentence vector is in form,

 D1= (1, 0,.., 1, 0 (14th term))1*14

Similarly we can calculate the sentence vector of all other

sentences which are present into the document and also create a

query vector.

On the basis of above mathematical formalism after creating these

sentence vectors we check that which types of sentence vector are

mostly used on the whole document and count the number of

availability of the sentence vector on the whole document. Then

compare the query vector with document vector. In which corpus

highest query vector is matched this one is the relevant document

of the given query.

3. ALGORITHM
3.1 Algorithm For Main() Function

This algorithm is used for opening the file where the sentences are

stored which one is calculated from a corpus or document with the

help of Sentence Boundary Detection Algorithm.

1. Start.

2. Open the file where sentences are placed which one is

created by sentence boundary detection algorithm

(“sentence.txt”).

3. While EOF Repeat Steps 3.1 to Step 3.4

 Input a single sentence from this file.

Break this sentence into its constituent words and

store them in a global string array all_words[].

Len = length of this string array.

 While count < Len Repeat Step 3.3.1 to Step 3.3.3

 3.1 Pass each constituent word to verb_search()

 function.

 3.2 If return-value = 1 then

 Input again a new single sentence from the file

containing sentences.

3.3 End if

3.4 End While

4. End While

5. Close this file.

6. Call stats () function.

7. End.

3.2 Algorithm For Verb_Search () Function

This algorithm is used for searching the verb in a sentence.

1. Start.

2. Open the file “verb_db.txt” which contains all forms

of verbs.

3. While EOF Repeat Step 3.1 to Step 3.5

3.1 Input a new single line from this file.

3.2 Search this line for the constituent word passed as

parameter from main () function.

3.3 If constituent word is found, then

Call form_search () function and pass this

line and constituent word as its parameter

 Return (1)

3.4 End if.

3.5 End while

4 Close file “verb_db.txt”

5 Return (0)

3.3 Algorithm For Form_Search()Function

This algorithm is used for searching the form of the verb which

one is present in a sentence which one is useful for calculating the

tense of the sentences.

1. Start

2. Store the line passed from verb_search () function in

a string array.

3. Calculate the index of the constituent word in this

string array.

4. If index = 0 then

 Form-number = 0

 Else If index = 1 then

 Form-number = 1

 Else If index = 2 then

 Form-number = 2

 Else If index = 3 then

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

22

 Form-number = 3

 Else If index = 4 then

 Form-number = 4

 End if

 End if

 End if

 End if

 End if

5. Call tense_search () function and pass this

form_number & constituent word as its parameter.

6. Stop.

3.4 Algorithm For Tense_Search() Function

This algorithm is used for searching the tense and voice of the

sentences on the basis of the form number of the verb which one

is present in a sentence and calculates the sentence vector of the

each sentence.

1. Start.

2. Declare an integer array doc_vec[14] and initialize

array elements with a value of 0.

3. For each constituent word , Repeat Step 3.1 to Step

3.8

3.1 If ((form-number = 0) AND (all_words[i-1] !=

"will" AND all_words[i-1] != "shall"))

 Print “Simple present tense in active voice"

 End if

3.2 If ((form-number = 0) AND (all_words[i-1] =

"will" OR all_words[i-1] = "shall"))

 Print “Simple future tense in active voice "

 End if

3.3 If(form-number = 1) then

 Print "simple past tense in active voice"

 doc_vec[4] = 1

 doc_vec[12] = 1

 End if

3.4 If(form-number = 2) then

 3.4.1 If(all_words[i-1] = "is" OR all_words[i-1] =

"am" OR all_words[i-1] = "are")

 Print " simple present tense in passive voice "

 doc_vec[0] = 1

 doc_vec[13] = 1

 End if

3.4.2 If((all_words[i-1] = "being") AND

(all_words[i-2] = "is" OR all_words[i-2] =

"am" OR all_words[i-2] = "are")) then

 Print "Present continous tense in passive

voice"

 doc_vec[1] = 1

 doc_vec[13] = 1

 End if

3.4.3 If(all_words[i-1] = "was" OR all_words[i-1]

= "were") then

 Print " simple past tense in passive voice "

 doc_vec[4] = 1

 doc_vec[13] = 1

 End if

3.4.4 If((all_words[i-1] = "being") AND

(all_words[i-2] = "was" OR all_words[i-2] =

"were")) then

 Print "Past continous in passive voice”

 doc_vec[5] = 1

 doc_vec[13] = 1

 End if

3.4.5 If(all_words[i-1] = "had") then

 Print "past perfect tense in active voice.”

 doc_vec[6] = 1

 doc_vec[12] = 1

 End if

3.4.6 If((all_words[i-1] = "been") AND

(all_words[i-2] = "had")) then

 Print "past perfect tense in passive voice "

 doc_vec[6] = 1

 doc_vec[13] = 1

3.4.7 If((all_words[i-1] = "be") AND (all_words[i-

2] = "will" OR all_words[i-2] = "shall")) then

 Print " simple future tense in passive voice “

 doc_vec[8] = 1

 doc_vec[13] = 1

 End if

3.4.8 If((all_words[i-1] = "have") AND

(all_words[i-2] = "will" OR all_words[i-2] =

"shall")) then

 Print "Future perfect tense in active voice “

 doc_vec[10] = 1

 doc_vec[12] = 1

 Else

 if(all_words[i-1] = "have" OR all_words[i-1]

= "has") then

 Print "present perfect tense in active voice”

 doc_vec[2] = 1

 doc_vec[12] = 1

 End if

 End if

3.4.9 If((all_words[i-1] = "been" AND all_words[i-

2] = "have") AND (all_words[i-3] = "will"

OR all_words[i-3] = "shall")) then

 Print" future perfect tense in passive voice \n"

 doc_vec[10] = 1

 doc_vec[13] = 1

 Else

 If((all_words[i-1] = "been") AND

(all_words[i-2] = "has" OR all_words[i-2] =

"have")) then

 Print “ present perfect tense in passive voice “

 doc_vec[2] = 1

 doc_vec[13] = 1

 End if

 End if

 End if

3.5 If(form-number = 3) then

3.5.1 If(all_words[i-1] = "is" OR all_words[i-1] =

"am" OR all_words[i-1] = "are")

 Print "present continuous tense in active

voice“

 doc_vec[1] = 1

 doc_vec[12] = 1

 End if

3.5.2 If(all_words[i-1] = "was" OR all_words[i-1] =

"were") then

 Print “past continous in active voice”

 doc_vec[5] = 1

 doc_vec[12] = 1

 End if

3.5.3 If((all_words[i-1] = "been") AND

(all_words[i-2] = "had")) then

 Print "past perfect continuous tense in active

voice”

 doc_vec[7] = 1

 doc_vec[12] = 1

 End if

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

23

3.5.4 if((all_words[i-1] = "be") AND (all_words[i-

2] = "will" OR all_words[i-2] = "shall")) then

 Print “future continuous tense in active voice”

 doc_vec[9] = 1

 doc_vec[12] = 1

 End if

3.5.5 If((all_words[i-1] = "been" AND all_words[i-

2] = "have") AND (all_words[i-3] = "will"

OR all_words[i-3] = "shall")) then

 Print " future perfect continuous tense in

active voice “

 doc_vec[11] = 1

 doc_vec[12] = 1

 Else If((all_words[i-1] = "been") AND

(all_words[i-2] = "has" OR all_words[i-2] =

"have")) then

 Print " present perfect continuous tense in

active voice”

 doc_vec[3] = 1

 doc_vec[12] = 1

 End if

 End if

 End if

3.6 If(form-number = 4) then

 Print " simple present tense in active voice”

 doc_vec[0] = 1

 doc_vec[12] = 1

 3.7 End if

3.8 End For

4. Open file “query_vector.txt”

5. For i = 0 to 14

Write to file doc_vec[i].

i = i + 1

6. End For

7. Close file

8. Stop

On the basis of above mention algorithm we find the result of the

text summarization of every sentence in the following manner:

 If the sentence is in Simple present tense and in active

voice then the identifier is

1 0 0 0 0 0 0 0 0 0 0 0 1 0

 If the sentence is in Simple present tense and in passive

voice then the identifier is

1 0 0 0 0 0 0 0 0 0 0 0 0 1

 If the sentence is in Present Continuous tense and in

active voice then the identifier is

0 1 0 0 0 0 0 0 0 0 0 0 1 0

 If the sentence is in Present Continuous tense and in

passive voice then the identifier is

0 1 0 0 0 0 0 0 0 0 0 0 0 1

 If the sentence is in Present Perfect tense and in active

voice then the identifier is

0 0 1 0 0 0 0 0 0 0 0 0 1 0

 If the sentence is in Present perfect tense and in passive

voice then the identifier is

0 0 1 0 0 0 0 0 0 0 0 0 0 1

 If the sentence is in Present Perfect Continuous tense

and in active voice then the identifier is

0 0 0 1 0 0 0 0 0 0 0 0 1 0

 If the sentence is in Present Perfect Continuous and in

passive voice then the identifier is

0 0 0 1 0 0 0 0 0 0 0 0 0 1

 If the sentence is in Simple Past tense and in active

voice then the identifier is

0 0 0 0 1 0 0 0 0 0 0 0 1 0

 If the sentence is in Simple present tense and in passive

voice then the identifier is

0 0 0 0 1 0 0 0 0 0 0 0 0 1

 If the sentence is in Past Continuous tense and in active

voice then the identifier is

0 0 0 0 0 1 0 0 0 0 0 0 1 0

 If the sentence is in Past Continuous tense and in

passive voice then the identifier is

0 0 0 0 0 1 0 0 0 0 0 0 0 1

 If the sentence is in Past Perfect tense and in active

voice then the identifier is

0 0 0 0 0 0 1 0 0 0 0 0 1 0

 If the sentence is in Past perfect tense and in passive

voice then the identifier is

0 0 0 0 0 0 1 0 0 0 0 0 0 1

 If the sentence is in Past Perfect Continuous tense and in

active voice then the identifier is

0 0 0 0 0 0 0 1 0 0 0 0 1 0

 If the sentence is in Past Perfect Continuous and in

passive voice then the identifier is

0 0 0 0 0 0 0 1 0 0 0 0 0 1

 If the sentence is in Simple Future tense and in active

voice then the identifier is

0 0 0 0 0 0 0 0 1 0 0 0 1 0

 If the sentence is in Simple Future tense and in passive

voice then the identifier is

0 0 0 0 0 0 0 0 1 0 0 0 0 1

 If the sentence is in Future Continuous tense and in

active voice then the identifier is

0 0 0 0 0 0 0 0 0 1 0 0 1 0

 If the sentence is in Future Continuous tense and in

passive voice then the identifier is

0 0 0 0 0 0 0 0 0 1 0 0 0 1

 If the sentence is in Future Perfect tense and in active

voice then the identifier is

0 0 0 0 0 0 0 0 0 0 1 0 1 0

 If the sentence is in Future perfect tense and in passive

voice then the identifier is

0 0 0 0 0 0 0 0 0 0 1 0 0 1

 If the sentence is in Future Perfect Continuous tense and

in active voice then the identifier is

0 0 0 0 0 0 0 0 0 0 0 1 1 0

 If the sentence is in Future Perfect Continuous and in

passive voice then the identifier is

0 0 0 0 0 0 0 0 0 0 0 1 0 1

3.5 Algorithm For Stats() Function

This algorithm is used for calculating the number of the same

type of the sentences present in the document file.

1. Start

2. Declare array s_arr[12] , av[14] , pv[12] , f_arr[14]

3. Open file “query_vector.txt”

4. While EOF repeat Step 4.1 to Step 4.4

4.1 Input a new single line from this file.

4.2 Insert this line into array s_arr[]

4.3 For I = 0 to 11

 If s_arr[I] = 1

 f_arr[I] = f_arr[I] + 1

 If s_arr [12] = 1

 av [I] = av [I] + 1

 Else

 pv [I] = pv [I] + 1

 End if

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

24

End if

Next I

4.4 End for

5. End While

6. Close file “query_vector.txt”

7. Declare a string array s2[14] = { "simple present

tense" , "present continuous tense" , "present

perfect tense" , "present perfect continuous tense" ,

"simple past tense" , "past continuous tense" , "past

perfect tense" , "past perfect continuous tense" ,

"simple future tense" , "future continuous tense" ,

"future perfect tense" , "future perfect continuous

tense" , "active voice" , "passive voice"}

8. Use Bubble Sort technique to sort s2 [14] and f_arr

[14] accordingly in descending order.

9. Open a file “results.txt”

10. For k = 0 to 13

Write the sorted array f_arr [k] onto file.

Next k

11. End for

12. Close file “results.txt”

13. Stop

4. CONCLUSION
We have presented a system for text summarization of a given

document. With the help of this system identifiers are defined and

constructed, which are basically based on grammatical aspects of

English language and these identifiers are useful for retrieving the

relevant information from the given text. We created an open

source software tool and the experimental results show that the

approach can achieve a high accuracy. With the help of this

system anyone can understand the writing style of any author.

This is an elementary task for calculating the writing style of the

author and the summarization of the document. On the basis of

proposed system we can also calculate the relevance of the

document.

5. REFERENCES
[1] Borlund, P. (2003). The concept of relevance in IR. Journal

of the American Society for Information Science and

Technology, 54(10), 913–925.

[2] Budd, J.M. (2004) Relevance: Language, semantics,

philosophy. Library Trends, 52(3), 447–462.

[3] Mares, E. (1998). Relevance logic. In Stanford Encyclopedia

of Philosophy. Retrieved October 17, 2005, from

http://plato.stanford. edu/entries/logic-relevance/#Bib

[4] Negi Pritam Singh, Rauthan M. M. S. & Dhami H. S.,

(2010), Sentence Boundary Disambiguation: A User Friendly

Approach, International Journal of Computer Applications

(0975 – 8887), Volume 7– No.8, October 2010

[5] Rieh, S.Y., & Xie, H.I. (2006). Analysis of multiple query

reformulations on the Web: The interactive information

retrieval context. Information Processing & Management,

42(3), 751–768.

[6] Ruthven, I. (2005). Integrating approaches to relevance. In

A. Spink & C. Cole (Eds.), New directions in cognitive

information retrieval (pp. 61–80). Amsterdam: Springer.

[7] Ruthven, I. (2005). Integrating approaches to relevance. In

A. Spink & C. Cole (Eds.), New directions in cognitive

information retrieval (pp. 61–80). Amsterdam: Springer.

[8] Saracevic, T. (2006). Relevance: A review of and a

framework for the thinking on the notion of information

science. Part II. In D.A. Nitecki & E.G. Abels (Eds.),

Advances in Librarianship (Vol. 30, pp. 3–71). San Diego:

Academic Press.

[9] Saracevic, T. (2007). Relevance: A review of the literature

and a framework for thinking on the notion in information

science. Part III: Behavior and effects of relevance. Journal

of the American Society for Information Science and

Technology, 58, 2126–2144.

[10] Zipf, G. (1949). Human behavior and the principle of least

effort. Cambridge, MA: Addison-Wesley.

